EXPONENTIAL CARMICHAEL FUNCTION ANDREWV.LELECHENKO Abstract. Consider exponential Carmichael function λ(e) such that λ(e) is multiplicativeandλ(e)(pa)=λ(a),whereλisusualCarmichaelfunction. We 4 discuss the value of Pλ(e)(n), where n runs over certain subsets of [1,x], 1 andprovidebounds ontheerror term, usinganalyticmethods andespecially 0 T m estimatesofR (cid:12)ζ(σ+it)(cid:12) dt. 2 1 (cid:12) (cid:12) y a M 1. Introduction 9 Consider an operator E over arithmetic functions such that for every f the 2 function Ef is multiplicative and ] (Ef)(pa)=f(a), p is prime. T N Forvariousfunctionsf (suchasthedivisorfunction,thesum-of-divisorfunction, M¨obius function, the totient function and so on) the behaviour of Ef was studied . h by many authors, starting from Subbarao [13]. The bibliography can be found t a in [11]. m The notation for Ef, established by previous authors, is f(e). [ Carmichael function λ is an arithmetic function such that 2 φ(pa), p>2 or a=1,2, v λ(pa)= 6 (φ(pa)/2, p=2 and a>2, 6 and if n=pa1 pam is a canonical representation, then 1 1 ··· m 3 λ(n)=lcm λ(pa1),...,λ(pam) . 1 m . 1 This function was introduced at(cid:0)the beginning of t(cid:1)he XX century in [2], but 0 intense studies started only in 1990-th, e. g. [3]. Carmichael function finds appli- 4 cations in cryptography, e. g. [4]. 1 v: Consider also the family of multiplicative functions i X 0, a<r, δ (pa)= r is integer. r r (1, a>r, a Functionδ is acharacteristicfunctionofthe setofsquare-fullnumbers,δ — of 2 3 cube-full numbers and so on. Of course, δ 1. 1 ≡ Denote λ(e) for the product of δ and λ(e): r r λ(e)(n)=δ (n)λ(e)(n). r r The aim of our paper is to study asymptotic properties of λ(e) λ(e), λ(e), λ(e) ≡ 1 2 3 and λ(e). 4 Note that all proofs below remains valid for φ(e)(n) = δ (n)φ(e)(n) instead r r of λ(e)(n) for r=1,2,3,4. r 2010 Mathematics Subject Classification. 11A2511M06,11N37,11N56. Keywordsandphrases. Exponentialdivisors,Carmichaelfunction,momentsofRiemannzeta- function. 1 2 ANDREWV.LELECHENKO 2. Notations Letter p with or without indexes denotes a prime number. We write f ⋆g for Dirichlet convolution (f ⋆g)(n)= f(d)g(n/d). Xd|n Denote τ(a ,...,a ;n):= 1. 1 k da11·X··dakk=n In asymptotic relations we use , , Landau symbols O and o, Vinogradov ∼ ≍ symbols and in their usual meanings. All asymptotic relations are given as ≪ ≫ an argument (usually x) tends to the infinity. Everywhere ε > 0 is an arbitrarily small number (not always the same even in one equation). As usual ζ(s) is Riemann zeta-function. Real and imaginary components of the complex s are denoted as σ := s and t:= s, so s=σ+it. ℜ ℑ For a fixed σ [1/2,1] define ∈ T m(σ):=sup m ζ(σ+it) mdt T1+ε . ≪ (cid:26) (cid:12)Z1 (cid:27) (cid:12) (cid:12) (cid:12) and (cid:12) (cid:12) (cid:12) (cid:12) log ζ(σ+it) µ(σ):=limsup . logt t→∞ (cid:12) (cid:12) Below H = (32/205 + ε,269/410+ ε(cid:12)) stands (cid:12)for Huxley’s exponent pair 2005 from [6]. 3. Preliminary lemmas Lemma 1. Let F: Z C be a multiplicative function such that F(pa) = f(a), → where f(n) nβ for some β >0. Then ≪ logF(n)llogn logf(n) limsup =sup . logn n n→∞ n>1 Proof. See [14]. (cid:3) Lemma 2. Let f(t)>0. If T f(t)dt g(T), ≪ Z1 where g(T)=TαlogβT, α>1, then T f(t) logβ+1T if α=1, I(T):= dt t ≪ Tα−1logβT if α>1. Z1 (cid:26) Proof. Let us divide the interval of integration into parts: log2T T/2k f(t) log2T 1 T/2k log2T g(T/2k) I(T)6 dt< f(t)dt . k=0 ZT/2k+1 t k=0 T/2k+1 Z1 ≪ k=0 T/2k+1 X X X Now the lemma’s statement follows from elementary estimates. (cid:3) Lemma 3. For σ > 1/2 and for any exponent pair (k,l) such that l k > σ we − have k+l σ µ(σ)6 − +ε. 2 Proof. See [7, (7.57)]. (cid:3) EXPONENTIAL CARMICHAEL FUNCTION 3 A well-known application of Lemma 3 is (1) µ(1/2)632/205, following from the choice (k,l)=H . Another (maybe new) application is 2005 (2) µ(3/5)61409/12170, following from 269 1755 (k,l)= , =ABAH , 2005 2434 2434 (cid:18) (cid:19) where A and B stands for usual A- and B-processes [8, Ch. 2]. Lemma 4. Let η >0 be arbitrarily small. Then for growing t >3 | | t1/2−(1−2µ(1/2))σ, σ [0,1/2], | | ∈ t2µ(1/2)(1−σ), σ [1/2,1 η], (3) ζ(s) | | ∈ − ≪|t|2µ(1/2)(1−σ)log2/3|t|, σ ∈[1−η,1], log2/3 t, σ >1. | | More exact estimates for σ [1/2,1 η] are also available, e. g. ∈ − 10 µ(3/5) µ(1/2) σ+ 6µ(1/2) 5µ(3/5) , σ [1/2,3/5], (4) µ(σ) − − ∈ ≪(5µ(cid:0)(3/5)(1−σ)/2, (cid:1) (cid:0) (cid:1) σ ∈[3/5,1−η], Proof. EstimatesfollowfromPhragm´en—Lindel¨ofprinciple,exactandapproximate functional equations for ζ(s) and convexity properties. See [15, Ch. 5] and [7, Ch. 7.5] for details. (cid:3) Lemma 5. For any integer r maxλ(e)(n) xε. n6x r ≪ Proof. Surely λ(e)(n)6λ(e)(n). By Lemma 1 we have r logλ(e)(n)loglogn logλ(m) log4 limsup =sup = =:c, logn m 5 n→∞ m because λ(m)6m 1. It implies − maxλ(e)(n) xc/loglogn xε. n6x ≪ ≪ (cid:3) Lemma 6. Let L (s) be the Dirichlet series for λ(e): r r ∞ L (s):= λ(e)(n)n−s. r r n=1 X Then for r =1,2,3,4 we have L (s)=Z (s)G (s), where r r r (5) Z (s)=ζ(s)ζ(3s)ζ2(5s), 1 (6) Z (s)=ζ(2s)ζ2(3s)ζ(4s)ζ2(5s), 2 (7) Z (s)=ζ2(3s)ζ2(4s)ζ4(5s), 3 (8) Z (s)=ζ2(4s)ζ4(5s)ζ2(6s)ζ6(7s), 4 Dirichlet series G (s), G (s), G (s) converge absolutely for σ > 1/6 and G (s) 1 2 3 4 converges absolutely for σ >1/8. 4 ANDREWV.LELECHENKO Proof. Follows from the identities 1+ λ(e)(pa)xa =1+x+x2+2x3+2x4+4x5+2x6+6x7+O(x8) a>1 X 1+O(x8) = , (1 x)(1 x3)(1 x5)2 − − − 1+O(x6) 1+ λ(e)(pa)xa = , (1 x2)(1 x3)2(1 x4)(1 x5)2 a>2 − − − − X 1+O(x6) 1+ λ(e)(pa)xa = , (1 x3)2(1 x4)2(1 x5)4 a>3 − − − X 1+O(x8) 1+ λ(e)(pa)xa = . (1 x4)2(1 x5)4(1 x6)2(1 x7)6 a>4 − − − − X (cid:3) Lemma 7. Let ∆(x) be the error term in the well-known asymptotic formula for τ(a ,a ,a ,a ;n), let A = a +a +a +a and let (k,l) be any exponent n6x 1 2 3 4 4 1 2 3 4 pair. Suppose that the following conditions are satisfied: P (1) (k+l+2)a <(k+l)a +A . 4 1 4 (2) 2(k+l+1)a 6(2k+1)(a +a ). 1 2 3 (3.1) la 6ka and (k+l+1)a >k(a +a ) 1 2 1 2 3 or (3.2) la >ka and(l k)(2k+1)a 6(2l 2l 1)(k+l+1)a + 2k(k l+1)+1 a . 1 2 3 1 2 − − − − Proof. This is [9, Th. 3] with p=4. (cid:0) (cid:1) (cid:3) Lemma 8. 4/(3 4σ), 1/2 6σ 6 5/8, − 10/(5 6σ), 5/8 6σ 635/54, − m(σ)>12214110928///(((68455−937−6−σ9),4488σ90),σ), 43315///46504666σσσ 6664315///466,,0, 4324/(1031 1044σ), 5/6 6σ 6 7/8, − Proof. See [7, Th. 8(.244]σ.98−/(93)1/−(4σ32−σ)1,)(1−σ), 07.9/185961.σ..660σ.9615191−.ε..., (cid:3) 4. Main results Theorem 1. λ(e)(n)=c x+c x1/3+(c′ logx+c )x1/5+O(x1153/6073+ε), 11 13 15 15 n6x X where c , c , c and c′ are computable constants. 11 13 15 15 Proof. Lemma 6 and equation (5) implies that λ(e) = τ(1,3,5,5; ) ⋆ g , where 1 · g (n) x1/6+ε. Due to [8] n6x 1 ≪ P τ(1,3,5,5;n)=xζ(3)ζ2(5)resζ(s)+3x1/3ζ(1/3)ζ2(5/3) res ζ(3s)+ s=1 s=1/3 n6x X +5x1/5ζ(1/5)ζ(3/5) res ζ2(5s)+R(x). s=1/5 EXPONENTIAL CARMICHAEL FUNCTION 5 To estimate R(x) we use Lemma 7 with a = 1, a = 3, a = a = 5. Exponent 1 2 3 4 pair (k,l)=H satisfies conditions 1, 2 and 3.2 and thus 2005 R(x) x(k+l+2)/(k+l+14) =x1153/6073+ε, 1/6<1153/6073<1/5. ≪ Now the convolution argument completes the proof. (cid:3) Exponential totient function φ(e) has similar to λ(e) Dirichlet series: ∞ φ(e)(n)=ζ(s)ζ(3s)ζ2(5s)H(s), n=1 X where H(s) converges absolutely for σ > 1/6. Theorem 1 can be extended to this case without any changes, so φ(e)(n)=c x+c x1/3+(c′ logx+c )x1/5+O(x1153/6073+ε). 11 13 15 15 n6x X This improves the result of P´etermann [12], who obtained φ(e)(n) = c x+ n6x 11 +c x1/3+O(x1/5logx). 13 P Update from 23.05.2014: RecentlyCaoandZhai[1,(1.13)]obtainedR(x) ≪ x18/95+ε,whichisbetter thanbothP´etermann’sx1/5logxandourx1153/6073+ε. ≪ Theorem 2. λ(e)(n)=c x1/2+(c′ logx+c )x1/3+c x1/4+O(x1153/5586+ε), 2 22 23 23 24 n6x X where c , c , c′ and c are computable constants. 22 23 23 24 Proof. Similar to Theorem 1 with following changes: now by (6) λ(e) =τ(2,3,3,4; )⋆g , 2 · 2 where g (n) x1/6+ε. But n6x 2 ≪ Pτ(2,3,3,4;n)=2x1/2ζ2(3/2)ζ(2) res ζ(2s)+ s=1/2 n6x X +3x1/3ζ(2/3)ζ(4/3) res ζ2(3s)+4x1/4ζ(1/2)ζ2(3/4) res ζ(4s)+R(s). s=1/3 s=1/4 Again by Lemma 7 with a =2, a =a =3, a =4, (k,l)=H we get 1 2 3 4 2005 R(x) x(k+l+2)/(k+l+12) =x1153/5586+ε, 1/5<1153/5586<1/4. ≪ (cid:3) Theorem 3. (9) λ(e)(n)=(c′ logx+c )x1/3+(c′ logx+c )x1/4+ 3 33 33 34 34 n6x X +P (logx)x1/5+O(x1/6+ε), 35 where c , c′ , c and c′ are computable constants, P is a polynomial of degree 33 33 34 34 35 3 with computable coefficients. Proof. Lemma 6 and equation (7) implies that λ(e) = z ⋆g , where z is defined 3 3 3 3 implicitly by ∞ z (n)n−s =Z (s)=ζ2(3s)ζ2(4s)ζ4(5s), 3 3 n=1 X and g is a multiplicative function such that g (n) x1/6+ε. 3 n6x 3 ≪ P 6 ANDREWV.LELECHENKO The main term at the right side of (9) equals to M (x):= res + res + res ζ2(3s)ζ2(4s)ζ4(5s)xss−1 . 3 s=1/3 s=1/4 s=1/5 (cid:18) (cid:19) (cid:0) (cid:1) To obtain the desirable error term it is enough to prove that z (n)=M (x)+O(x1/6+ε). 3 3 n6x X By Perron formula for c:=1/3+1/logx we have 1 c+iT z (n)= Z (s)xss−1ds+O(x1+εT−1). 3 3 2πi n6x Zc−iT X SubstitutingT =xandmovingthecontouroftheintegrationtill[1/6 ix,1/6+ix] − we get f (n)=M (x)+O(I +I +I +xε), 3 3 0 − + n6x X where 1/6+ix c±ix I := Z (s)xss−1ds, I := Z (s)xss−1ds. 0 3 ± 3 Z1/6−ix Z1/6±ix Firstly, c I x−1 Z (σ+ix)xσdσ. + 3 ≪ Z1/6 Let α(σ) be a function such that Z (σ+ix) xα(σ)+ε. By (3) we have 3 ≪ (16 68σ)µ(1/2)<4/5, σ [1/6,1/5), − ∈ (8 28σ)µ(1/2)<3/4, σ [1/5,1/4), α(σ)6 − ∈ (4−12σ)µ(1/2)<2/3, σ ∈[1/4,1/3), 0, σ [1/3,c]. ∈ This means that I+ xε. Plainly, the same estimate holds for I−. ≪ Secondly, it remains to prove that I x1/6+ε. Here 0 ≪ x I x1/6 Z (1/6+it)t−1dt 0 3 ≪ Z1 and taking into account Lemma 2 it is enough to show xZ (1/6+it)dt x1+ε. 1 3 ≪ Applying Cauchy inequality twice we obtain R x x 1/2 Z (1/6+it)dt ζ4(1/2+it) dt 3 ≪ × Z1 (cid:18)Z1 (cid:19) x (cid:12)(cid:12) 1/4 (cid:12)(cid:12) x 1/4 ζ8(2/3+it) dt ζ16(5/6+it) dt × ≪ (cid:18)Z1 (cid:19) (cid:18)Z1 (cid:19) (cid:12)(cid:12) (cid:12)(cid:12) x(1(cid:12)(cid:12)+ε)·1/2x(1+ε)·(cid:12)(cid:12)1/4x(1+ε)·1/4 x1+ε ≪ ≪ since by Lemma 8 m(1/2)>4, m(2/3)>8 and m(5/6)>16. (cid:3) Theorem 4. λ(e)(n)=(c′ logx+c )x1/4+P (logx)x1/5+(c′ logx+c )x1/6+ 4 44 44 45 46 46 n6x X +P (logx)x1/7+O(xC4+ε), 47 EXPONENTIAL CARMICHAEL FUNCTION 7 where c , c′ , c and c′ are computable constants, P and P are computable 44 44 46 46 45 47 polynomials, degP =3, degP =5, 45 47 7863059 √13780693090921 (10) C = − =0.134656..., 1/8<C <1/7. 4 4 85962240 Proof. We shall follow the outline of Theorem 3. Let us prove that for c :=1/4+ +1/logx we can estimate c+ix I := Z (s)xss−1ds xC4+ε + 4 ≪ ZC4+ix and C4+ix I := Z (s)xss−1ds xC4+ε. 0 4 ≪ ZC4−ix We start with I x−1 c Z (σ+ix)xσdσ. Now let α(σ) be a function such + ≪ C4 4 that Z (σ+ix) xα(σ)+ε. By (3) and (8) we have 4 ≪ R (16 80σ)µ(1/2)<5/6, σ [1/7,1/6), − ∈ (12 56σ)µ(1/2)<4/5, σ [1/6,1/5), α(σ)6 − ∈ (4−16σ)µ(1/2)<3/4, σ ∈[1/5,1/4), 0, σ [1/4,c]. ∈ So c Z (σ+ix)xσ−1dσ xεandtheonlycasethatrequiresfurtherinvestigations 1/7 4 ≪ is σ [C ,1/7). Instead of (3) we apply (4) together with (1) and (2) to obtain R∈ 4 1045018 2459357 α(σ)6 σ, σ [1/8,1/7], 249485 − 99794 ∈ which implies 1/7xα(σ)+σ−1dσ xC4+ε as soon as C4 ≪ R C >1591066/12296785=0.129388... 4 Our choice of C in (10) is certainly the case. 4 Let us move on I and prove that xZ (C +it)dt x1+ε. For q , q , q , q 0 1 4 4 ≪ 1 2 3 4 such that R (11) 1/q +1/q +1/q +1/q =1 and q ,q ,q ,q >1 1 2 3 4 1 2 3 4 by H¨older inequality we have x x 1/q1 x 1/q2 Z (C +it)dt ζ2q1(4s+it) dt ζ4q2(5s+it) dt 4 4 ≪ × Z1 (cid:18)Z1 (cid:19) (cid:18)Z1 (cid:19) (cid:12)(cid:12) x (cid:12)(cid:12) 1/q3 (cid:12)(cid:12) x (cid:12)(cid:12) 1/q4 ζ2q3(6s+it) dt ζ6q4(7s+it) dt . × (cid:18)Z1 (cid:19) (cid:18)Z1 (cid:19) (cid:12) (cid:12) (cid:12) (cid:12) Choose (cid:12) (cid:12) (cid:12) (cid:12) (12) q =m(4C )/2, q =m(5C )/4, q =m(6C )/2, q =m(7C )/6 1 4 2 4 3 4 4 4 One can make sure by substituting the value of C from (10) into Lemma 8 that 4 such choice of q satisfies (11). Thus we obtain k x Z (C +it)dt x(1+ε)/q1x(1+ε)/q2x(1+ε)/q3x(1+ε)/q4 x1+ε, 4 4 ≪ ≪ Z1 which finishes the proof. (cid:3) 8 ANDREWV.LELECHENKO 5. Decrease of C 4 In this section we obtain lower value of C by improving lower bounds of m(σ) 4 from Lemma 8. Estimates below depend on values of ak+bl+c (13) inf , (k,l)dk+el+f where (k,l)runs overthe setofexponentpairs andsatisfiescertainlinearinequali- ties. Amethodtoestimate(13)withoutlinearconstrainswasgivenbyGraham[5]. In the recent paper [10] we have presented an effective algorithm to deal with (13) under a nonempty set of linear constrains. Let c be an arbitrary function such that c(σ) > µ(σ). Define θ by an implicit equation 2c θ(σ) +1+θ(σ) 2 1+c θ(σ) σ =0. − Finally, define (cid:0) (cid:1) (cid:0) (cid:0) (cid:1)(cid:1) 1+c θ(σ) f(σ)=2 . c θ(σ) (cid:0) (cid:1) Due to Lemma 3 one can take c(σ)=infl−(cid:0)k>σ(k(cid:1)+l σ)/2, where (k,l) runs over − the set of exponent pairs. However even rougher choice of c leads to satisfiable values of f such as in [7, (8.71)]. Lemma 9. Let σ >5/8. Compute 4 4σ 12 1 α 1 α = − , β = , m = − β , 1 1 1 1 1+2σ −1+2σ µ(σ) − 4(1 σ)(k+l) 4(1+2k+2l) α (k,l)= − , β (k,l)= , 2 2 (2+4l)σ 1+2k 2l −(2+4l)σ 1+2k 2l − − − − 1 α (k,l) 2 m (k,l)= − β (k,l), m = inf m (k,l), 2 2 2 2 µ(σ) − α2(k,l)61 where (k,l) runs over the set of exponent pairs. Then m(σ)>min m ,m ,2f(σ) . 1 2 Note that for σ >2/3 the condition α ((cid:0)k,l)61 is alw(cid:1)ays satisfied. 2 Proof. Follows from [7, (8.97)] and from TαVβ TVβ+(α−1)/µ(σ) for α < 1 ≪ and V Tµ(σ). (cid:3) ≪ Substituting pointwise estimates of m(σ) fromLemma 9 instead of segmentwise from Lemma 8 into (12) we obtain following result. Theorem 5. The statement of Theorem 4 remains valid for C =0.133437785... 4 6. Conclusion Wehaveobtainednontrivialerrortermsinasymptoticestimatesof λ(e)(n) n6x r forr =1,2,3,4. Casesofr =1andr =2dependonthemethodofexponentpairs. P Casesofr =3 andr =4 depend onlowerbounds of m(σ). Note that caseof r =4 may be improved under Riemann hypothesis up to C = 1/8, because Riemann 4 hypothesis implies µ(σ)=0 and m(σ)= for σ [1/2,1]. ∞ ∈ EXPONENTIAL CARMICHAEL FUNCTION 9 References [1] Cao X., Zhai W. On the four-dimensional divisor problem of (a,b,c,c) type // Funct.Approximatio, Comment.Math.—2013.—Vol.49,no.2.—P.251–267. [2] CarmichaelR.D.Noteonanewnumbertheoryfunction//Bull.Amer.Math.Soc.—1910.— feb.—Vol.16,no.5.—P.232–238. [3] Erdo˝sP.,PomeranceC.,SchmutzE.Carmichael’slambdafunction//ActaArith.—1991.— Vol.58,no.4.—P.363–385. [4] Friedlander J. B., Pomerance C., Shparlinski I. E. SmallvaluesoftheCarmichaelfunctionandcryptographic applications // Cryptogra- phy and Computational Number Theory.—Basel : Birkhauser Verlag, 2001.—Vol. 20 of Progress inComputer ScienceandAppliedLogic.—P.25–32. [5] GrahamS.W.Analgorithmforcomputingoptimalexponentpair//J.Lond.Math.Soc.— 1986.—Vol.33,no.2.—P.203–218. [6] Huxley M. N. Exponential sums and the Riemann zeta function V // Proc.Lond.Math.Soc.—2005.—Vol.90,no.1.—P.1–41. [7] Ivi´cA.TheRiemannzeta-function: Theoryandapplications.—Mineola,NewYork: Dover Publications,2003.—562p.—ISBN:0486428133, 9780486428130. [8] Kra¨tzel E. Latticepoints.—Dordrecht : Kluwer, 1988.—436 p.— ISBN:9027727333, 9789027727336. [9] Kra¨tzel E. Estimates in the general divisor problem // Abh.Math.Semin.Univ.Hamb.— 1992.—dec.—Vol.62,no.1.—P.191–206. [10] Lelechenko A. V. Linear programming over exponent pairs // Acta Univ. Sapientiae, In- form.—2013.—Vol.5,no.2.—P.271–287. [11] Lelechenko A. V. Functions involving exponential divisors: bibliography.—2014.—URL: https://github.com/Bodigrim/expdiv-bibliography. [12] P´etermannY.-F.S.Arithmeticalfunctionsinvolvingexponentialdivisors: Noteontwopapers by L. To´th // Ann. Univ. Sci. Budap. Rolando Eo˝tvo˝s, Sect. Comput.—2010.—Vol. 32.— P.143–149. [13] Subbarao M. V. Onsomearithmeticconvolutions // The theory of arithmetical functions: Proceedings of the Conference at Western Michigan University, April 29 – May 1, 1971.— Vol.251ofLectureNotes inMathematics.—Berlin: Springer Verlag,1972.—P.247–271. [14] Suryanarayana D., Sita Rama Chandra Rao R. On the true maximum order of a class of arithmeticfunctions//Math.J.OkayamaUniv.—1975.—Vol.17.—P.95–101. [15] Titchmarsh E. C. The theory of the Riemann zeta-function / Ed. by D. R. Heath- Brown.—2nd, rev. edition.—New-York : Oxford University Press, 1986.—418 p.— ISBN:0198533691, 9780198533696. I. I. Mechnikov Odessa National University E-mail address: [email protected]