ebook img

Extended affine Weyl groups and Frobenius manifolds PDF

53 Pages·1998·0.39 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Extended affine Weyl groups and Frobenius manifolds

CompositioMathematica 111: 167–219,1998. 167 c 1998KluwerAcademicPublishers. PrintedintheNetherlands. (cid:13) Extended affine Weyl groups and Frobenius manifolds BORISDUBROVIN1 andYOUJINZHANG2 1SISSA,ViaBeirut2–4,34014Trieste,Italy,andSteklovMathematicsInstitute,Moscow, e-mail:[email protected] 2SISSA,ViaBeirut2–4,34014Trieste,Italy,andDepartmentofMathematics,UniversityofScience andTechnologyofChina,Hefei, e-mail:[email protected] Received14May1996;acceptedinfinalform16January1997. Abstract.WedefinecertainextensionsofaffineWeylgroups(distinctfromtheseconsideredbyK. Saito[S1]inthetheoryofextendedaffinerootsystems),proveananalogueofChevalleyTheorem fortheirinvariants,andconstructaFrobeniusstructureontheirorbitspaces.Thisproducessolutions ofWDVVequationsofassociativitypolynomialin , , ,exp . 1 1 1 F(t ;:::;tn) t ::: tn(cid:0) tn MathematicsSubjectClassifications(1991).32M10,14B07,20H15. Keywords:rootsystems,affineWeylgroups,Frobeniusmanifolds,flatcoordinates,WDVVequa- tions. 0. Introduction Frobeniusmanifoldisageometricobject(seeprecisedefinitioninSection2below) designedas acoordinate-freeformulation ofequationsofassociativity,or WDVV equations (they were invented in the beginning of ’90s by Witten, Dijkgraaf, E. andH.Verlindeinthesettingoftwodimensionaltopologicalfieldtheory;see[D] andreferencestherein).In[D]foranarbitrary -dimensionalFrobeniusmanifold amonodromygroupwasdefined.Itactsin -dinmensionallinearspaceanditisan extensionofagroupgeneratedbyreflectionns.Lookingatsimpleexamplesitmight beconjecturedthatforaFrobeniusmanifoldwithgoodanalyticproperties(inthe senseof[D], AppendixA) the monodromygroup actsdiscretelyin somedomain of the space.The Frobenius manifold itself can be identified with the orbit space ofthegroupinthesensetobespecifiedforeachclassofmonodromygroups. In the present paper we introduce a new class of discrete groups that can be realized as monodromy groups of Frobenius manifolds (it was shown previously that any finite Coxeter group can serve as a monodromy group of a polynomial Frobeniusmanifold,see[D]). WedefinecertainextensionsofaffineWeylgroups, and construct a Frobenius structure on their orbit spaces. Our groups coincide with the monodromy groups of the Frobenius manifolds. They are labelled by pairs where is an irreducible reduced root system, and is a certain simple(Rro;okt)(showniRnwhiteonTableI,nextpage).OurconstructionkofFrobenius https://doi.org/10.1023/A:1000258122329 Published online by Cambridge University Press Jeff **INTERPRINT** PIPS Nr.: 130600 MATHKAP comp4074.tex; 11/11/1994; 13:38; v.7; p.1 168 BORISDUBROVINANDYOUJINZHANG TableI * Al 1r 2r q q q r1 c r1 q q q r1 r 1 k(cid:0) k k+ l(cid:0) l l+ * Bl 1r 2r q q q r1 r r1 q q q c1 > r 1 k(cid:0) k k+ l(cid:0) l l+ * Cl 1r 2r q q q r1 r r1 q q q r1 < c 1 k(cid:0) k k+ l(cid:0) l l+ 1 l(cid:0) (cid:8)r (cid:8) (cid:8) Dl 1r 2r q q q r1 r r1 q q q 2cH k(cid:0) k k+ l(cid:0) HHr * 1 2 l l+ r 6 * r r c r r E 1 3 4 5 6 7 2 r 7 * r r c r r r E 1 3 4 5 6 7 8 2 r 8 * r r c r r r r E 1 3 4 5 6 7 8 9 4 * r c r r F 1 2 > 3 4 5 2 * r c G 1 < 2 3 https://doi.org/10.1023/A:1000258122329 Published online by Cambridge University Press comp4074.tex; 11/11/1994; 13:38; v.7; p.2 AFFINEWEYLGROUPSANDFROBENIUSMANIFOLDS 169 structureincludes,particularly,aconstructionoftheflatcoordinates inthe 1 appropriateringofinvariantsoftheextendedaffineWeylgroups(flta;t:c:o:o;trdninates in the ring of polynomial invariants of finite Coxeter groups were discovered by Saito, Yano, Sekiguchi [SYS, S]). The correspondent solutions of equations of associativityareweightedhomogeneous(upto aquadraticfunction)polynomials in , e with all positiveweights ofthe variables.Here 1 is equal 1 1 tn to tth;e:r:a:n;ktno(cid:0)f the root system . It can be shown (see [D], Appendnix(cid:0)A) that for 3ourconstructionexhaustRsallsuchsolutions. n6The paper is organized in the following way. In Section 1 we define extended affineWeylgroupsandproveananalogueofChevalleyTheorem[B]forthem.In Section2 we construct Frobenius structure on the orbit spaces of our groups and computeexplicitlyalllow-dimensionalexamplesoftheseFrobeniusmanifolds.In Section3weshowthatinthecaseoftherootsystemof -type,ourextendedaffine WeylgroupsdescribemonodromyofrootsoftrigonomeAtricpolynomialsofagiven bidegree. We discuss topology of the complement to bifurcation variety of such trigonometricpolynomialsintermsofthecorrespondentFrobeniusmanifolds. 1. ExtendedaffineWeylgroupsandtheirinvariants Let be an irreducible reduced root systemin -dimensional Euclidean space withREuclideaninnerproduct . Wefix a basils ofsimple rootVs. 1 2 Let ( ; ) (cid:11) ;(cid:11) ;:::;(cid:11)l 2 1 2 _ (cid:11)j (cid:11)j = ; j = ; ;:::;l ((cid:11)j;(cid:11)j) bethecorrespondentcoroots.Allthenumbers : areintegers(these _ aretheentriesoftheCartanmatrix , Aij = ((cid:11)i2;(cid:11)j) 0 for _ _ ). The Weyl group Ais=a(fiAnijit)e(g(cid:11)rio;u(cid:11)pig)e=nera;t(e(cid:11)di;b(cid:11)yjt)h6e reflectiion6=s j W = W(R) 1 2 (cid:27) ;(cid:27) ;:::;(cid:27)l x x x x (1.1) _ (cid:27)j( ) = (cid:0)((cid:11)j; )(cid:11)j; 2V: Werecallthattherootsystemisoneofthetype 6 7 8 4 2 (see[B]). Al; Bl; Cl; Dl; E ; E ; E ; F ; G TheaffineWeylgroup actsinthespace byaffinetransformations Wa(R) V x x l Z _ 7!w( )+ 1mj(cid:11)j; w 2W; mj 2 : j= X Soitisisomorphictothesemidirectproductof bythelatticeofcoroots. Letusintroducecoordinates inW usingthebasisofcoroots 1 2 x ;x ;:::;xl V x (1.2) 1 _1 2 _2 _ =x (cid:11) +x (cid:11) +(cid:1)(cid:1)(cid:1)+xl(cid:11)l : https://doi.org/10.1023/A:1000258122329 Published online by Cambridge University Press comp4074.tex; 11/11/1994; 13:38; v.7; p.3 170 BORISDUBROVINANDYOUJINZHANG WedefineFourierpolynomialasthefollowingfunctionson V x e2 1 1 1 (cid:25)i(m x +(cid:1)(cid:1)(cid:1)+mlxl) f( ) = 1 Zam ;:::;ml ; m ;:::;ml2 X thecoefficientsarearbitrarycomplexnumbersandonlyfinitenumberofthemcould benonzero.Alternatively,introducingthefundamentalweights 1 ! ;:::;!l 2V _ (!i;(cid:11)j) =(cid:14)ij; wecanrepresenttheFourierpolynomialasasumovertheweightlattice x e2 1 1 x 1 (cid:25)i(m ! +(cid:1)(cid:1)(cid:1)+ml!l; ) f( ) = 1 Zam ;:::;ml : m ;:::;ml2 X ThustheringofourFourierpolynomialsisidentifiedwiththegroupalgebraofthe weightlattice[B].WedefinetheoperationofaveragingofaFourierpolynomial x x x : 1 x (1.3) f( ) 7! f(cid:22)( ) =SW(f( )) =n(cid:0)f f(w( )); w2W X where # x x . For any x the Fourier polynomial x nf = fxw 2isWa jfufn(cwti(on))o=n f(in)vgariant withfr(es)pect to the action of the fa(cid:22)f(fin)e=WeSyWlg(fro(up)) V x l x f(cid:22) w( )+ 1mj(cid:11)_j =f(cid:22)( ): 0 1 j= X Equival@ently,thisisa -inAvariantFourierpolynomial. W THEOREM [B]. The ring of -invariant Fourier polynomials is isomorphic to thepolynomialringC W ,where x x arethebasic 1 1 1 -invariantFourierp[oyly;n:o:m:;iyall]sdefinedyby= y ( );:::;yl = yl( ) W e2 x 1 (1.4) (cid:25)i(!j; ) yj =SW( ); j = ;:::;l: EXAMPLE 1.1. The Weyl group acts by permutations of the coordinates onthehyperplane W(Al) 1 1 z ;:::;zl+ 0 1 1 z +(cid:1)(cid:1)(cid:1)+zl+ = : Wechoosethestandardbasisofsimpleroots asin[B,PlanchesI].Then _ thecoordinates aredefinedby (cid:11)j = (cid:11)j 1 x ;:::;xl 2 (1.5) 1 1 1 1 z =x ; zi =xi(cid:0)xi(cid:0) ; i= ;:::;l; zl+ =(cid:0)xl: https://doi.org/10.1023/A:1000258122329 Published online by Cambridge University Press comp4074.tex; 11/11/1994; 13:38; v.7; p.4 AFFINEWEYLGROUPSANDFROBENIUSMANIFOLDS 171 Thebasic -invariantFourierpolynomialscoincidewiththeelementarysymmet- ricfunctioWns e2 1 e2 1 1 (1.6) (cid:25)iz (cid:25)izl+ yj =sj( ;:::; ); j = ;:::;l: We are going nowto definecertain extensionsofthe affineWeylgroupacting inthe 1 -dimensionalspacewithindefinitemetric. For(aln+yir)reduciblereducedrootsystem wefixaroot indicatedinTableI. The Dynkin graphs of R (cid:11)tykpe are shown in the Table1withonemorevAert(cid:0)exBad(cid:0)dedC(t(cid:0)hisDis(cid:0)indEic(cid:0)ateFdb(cid:0)yGasterisk).Wewillusethis additionalvertexlateron.ThewhitevertexoftheDynkingraphcorrespondstothe chosenroot .ObservethattheDynkingraphof : 1 isomitted c(cid:11)onksistsof1,2or3branchesof typeRfokrs=omf(cid:11)e ;.:A:n:o;(cid:11)t^hke;r:o:b:s;e(cid:11)rlvgat(i(cid:11)onk isthatthe)number Ar r 1 2 ((cid:11)k;(cid:11)k) isanintegerforourchoiceof . Weconstructagroup k (k) W =W (R) actingin f f R V =V (cid:8) generatedbythetransformations e x x l Z (1.7a) 1 _ 1 x=( ;xl+ )7! w( )+ 1mj(cid:11)j; xl+ ; w 2W; mj 2 ; 0 1 j= and X @ A x x 1 (1.7b) 1 1 x=( ;xl+ )7!( +!k; xl+ (cid:0) ): DEFINITION. istheringofall -invariantFourierpolynomialsof (k) 1 A=Atha(tRa)reboundedintheWlimit 1 1 x ;:::;xl;( =f)xl+ x x0 1 0 1 f (1.8) = (cid:0)i!k(cid:28); xl+ =xl+ +i(cid:28); (cid:28) !+1; for any 0 x0 0 , here is the determinant of the Cartan matrix of the 1 rootsystxem= ,(se;exTla+bl)e2. f A Weput R 1 (1.8) dj =(!j;!k); j = ;:::;l; these are certain positive rational numbers that can be found in Table II. All the numbers areintegers.Indeed,theyaretheelementsofthe thcolumnofthe matrix f1(cid:1)tdimj es 1 . k (cid:0) 2 A ((cid:11)k;(cid:11)k) https://doi.org/10.1023/A:1000258122329 Published online by Cambridge University Press comp4074.tex; 11/11/1994; 13:38; v.7; p.5 172 BORISDUBROVINANDYOUJINZHANG TableII. 1 R d ;:::;dl f dk 1 1 Al di= ik((ll(cid:0)l(cid:0)+ki11++1)); 61i6k l+1 k(l(cid:0)l+k1+1) ( l+ ; k+ 6i6l 1 1 i; 6i6l(cid:0) 2 1 Bl di= l(cid:0)21 l(cid:0) ( ; i=l 2 Cl di=i l 1 2 i; 6i6l(cid:0) 4 2 Dl di= l(cid:0)22 1 l(cid:0) ( ; i=l(cid:0) ;l 2,3,4,6,4,2 3 6 6 E 4,6,8,12,9,6,3 2 12 7 E 10,15,20,30,24,18,12,6 1 30 8 E 3,6,4,2 1 6 4 F 3,6 1 6 2 G LEMMA1.1.TheFourierpolynomials e2 1 x 1 y~j(x) = (cid:25)idjxl+ yj( ); j = ;:::;l; (1.10) 2 1 (cid:25)ixl+1 y~l+ (x) = e ; are -invariant. PWroof.Weshowthatall are -invariant(invarianceof is obvi- 1 1 ous).Itsufficestoprovethay~t ;:::;y~l W y~l+ f x e2 x f (1.11) (cid:25)idj yj( +!k) = yj( ): Wecanrepresent x as yj( ) x 1 e2 x (1.12) (cid:0) (cid:25)i(w(!j); ) yj( ) =nj ; w2W X where for 2 x . Accordingto [B, VI, Sect. 1.6, Prop. 18] for (cid:25)i(!j; ) any nj = nf f = e w 2W l (1.13) w(!j) =!j (cid:0) 1mi(cid:11)i; i= X https://doi.org/10.1023/A:1000258122329 Published online by Cambridge University Press comp4074.tex; 11/11/1994; 13:38; v.7; p.6 AFFINEWEYLGROUPSANDFROBENIUSMANIFOLDS 173 forsomenon-negativeintegers .So 1 m ;:::;ml l (w(!j);!k) =(!j;!k)(cid:0) 1mi((cid:11)i;!k)= dj (cid:0)mw; i= X foraninteger 1 (1.14) 2 mw = mk ((cid:11)k;(cid:11)k); thisleadsto(1.11),andweprovedthelemma. 2 Letusprovenowboundednessofthefunctions inthelimit(1.8). 1 y~ ;:::;y~l LEMMA1.2.Inthelimit x x0 (1.15) = (cid:0)i!k(cid:28); (cid:28) ! +1; thefunctions x x havetheexpansion 1 y ( );:::;yl( ) x e2 0 x0 e 2 1 (1.16) (cid:25)dj(cid:28) (cid:0) (cid:25)(cid:28) yj( ) = [yj( )+O( )]; j = ;:::;l; where 0 x0 1 e2 x0 (1.17) (cid:0) (cid:25)i(w(!j); ) yj( ) =nj : wX2W 0 (w(!j)(cid:0)!j;!k)= Proof.Fromtherepresentation(1.13)weseethattheexponential exp2 x inthelimit(1.15)behavesas [ (cid:25)i(w(!j); )] e2 e2 x0 (cid:25)(dj(cid:0)mw)(cid:28) (cid:25)i(w(!j); ) ; where the non-negative integer is defined in (1.14). Thus the leading contri- bution in the asymptotic behavimouwr of the sum (1.12) comes from those satisfying 0.Lemmaisproved. w 2 W mk = 2 COROLLARY1.1.Thefunctions belongto . 1 1 Proof.From(1.16)itfollowsthy~at(x);:::;y~l+ (x) A 0 0 e2 0 1 0 x0 1 (cid:25)idjxl+ y~j(x) !y~j(x ) = yj( ); j = ;:::;l; 0 1 y~l+ ! https://doi.org/10.1023/A:1000258122329 Published online by Cambridge University Press comp4074.tex; 11/11/1994; 13:38; v.7; p.7 174 BORISDUBROVINANDYOUJINZHANG in the limit (1.8), where the functions 0 x0 are defined in (1.17). Corollary is proved. yj( ) 2 Themainresultofthissectionis THEOREM1.1.Thering isisomorphictotheringofpolynomialsof . 1 1 Proof.WewillshowthAatanyelement ofthering canberey~pr;e:s:e:n;tey~dl+as apolynomialof .Thiswillbefe(nxo)ughsincethAefunctions 1 1 1 1 arealgebraicallyy~in;d:e:p:e;ny~dl+ent. y~ ;:::;y~l+ Fromtheinvariancew.r.t. iteasilyfollows(usingTheorem[B])thatany canberepresentedasapolynWomialof 1.Weneefd(xto) 1 1 (cid:0)1 showthatin therearenonegativey~p(oxw)e;r:s:o:;fy~l(x);y~l+ (x);y~l+ f(x) f e2 1 1 (cid:25)ixl+ y~l+ (x) = : Let’sassume n 1 1 f(x)= y~l+ Pn(y~ (x);:::;y~l(x)) n>(cid:0)N X andthepolynomial doesnotvanishidenticallyforcertain 1 positiveinteger .FPro(cid:0)mN(Cy~or(oxl)la;r:y::1;.y1~lw(xe)o)btainthatinthelimit(1.8)thefunction behavesasN f(x) e2 2 0 1 0 0 0 0 e 2 (cid:25)N(cid:28)(cid:0) (cid:25)iNxl+ 1 (cid:0) (cid:25)(cid:28) f(x)= [P(cid:0)N(y~ (x );:::;y~l(x ))+O( )]; where 0 0 e2 0 1 0 x0 1 (cid:25)idjxl+ y~j(x )= yj( ); j = ;:::;l andthefunctions 0 x0 aredefinedin(1.17). Toobtainafunycjti(on)boundedfor itisnecessarytohave (cid:28) !+1 0 0 0 0 0 1 P(cid:0)N(y~ (x );:::;y~l(x )) (cid:17) ; for any 0 x0 0 . We show now that this is impossible due to algebraic 1 independxenc=eo(f th;xelf+un)ctions 0 0. It is sufficient to prove algebraic inde- 1 pendenceofthefunctions 0 xy~ ;:::;0y~lx . 1 y ( );:::;yl( ) MAINLEMMA.TheFourierpolynomials 0 x 0 x arealgebraicallyinde- 1 pendent. y ( );:::;yl( ) We will prove that these functions are functionally independent, i.e., that the Jacobian 0 x det @yj( ) @xi ! https://doi.org/10.1023/A:1000258122329 Published online by Cambridge University Press comp4074.tex; 11/11/1994; 13:38; v.7; p.8 AFFINEWEYLGROUPSANDFROBENIUSMANIFOLDS 175 does not vanish identically. At this end we derive explicit formulae for these functionsandthenprovenonvanishingoftheJacobian. Consider 1 2 ( ) ( ) Rk =R [R [:::; hereanysubsystem 1 isarootsystemofthetype forsome (seeTableI). ( ) Let beafundaRmen;t:a:l:weightorthogonalto A1 r. r ( ) !i RnR LEMMA1.3.Letforsome w 2W(R) l w(!i)=!i(cid:0) 1cm(cid:11)m; m= X suchthat 0,then 0onlyif 1 . ( ) Proof.cIkn= cm1 6=there exist(cid:11)sm 2sRuch that it maps all positive roots of ( ) 0 1 intoWneg(RatkivneRroo)ts.Clearly, wpreservesall 1 ,and . ( ) 0 ( ) 0 RWkenrRepresent w (cid:11)m 2R w (!i) =!i 1 2 ( ) ( ) w(!i)=!i(cid:0)(cid:11) (cid:0)(cid:11) (cid:0):::; where ’saresumofsomepositiverootsof .Then (i) (i) (cid:11) R 1 2 1 0 ( ) 0 ( ) ( ) w w(!i) =!i(cid:0)(cid:11) (cid:0)w ((cid:11) +(cid:1)(cid:1)(cid:1)) =!i(cid:0)(cid:11) + 1 c~m(cid:11)m; (cid:11)m2RknR() X forsomenonnegativeintegers ,andnotalloftheseintegersvanishifthereexists certain 1 suchthat c~m 0.Thiscontradictstonegativityof . ( ) 0 Lemma(cid:11)imsp2=roRved. cm 6= w w(!i)(cid:0)!i 2 A similar statement holds true for other components 2 (if any) of . ( ) R ;::: Rk LEMMA1.4.Ifforsome w 2W(R) w(!k) =!k(cid:0) cm(cid:11)m; m6=k X thenall 0. Proofc.mTh=ereexists suchthatitmapsanypositiverootsof into 0 negativeones,andpreswerv2esW(.RSko) Rk !k sumof somepositiveroots 0 w w(!k) =!k + ; https://doi.org/10.1023/A:1000258122329 Published online by Cambridge University Press comp4074.tex; 11/11/1994; 13:38; v.7; p.9 176 BORISDUBROVINANDYOUJINZHANG whichleadstotheresultofthelemma. 2 LEMMA 1.5. Under the assumption of Lemma 1 3 there exists 1 ( ) suchthat : w~ 2 W(R ) w~(!i)=w(!i)=!i(cid:0) 1 cm(cid:11)m: (cid:11)m2R( ) X Proof.Wewilluseinductiononthelengthof . Ifthelengthof equalsone, then the lemma holds true obviously. We now aswsume that the lemmwa holds true when the length of is less than . Let has the reduced expression , 1 thenitfollowsfromwLemma1.3thpat w (cid:27)i :::(cid:27)ip (1.18) 1 (cid:27)i :::(cid:27)ip(!i)=!i(cid:0) 1 cm(cid:11)m: (cid:11)m2R( ) X Ifall 0,thenwecanput 1,otherwisewerewrite(1.18)intheform cm = w~ = 1 1 1 1 !i =(cid:27)ip(cid:27)ip(cid:0) :::(cid:27)i (!i)(cid:0) 1 cm(cid:27)ip(cid:27)ip(cid:0) :::(cid:27)i ((cid:11)m): (cid:11)m2R() X Weput l 1 1 (cid:27)ip(cid:27)ip(cid:0) :::(cid:27)i (!i) =!i(cid:0) 1bm(cid:11)m; m= X for some nonnegative integers . We claim now that there exists a root 1 1 suchthat 0inb(;1:.1::8;)balnd 1 ( ) 1 (cid:11)m 2R cm 6= 1 (cid:0) 1 1 1 1 w ((cid:11)m )=(cid:27)ip(cid:27)ip(cid:0) :::(cid:27)i ((cid:11)m ) isanegativeroot.Indeed,otherwisetheroot l 1 1 1bm(cid:11)m+ 1 cm(cid:27)ip(cid:27)ip(cid:0) :::(cid:27)i (cid:11)m m= (cid:11)m2R( ) X X could not be equal to zero since ’s are nonnegative integers. We use now the followingproposition. cm PROPOSITION [H, page 50]. Let be some simple roots of not 1 necessarilydistinct .If (cid:11)j ;:::;(cid:11)jt R ( ) 1 1 (cid:27)j (cid:1)(cid:1)(cid:1)(cid:27)jt(cid:0) ((cid:11)jt) https://doi.org/10.1023/A:1000258122329 Published online by Cambridge University Press comp4074.tex; 11/11/1994; 13:38; v.7; p.10

Description:
1 SISSA, Via Beirut 2–4, 34014 Trieste, Italy, and Steklov Mathematics Key words: root systems, affine Weyl groups, Frobenius manifolds, flat
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.