ebook img

Exponential Carmichael function PDF

0.17 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Exponential Carmichael function

EXPONENTIAL CARMICHAEL FUNCTION ANDREWV.LELECHENKO Abstract. Consider exponential Carmichael function λ(e) such that λ(e) is multiplicativeandλ(e)(pa)=λ(a),whereλisusualCarmichaelfunction. We 4 discuss the value of Pλ(e)(n), where n runs over certain subsets of [1,x], 1 andprovidebounds ontheerror term, usinganalyticmethods andespecially 0 T m estimatesofR (cid:12)ζ(σ+it)(cid:12) dt. 2 1 (cid:12) (cid:12) y a M 1. Introduction 9 Consider an operator E over arithmetic functions such that for every f the 2 function Ef is multiplicative and ] (Ef)(pa)=f(a), p is prime. T N Forvariousfunctionsf (suchasthedivisorfunction,thesum-of-divisorfunction, M¨obius function, the totient function and so on) the behaviour of Ef was studied . h by many authors, starting from Subbarao [13]. The bibliography can be found t a in [11]. m The notation for Ef, established by previous authors, is f(e). [ Carmichael function λ is an arithmetic function such that 2 φ(pa), p>2 or a=1,2, v λ(pa)= 6 (φ(pa)/2, p=2 and a>2, 6 and if n=pa1 pam is a canonical representation, then 1 1 ··· m 3 λ(n)=lcm λ(pa1),...,λ(pam) . 1 m . 1 This function was introduced at(cid:0)the beginning of t(cid:1)he XX century in [2], but 0 intense studies started only in 1990-th, e. g. [3]. Carmichael function finds appli- 4 cations in cryptography, e. g. [4]. 1 v: Consider also the family of multiplicative functions i X 0, a<r, δ (pa)= r is integer. r r (1, a>r, a Functionδ is acharacteristicfunctionofthe setofsquare-fullnumbers,δ — of 2 3 cube-full numbers and so on. Of course, δ 1. 1 ≡ Denote λ(e) for the product of δ and λ(e): r r λ(e)(n)=δ (n)λ(e)(n). r r The aim of our paper is to study asymptotic properties of λ(e) λ(e), λ(e), λ(e) ≡ 1 2 3 and λ(e). 4 Note that all proofs below remains valid for φ(e)(n) = δ (n)φ(e)(n) instead r r of λ(e)(n) for r=1,2,3,4. r 2010 Mathematics Subject Classification. 11A2511M06,11N37,11N56. Keywordsandphrases. Exponentialdivisors,Carmichaelfunction,momentsofRiemannzeta- function. 1 2 ANDREWV.LELECHENKO 2. Notations Letter p with or without indexes denotes a prime number. We write f ⋆g for Dirichlet convolution (f ⋆g)(n)= f(d)g(n/d). Xd|n Denote τ(a ,...,a ;n):= 1. 1 k da11·X··dakk=n In asymptotic relations we use , , Landau symbols O and o, Vinogradov ∼ ≍ symbols and in their usual meanings. All asymptotic relations are given as ≪ ≫ an argument (usually x) tends to the infinity. Everywhere ε > 0 is an arbitrarily small number (not always the same even in one equation). As usual ζ(s) is Riemann zeta-function. Real and imaginary components of the complex s are denoted as σ := s and t:= s, so s=σ+it. ℜ ℑ For a fixed σ [1/2,1] define ∈ T m(σ):=sup m ζ(σ+it) mdt T1+ε . ≪ (cid:26) (cid:12)Z1 (cid:27) (cid:12) (cid:12) (cid:12) and (cid:12) (cid:12) (cid:12) (cid:12) log ζ(σ+it) µ(σ):=limsup . logt t→∞ (cid:12) (cid:12) Below H = (32/205 + ε,269/410+ ε(cid:12)) stands (cid:12)for Huxley’s exponent pair 2005 from [6]. 3. Preliminary lemmas Lemma 1. Let F: Z C be a multiplicative function such that F(pa) = f(a), → where f(n) nβ for some β >0. Then ≪ logF(n)llogn logf(n) limsup =sup . logn n n→∞ n>1 Proof. See [14]. (cid:3) Lemma 2. Let f(t)>0. If T f(t)dt g(T), ≪ Z1 where g(T)=TαlogβT, α>1, then T f(t) logβ+1T if α=1, I(T):= dt t ≪ Tα−1logβT if α>1. Z1 (cid:26) Proof. Let us divide the interval of integration into parts: log2T T/2k f(t) log2T 1 T/2k log2T g(T/2k) I(T)6 dt< f(t)dt . k=0 ZT/2k+1 t k=0 T/2k+1 Z1 ≪ k=0 T/2k+1 X X X Now the lemma’s statement follows from elementary estimates. (cid:3) Lemma 3. For σ > 1/2 and for any exponent pair (k,l) such that l k > σ we − have k+l σ µ(σ)6 − +ε. 2 Proof. See [7, (7.57)]. (cid:3) EXPONENTIAL CARMICHAEL FUNCTION 3 A well-known application of Lemma 3 is (1) µ(1/2)632/205, following from the choice (k,l)=H . Another (maybe new) application is 2005 (2) µ(3/5)61409/12170, following from 269 1755 (k,l)= , =ABAH , 2005 2434 2434 (cid:18) (cid:19) where A and B stands for usual A- and B-processes [8, Ch. 2]. Lemma 4. Let η >0 be arbitrarily small. Then for growing t >3 | | t1/2−(1−2µ(1/2))σ, σ [0,1/2], | | ∈ t2µ(1/2)(1−σ), σ [1/2,1 η], (3) ζ(s) | | ∈ − ≪|t|2µ(1/2)(1−σ)log2/3|t|, σ ∈[1−η,1], log2/3 t, σ >1. | | More exact estimates for σ [1/2,1 η] are also available, e. g. ∈ − 10 µ(3/5) µ(1/2) σ+ 6µ(1/2) 5µ(3/5) , σ [1/2,3/5], (4) µ(σ) − − ∈ ≪(5µ(cid:0)(3/5)(1−σ)/2, (cid:1) (cid:0) (cid:1) σ ∈[3/5,1−η], Proof. EstimatesfollowfromPhragm´en—Lindel¨ofprinciple,exactandapproximate functional equations for ζ(s) and convexity properties. See [15, Ch. 5] and [7, Ch. 7.5] for details. (cid:3) Lemma 5. For any integer r maxλ(e)(n) xε. n6x r ≪ Proof. Surely λ(e)(n)6λ(e)(n). By Lemma 1 we have r logλ(e)(n)loglogn logλ(m) log4 limsup =sup = =:c, logn m 5 n→∞ m because λ(m)6m 1. It implies − maxλ(e)(n) xc/loglogn xε. n6x ≪ ≪ (cid:3) Lemma 6. Let L (s) be the Dirichlet series for λ(e): r r ∞ L (s):= λ(e)(n)n−s. r r n=1 X Then for r =1,2,3,4 we have L (s)=Z (s)G (s), where r r r (5) Z (s)=ζ(s)ζ(3s)ζ2(5s), 1 (6) Z (s)=ζ(2s)ζ2(3s)ζ(4s)ζ2(5s), 2 (7) Z (s)=ζ2(3s)ζ2(4s)ζ4(5s), 3 (8) Z (s)=ζ2(4s)ζ4(5s)ζ2(6s)ζ6(7s), 4 Dirichlet series G (s), G (s), G (s) converge absolutely for σ > 1/6 and G (s) 1 2 3 4 converges absolutely for σ >1/8. 4 ANDREWV.LELECHENKO Proof. Follows from the identities 1+ λ(e)(pa)xa =1+x+x2+2x3+2x4+4x5+2x6+6x7+O(x8) a>1 X 1+O(x8) = , (1 x)(1 x3)(1 x5)2 − − − 1+O(x6) 1+ λ(e)(pa)xa = , (1 x2)(1 x3)2(1 x4)(1 x5)2 a>2 − − − − X 1+O(x6) 1+ λ(e)(pa)xa = , (1 x3)2(1 x4)2(1 x5)4 a>3 − − − X 1+O(x8) 1+ λ(e)(pa)xa = . (1 x4)2(1 x5)4(1 x6)2(1 x7)6 a>4 − − − − X (cid:3) Lemma 7. Let ∆(x) be the error term in the well-known asymptotic formula for τ(a ,a ,a ,a ;n), let A = a +a +a +a and let (k,l) be any exponent n6x 1 2 3 4 4 1 2 3 4 pair. Suppose that the following conditions are satisfied: P (1) (k+l+2)a <(k+l)a +A . 4 1 4 (2) 2(k+l+1)a 6(2k+1)(a +a ). 1 2 3 (3.1) la 6ka and (k+l+1)a >k(a +a ) 1 2 1 2 3 or (3.2) la >ka and(l k)(2k+1)a 6(2l 2l 1)(k+l+1)a + 2k(k l+1)+1 a . 1 2 3 1 2 − − − − Proof. This is [9, Th. 3] with p=4. (cid:0) (cid:1) (cid:3) Lemma 8. 4/(3 4σ), 1/2 6σ 6 5/8, − 10/(5 6σ), 5/8 6σ 635/54,  − m(σ)>12214110928///(((68455−937−6−σ9),4488σ90),σ), 43315///46504666σσσ 6664315///466,,0, 4324/(1031 1044σ), 5/6 6σ 6 7/8, − Proof. See [7, Th. 8(.244]σ.98−/(93)1/−(4σ32−σ)1,)(1−σ), 07.9/185961.σ..660σ.9615191−.ε..., (cid:3) 4. Main results Theorem 1. λ(e)(n)=c x+c x1/3+(c′ logx+c )x1/5+O(x1153/6073+ε), 11 13 15 15 n6x X where c , c , c and c′ are computable constants. 11 13 15 15 Proof. Lemma 6 and equation (5) implies that λ(e) = τ(1,3,5,5; ) ⋆ g , where 1 · g (n) x1/6+ε. Due to [8] n6x 1 ≪ P τ(1,3,5,5;n)=xζ(3)ζ2(5)resζ(s)+3x1/3ζ(1/3)ζ2(5/3) res ζ(3s)+ s=1 s=1/3 n6x X +5x1/5ζ(1/5)ζ(3/5) res ζ2(5s)+R(x). s=1/5 EXPONENTIAL CARMICHAEL FUNCTION 5 To estimate R(x) we use Lemma 7 with a = 1, a = 3, a = a = 5. Exponent 1 2 3 4 pair (k,l)=H satisfies conditions 1, 2 and 3.2 and thus 2005 R(x) x(k+l+2)/(k+l+14) =x1153/6073+ε, 1/6<1153/6073<1/5. ≪ Now the convolution argument completes the proof. (cid:3) Exponential totient function φ(e) has similar to λ(e) Dirichlet series: ∞ φ(e)(n)=ζ(s)ζ(3s)ζ2(5s)H(s), n=1 X where H(s) converges absolutely for σ > 1/6. Theorem 1 can be extended to this case without any changes, so φ(e)(n)=c x+c x1/3+(c′ logx+c )x1/5+O(x1153/6073+ε). 11 13 15 15 n6x X This improves the result of P´etermann [12], who obtained φ(e)(n) = c x+ n6x 11 +c x1/3+O(x1/5logx). 13 P Update from 23.05.2014: RecentlyCaoandZhai[1,(1.13)]obtainedR(x) ≪ x18/95+ε,whichisbetter thanbothP´etermann’sx1/5logxandourx1153/6073+ε. ≪ Theorem 2. λ(e)(n)=c x1/2+(c′ logx+c )x1/3+c x1/4+O(x1153/5586+ε), 2 22 23 23 24 n6x X where c , c , c′ and c are computable constants. 22 23 23 24 Proof. Similar to Theorem 1 with following changes: now by (6) λ(e) =τ(2,3,3,4; )⋆g , 2 · 2 where g (n) x1/6+ε. But n6x 2 ≪ Pτ(2,3,3,4;n)=2x1/2ζ2(3/2)ζ(2) res ζ(2s)+ s=1/2 n6x X +3x1/3ζ(2/3)ζ(4/3) res ζ2(3s)+4x1/4ζ(1/2)ζ2(3/4) res ζ(4s)+R(s). s=1/3 s=1/4 Again by Lemma 7 with a =2, a =a =3, a =4, (k,l)=H we get 1 2 3 4 2005 R(x) x(k+l+2)/(k+l+12) =x1153/5586+ε, 1/5<1153/5586<1/4. ≪ (cid:3) Theorem 3. (9) λ(e)(n)=(c′ logx+c )x1/3+(c′ logx+c )x1/4+ 3 33 33 34 34 n6x X +P (logx)x1/5+O(x1/6+ε), 35 where c , c′ , c and c′ are computable constants, P is a polynomial of degree 33 33 34 34 35 3 with computable coefficients. Proof. Lemma 6 and equation (7) implies that λ(e) = z ⋆g , where z is defined 3 3 3 3 implicitly by ∞ z (n)n−s =Z (s)=ζ2(3s)ζ2(4s)ζ4(5s), 3 3 n=1 X and g is a multiplicative function such that g (n) x1/6+ε. 3 n6x 3 ≪ P 6 ANDREWV.LELECHENKO The main term at the right side of (9) equals to M (x):= res + res + res ζ2(3s)ζ2(4s)ζ4(5s)xss−1 . 3 s=1/3 s=1/4 s=1/5 (cid:18) (cid:19) (cid:0) (cid:1) To obtain the desirable error term it is enough to prove that z (n)=M (x)+O(x1/6+ε). 3 3 n6x X By Perron formula for c:=1/3+1/logx we have 1 c+iT z (n)= Z (s)xss−1ds+O(x1+εT−1). 3 3 2πi n6x Zc−iT X SubstitutingT =xandmovingthecontouroftheintegrationtill[1/6 ix,1/6+ix] − we get f (n)=M (x)+O(I +I +I +xε), 3 3 0 − + n6x X where 1/6+ix c±ix I := Z (s)xss−1ds, I := Z (s)xss−1ds. 0 3 ± 3 Z1/6−ix Z1/6±ix Firstly, c I x−1 Z (σ+ix)xσdσ. + 3 ≪ Z1/6 Let α(σ) be a function such that Z (σ+ix) xα(σ)+ε. By (3) we have 3 ≪ (16 68σ)µ(1/2)<4/5, σ [1/6,1/5), − ∈ (8 28σ)µ(1/2)<3/4, σ [1/5,1/4), α(σ)6 − ∈  (4−12σ)µ(1/2)<2/3, σ ∈[1/4,1/3), 0, σ [1/3,c]. ∈ This means that I+ xε. Plainly, the same estimate holds for I−. ≪ Secondly, it remains to prove that I x1/6+ε. Here 0 ≪ x I x1/6 Z (1/6+it)t−1dt 0 3 ≪ Z1 and taking into account Lemma 2 it is enough to show xZ (1/6+it)dt x1+ε. 1 3 ≪ Applying Cauchy inequality twice we obtain R x x 1/2 Z (1/6+it)dt ζ4(1/2+it) dt 3 ≪ × Z1 (cid:18)Z1 (cid:19) x (cid:12)(cid:12) 1/4 (cid:12)(cid:12) x 1/4 ζ8(2/3+it) dt ζ16(5/6+it) dt × ≪ (cid:18)Z1 (cid:19) (cid:18)Z1 (cid:19) (cid:12)(cid:12) (cid:12)(cid:12) x(1(cid:12)(cid:12)+ε)·1/2x(1+ε)·(cid:12)(cid:12)1/4x(1+ε)·1/4 x1+ε ≪ ≪ since by Lemma 8 m(1/2)>4, m(2/3)>8 and m(5/6)>16. (cid:3) Theorem 4. λ(e)(n)=(c′ logx+c )x1/4+P (logx)x1/5+(c′ logx+c )x1/6+ 4 44 44 45 46 46 n6x X +P (logx)x1/7+O(xC4+ε), 47 EXPONENTIAL CARMICHAEL FUNCTION 7 where c , c′ , c and c′ are computable constants, P and P are computable 44 44 46 46 45 47 polynomials, degP =3, degP =5, 45 47 7863059 √13780693090921 (10) C = − =0.134656..., 1/8<C <1/7. 4 4 85962240 Proof. We shall follow the outline of Theorem 3. Let us prove that for c :=1/4+ +1/logx we can estimate c+ix I := Z (s)xss−1ds xC4+ε + 4 ≪ ZC4+ix and C4+ix I := Z (s)xss−1ds xC4+ε. 0 4 ≪ ZC4−ix We start with I x−1 c Z (σ+ix)xσdσ. Now let α(σ) be a function such + ≪ C4 4 that Z (σ+ix) xα(σ)+ε. By (3) and (8) we have 4 ≪ R (16 80σ)µ(1/2)<5/6, σ [1/7,1/6), − ∈ (12 56σ)µ(1/2)<4/5, σ [1/6,1/5), α(σ)6 − ∈  (4−16σ)µ(1/2)<3/4, σ ∈[1/5,1/4), 0, σ [1/4,c]. ∈ So c Z (σ+ix)xσ−1dσ xεandtheonlycasethatrequiresfurtherinvestigations 1/7 4 ≪ is σ [C ,1/7). Instead of (3) we apply (4) together with (1) and (2) to obtain R∈ 4 1045018 2459357 α(σ)6 σ, σ [1/8,1/7], 249485 − 99794 ∈ which implies 1/7xα(σ)+σ−1dσ xC4+ε as soon as C4 ≪ R C >1591066/12296785=0.129388... 4 Our choice of C in (10) is certainly the case. 4 Let us move on I and prove that xZ (C +it)dt x1+ε. For q , q , q , q 0 1 4 4 ≪ 1 2 3 4 such that R (11) 1/q +1/q +1/q +1/q =1 and q ,q ,q ,q >1 1 2 3 4 1 2 3 4 by H¨older inequality we have x x 1/q1 x 1/q2 Z (C +it)dt ζ2q1(4s+it) dt ζ4q2(5s+it) dt 4 4 ≪ × Z1 (cid:18)Z1 (cid:19) (cid:18)Z1 (cid:19) (cid:12)(cid:12) x (cid:12)(cid:12) 1/q3 (cid:12)(cid:12) x (cid:12)(cid:12) 1/q4 ζ2q3(6s+it) dt ζ6q4(7s+it) dt . × (cid:18)Z1 (cid:19) (cid:18)Z1 (cid:19) (cid:12) (cid:12) (cid:12) (cid:12) Choose (cid:12) (cid:12) (cid:12) (cid:12) (12) q =m(4C )/2, q =m(5C )/4, q =m(6C )/2, q =m(7C )/6 1 4 2 4 3 4 4 4 One can make sure by substituting the value of C from (10) into Lemma 8 that 4 such choice of q satisfies (11). Thus we obtain k x Z (C +it)dt x(1+ε)/q1x(1+ε)/q2x(1+ε)/q3x(1+ε)/q4 x1+ε, 4 4 ≪ ≪ Z1 which finishes the proof. (cid:3) 8 ANDREWV.LELECHENKO 5. Decrease of C 4 In this section we obtain lower value of C by improving lower bounds of m(σ) 4 from Lemma 8. Estimates below depend on values of ak+bl+c (13) inf , (k,l)dk+el+f where (k,l)runs overthe setofexponentpairs andsatisfiescertainlinearinequali- ties. Amethodtoestimate(13)withoutlinearconstrainswasgivenbyGraham[5]. In the recent paper [10] we have presented an effective algorithm to deal with (13) under a nonempty set of linear constrains. Let c be an arbitrary function such that c(σ) > µ(σ). Define θ by an implicit equation 2c θ(σ) +1+θ(σ) 2 1+c θ(σ) σ =0. − Finally, define (cid:0) (cid:1) (cid:0) (cid:0) (cid:1)(cid:1) 1+c θ(σ) f(σ)=2 . c θ(σ) (cid:0) (cid:1) Due to Lemma 3 one can take c(σ)=infl−(cid:0)k>σ(k(cid:1)+l σ)/2, where (k,l) runs over − the set of exponent pairs. However even rougher choice of c leads to satisfiable values of f such as in [7, (8.71)]. Lemma 9. Let σ >5/8. Compute 4 4σ 12 1 α 1 α = − , β = , m = − β , 1 1 1 1 1+2σ −1+2σ µ(σ) − 4(1 σ)(k+l) 4(1+2k+2l) α (k,l)= − , β (k,l)= , 2 2 (2+4l)σ 1+2k 2l −(2+4l)σ 1+2k 2l − − − − 1 α (k,l) 2 m (k,l)= − β (k,l), m = inf m (k,l), 2 2 2 2 µ(σ) − α2(k,l)61 where (k,l) runs over the set of exponent pairs. Then m(σ)>min m ,m ,2f(σ) . 1 2 Note that for σ >2/3 the condition α ((cid:0)k,l)61 is alw(cid:1)ays satisfied. 2 Proof. Follows from [7, (8.97)] and from TαVβ TVβ+(α−1)/µ(σ) for α < 1 ≪ and V Tµ(σ). (cid:3) ≪ Substituting pointwise estimates of m(σ) fromLemma 9 instead of segmentwise from Lemma 8 into (12) we obtain following result. Theorem 5. The statement of Theorem 4 remains valid for C =0.133437785... 4 6. Conclusion Wehaveobtainednontrivialerrortermsinasymptoticestimatesof λ(e)(n) n6x r forr =1,2,3,4. Casesofr =1andr =2dependonthemethodofexponentpairs. P Casesofr =3 andr =4 depend onlowerbounds of m(σ). Note that caseof r =4 may be improved under Riemann hypothesis up to C = 1/8, because Riemann 4 hypothesis implies µ(σ)=0 and m(σ)= for σ [1/2,1]. ∞ ∈ EXPONENTIAL CARMICHAEL FUNCTION 9 References [1] Cao X., Zhai W. On the four-dimensional divisor problem of (a,b,c,c) type // Funct.Approximatio, Comment.Math.—2013.—Vol.49,no.2.—P.251–267. [2] CarmichaelR.D.Noteonanewnumbertheoryfunction//Bull.Amer.Math.Soc.—1910.— feb.—Vol.16,no.5.—P.232–238. [3] Erdo˝sP.,PomeranceC.,SchmutzE.Carmichael’slambdafunction//ActaArith.—1991.— Vol.58,no.4.—P.363–385. [4] Friedlander J. B., Pomerance C., Shparlinski I. E. SmallvaluesoftheCarmichaelfunctionandcryptographic applications // Cryptogra- phy and Computational Number Theory.—Basel : Birkhauser Verlag, 2001.—Vol. 20 of Progress inComputer ScienceandAppliedLogic.—P.25–32. [5] GrahamS.W.Analgorithmforcomputingoptimalexponentpair//J.Lond.Math.Soc.— 1986.—Vol.33,no.2.—P.203–218. [6] Huxley M. N. Exponential sums and the Riemann zeta function V // Proc.Lond.Math.Soc.—2005.—Vol.90,no.1.—P.1–41. [7] Ivi´cA.TheRiemannzeta-function: Theoryandapplications.—Mineola,NewYork: Dover Publications,2003.—562p.—ISBN:0486428133, 9780486428130. [8] Kra¨tzel E. Latticepoints.—Dordrecht : Kluwer, 1988.—436 p.— ISBN:9027727333, 9789027727336. [9] Kra¨tzel E. Estimates in the general divisor problem // Abh.Math.Semin.Univ.Hamb.— 1992.—dec.—Vol.62,no.1.—P.191–206. [10] Lelechenko A. V. Linear programming over exponent pairs // Acta Univ. Sapientiae, In- form.—2013.—Vol.5,no.2.—P.271–287. [11] Lelechenko A. V. Functions involving exponential divisors: bibliography.—2014.—URL: https://github.com/Bodigrim/expdiv-bibliography. [12] P´etermannY.-F.S.Arithmeticalfunctionsinvolvingexponentialdivisors: Noteontwopapers by L. To´th // Ann. Univ. Sci. Budap. Rolando Eo˝tvo˝s, Sect. Comput.—2010.—Vol. 32.— P.143–149. [13] Subbarao M. V. Onsomearithmeticconvolutions // The theory of arithmetical functions: Proceedings of the Conference at Western Michigan University, April 29 – May 1, 1971.— Vol.251ofLectureNotes inMathematics.—Berlin: Springer Verlag,1972.—P.247–271. [14] Suryanarayana D., Sita Rama Chandra Rao R. On the true maximum order of a class of arithmeticfunctions//Math.J.OkayamaUniv.—1975.—Vol.17.—P.95–101. [15] Titchmarsh E. C. The theory of the Riemann zeta-function / Ed. by D. R. Heath- Brown.—2nd, rev. edition.—New-York : Oxford University Press, 1986.—418 p.— ISBN:0198533691, 9780198533696. I. I. Mechnikov Odessa National University E-mail address: [email protected]

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.