ebook img

Expounding the Mathematical Seed. Vol. 2: The Supplements: A Translation of Bhaskara I on the Mathematical Chapter of the Aryabhatiya PDF

280 Pages·2006·3.059 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Expounding the Mathematical Seed. Vol. 2: The Supplements: A Translation of Bhaskara I on the Mathematical Chapter of the Aryabhatiya

Science Networks · Historical Studies Founded by Erwin Hiebert and Hans Wußing Volume 31 Edited by Eberhard Knobloch and Erhard Scholz Editorial Board: K. Andersen, Aarhus R. Halleux, Liège D. Buchwald, Pasadena S. Hildebrandt, Bonn H.J.M. Bos, Utrecht Ch. Meinel, Regensburg U. Bottazzini, Roma J. Peiffer, Paris J.Z. Buchwald, Cambridge, Mass. W. Purkert, Leipzig K. Chemla, Paris D. Rowe, Mainz S.S. Demidov, Moskva A.I. Sabra, Cambridge, Mass. E.A. Fellmann, Basel Ch. Sasaki, Tokyo M. Folkerts, München R.H. Stuewer, Minneapolis P. Galison, Cambridge, Mass. H. Wußing, Leipzig I. Grattan-Guinness, London V.P. Vizgin, Moskva J. Gray, Milton Keynes Agathe Keller Expounding the Mathematical Seed Volume 2: The Supplements A Translation of Bhaskara I on the Mathematical Chapter of the Aryabhatiya Birkhäuser Verlag Basel · Boston · Berlin Author Agathe Keller Rehseis CNRS Centre Javelot 2 place Jussieu 75251 Paris Cedex 05 e-mail: [email protected] A CIP catalogue record for this book is available from the Library of Congress, Washington D.C., USA Bibliographic information published by Die Deutsche Bibliothek Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbiographie; detailed bibliographic data is available in the internet at http://dnb.ddb.de ISBN 3-7643-7292-3 Birkhäuser Verlag, Basel – Boston – Berlin This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifi cally the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfi lms or in other ways, and storage in data banks. For any kind of use, permission of the copyright owner must be obtained. © 2006 Birkhäuser Verlag, P.O.Box 133, CH-4010 Basel, Switzerland Part of Springer Science+Business Media Cover design: Micha Lotrovsky, CH-4106 Therwil, Switzerland Cover illustration: The cover illustration is a free representation of “Rat and Hawk” (made by Mukesh) Printed on acid-free paper produced from chlorine-free pulp. TCF ∞ Printed in Germany Vol. 1/SN 30: ISBN 10: 3-7643-7291-5 e-ISBN: 3-7643-7592-2 ISBN 13: 978-3-7643-7291-0 Vol. 2/SN 31: ISBN 10: 3-7643-7292-3 e-ISBN: 3-7643-7593-0 ISBN 13: 978-3-7643-7292-7 Set SN 30/31: ISBN 10: 3-7643-7299-0 e-ISBN: 3-7643-7594-9 ISBN 13: 978-3-7643-7299-6 9 8 7 6 5 4 3 2 1 Contents List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii How to read this book? . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii Abbreviations and Symbols . . . . . . . . . . . . . . . . . . . . . . . . . xiii Supplements 1 A BAB.2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 A.1 Arithmetical squaring and its geometrical interpretation . . 2 A.2 Squares and cubes of greater numbers . . . . . . . . . . . . 7 A.3 Squaring and cubing with fractions . . . . . . . . . . . . . . 12 B BAB.2.4-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 B.1 Extracting square-roots . . . . . . . . . . . . . . . . . . . . 15 B.2 Extracting cube-roots . . . . . . . . . . . . . . . . . . . . . 18 C BAB.2.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 C.1 Area of a triangle. . . . . . . . . . . . . . . . . . . . . . . . 22 C.2 Volume of a pyramid . . . . . . . . . . . . . . . . . . . . . . 27 D BAB.2.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 D.1 Area of a circle . . . . . . . . . . . . . . . . . . . . . . . . . 31 D.2 Volume of a sphere . . . . . . . . . . . . . . . . . . . . . . . 32 D.3 Procedure followed in examples . . . . . . . . . . . . . . . . 34 E BAB.2.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 E.1 General rule. . . . . . . . . . . . . . . . . . . . . . . . . . . 34 E.2 Description of the field . . . . . . . . . . . . . . . . . . . . . 35 E.3 Bha¯skara’s interpretation . . . . . . . . . . . . . . . . . . . 36 E.4 Procedure followed in examples . . . . . . . . . . . . . . . . 39 vi Contents F BAB.2.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 F.1 Ab.2.9.ab . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 F.2 Ab.2.9.cd . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 G BAB.2.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 G.1 A¯ryabhat.a’s verse . . . . . . . . . . . . . . . . . . . . . . . 47 G.2 The “ten karan.¯ıs” theory . . . . . . . . . . . . . . . . . . . 48 G.3 Steps used to refute the “ten karan.¯ıs” theory . . . . . . . . 52 H BAB.2.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 H.1 Bha¯skara’s understanding of Ab.2.11. . . . . . . . . . . . . 54 H.2 The steps of the diagrammatic procedure . . . . . . . . . . 58 H.3 A chord of the same length as the arc it subtends . . . . . . 69 I BAB.2.12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 I.1 A specific interpretation of the rule . . . . . . . . . . . . . . 70 I.2 Understanding the procedure . . . . . . . . . . . . . . . . . 73 I.3 Rversed sine . . . . . . . . . . . . . . . . . . . . . . . . . . 75 J BAB.2.13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 J.1 What Bha¯skara says of compasses . . . . . . . . . . . . . . 75 J.2 Parame´svara’s descriptions of a pair of compasses. . . . . . 76 K BAB.2.14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 K.1 A¯ryabhat.a’s verse . . . . . . . . . . . . . . . . . . . . . . . 78 K.2 Understanding Bha¯skara’s astronomical extension. . . . . . 80 K.3 Different types of gnomons . . . . . . . . . . . . . . . . . . 84 L BAB.2.15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 L.1 Understanding the rule . . . . . . . . . . . . . . . . . . . . 89 L.2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 M BAB.2.16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 M.1 A¯ryabhat.a’s rule . . . . . . . . . . . . . . . . . . . . . . . . 92 M.2 Astronomical misinterpretations . . . . . . . . . . . . . . . 95 M.3 U¯jjayin¯ı, Lan˙ka¯ and Sthane´svara . . . . . . . . . . . . . . . 98 N BAB.2.17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 N.1 The “Pythagoras Theorem” . . . . . . . . . . . . . . . . . . 100 N.2 Two arrows and their half-chord . . . . . . . . . . . . . . . 101 O BAB.2.18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Contents vii P BAB.2.19-22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 P.1 Ab.2.19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 P.2 Ab.2.20: The number of terms . . . . . . . . . . . . . . . . 111 P.3 Ab.2.21: Progressive sums of natural numbers . . . . . . . . 111 P.4 Ab.2.22: Sum of squares and cubes . . . . . . . . . . . . . . 113 Q BAB.2.23-24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 Q.1 BAB.2.23:Knowingtheproductfromthesumofthesquares and the square of the sum . . . . . . . . . . . . . . . . . . . 114 Q.2 BAB.2.24: Finding two quantities knowing their difference and product . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 R BAB.2.25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 R.1 The rule given by A¯ryabhat.a . . . . . . . . . . . . . . . . . 116 R.2 Procedure followed by Bha¯skara in examples . . . . . . . . 117 R.3 Verification with a Rule of Five . . . . . . . . . . . . . . . . 117 S BAB.2.26-27 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 S.1 Rule of Three . . . . . . . . . . . . . . . . . . . . . . . . . . 118 S.2 Rule of Five and the following . . . . . . . . . . . . . . . . 123 S.3 The Reversed Rule of Three . . . . . . . . . . . . . . . . . . 125 T BAB.2.28 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 T.1 Notations and references . . . . . . . . . . . . . . . . . . . . 128 T.2 Computing the time with the Rsine of the sun’s altitude . . 128 T.3 Which procedure is reversed? . . . . . . . . . . . . . . . . . 129 U BAB.2.29 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 V BAB.2.30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 V.1 General resolution of first order equations . . . . . . . . . . 133 V.2 Debts and wealth . . . . . . . . . . . . . . . . . . . . . . . . 135 W BAB.2.31 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 W.1 Understanding the verse . . . . . . . . . . . . . . . . . . . . 137 W.2 Bha¯skara’s distinctions and explanations . . . . . . . . . . . 137 W.3 Finding the longitude of the meeting point . . . . . . . . . 139 X BAB.2.32-33: The pulverizer. . . . . . . . . . . . . . . . . . . . . . 142 X.1 Two different problems . . . . . . . . . . . . . . . . . . . . 142 X.2 Procedure for the pulverizer “with remainder” . . . . . . . 143 X.3 Procedure of the pulverizer without remainder . . . . . . . 155 X.4 Astronomical applications . . . . . . . . . . . . . . . . . . . 160 viii Contents Appendix: Some elements of Indian astronomy 186 1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 2 Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 3 Movement of planets . . . . . . . . . . . . . . . . . . . . . . . . . . 191 4 Time cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 5 Orbits and non-integral residues of revolutions . . . . . . . . . . . 194 Glossary 197 1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 2 Peculiar and metaphoric expressions . . . . . . . . . . . . . . . . . 221 3 Measure units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 3.1 Units of length . . . . . . . . . . . . . . . . . . . . . . . . . 222 3.2 Measures of weight . . . . . . . . . . . . . . . . . . . . . . . 223 3.3 Coins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 3.4 Time units . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 3.5 Subdivisions of a circle . . . . . . . . . . . . . . . . . . . . . 224 4 Names of planets, constellations, zodiac signs . . . . . . . . . . . . 224 5 Days of the week . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 6 Gods and mythological figures. . . . . . . . . . . . . . . . . . . . . 226 7 Cardinal directions . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 Bibliography 227 A Primary sources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 B Secondary sources . . . . . . . . . . . . . . . . . . . . . . . . . . . 228 Index 235 List of Figures 1 Bh¯askara’s diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 Bh¯askara’s diagram in Shukla’s edition . . . . . . . . . . . . . . . . 3 3 Bh¯askara’s diagram in a manuscript . . . . . . . . . . . . . . . . . 3 4 Counting sub-surfaces . . . . . . . . . . . . . . . . . . . . . . . . . 4 5 Counting strokes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 6 Ganes.a’s ‘proof’ of the ‘Pythagoras Theorem’ . . . . . . . . . . . . 6 7 Equilateral and isoceles triangles . . . . . . . . . . . . . . . . . . . 23 8 Any triangle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 9 An equilateral pyramid with a triangular base . . . . . . . . . . . . 27 10 A S´r.n˙gataka . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 11 Rule of Three . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 12 An isoceles trapezium . . . . . . . . . . . . . . . . . . . . . . . . . 34 13 Fields inside a trapezium . . . . . . . . . . . . . . . . . . . . . . . 38 14 A rectangle and an equilateral triangle . . . . . . . . . . . . . . . . 41 15 One rectangle and any triangle . . . . . . . . . . . . . . . . . . . . 42 16 Two rectangles and any triangle . . . . . . . . . . . . . . . . . . . 43 17 Drum field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 18 Tusk field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 19 Chord in a circle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 20 Fields inside a circle . . . . . . . . . . . . . . . . . . . . . . . . . . 47 21 Circle and bow fields . . . . . . . . . . . . . . . . . . . . . . . . . . 50 22 Circle and arrow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 23 Chedkyaka . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 24 Trilaterals and quadrilaterals . . . . . . . . . . . . . . . . . . . . . 55

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.