ebook img

Exploring the Universe with Very High Energy Neutrinos PDF

3.4 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Exploring the Universe with Very High Energy Neutrinos

NuclearPhysicsB Proceedings Supplement NuclearPhysicsBProceedingsSupplement00(2015)1–10 Exploring the Universe with Very High Energy Neutrinos A.Kappesa,fortheIceCubeCollaboration1 aErlangenCentreforAstroparticlePhysics,Friedrich-Alexander-Universita¨tErlangen-Nu¨rnberg,D-91058Erlangen,Germany 5 1 0 2 Abstract n a Withthediscoveryofahigh-energyneutrinofluxinthe0.1PeVtoPeVrangefrombeyondtheEarth’satmosphere J withtheIceCubedetector,neutrinoastronomyhasachievedamajorbreakthroughintheexplorationofthehigh-energy 0 3 universe.Oneofthemaingoalsistheidentificationandinvestigationofthestillmysterioussourcesofthecosmicrays whichareobservedatEarthwithenergiesuptoseveral105 PeV.Inadditiontobeingsmoking-gunevidenceforthe ] presenceofcosmicraysinaspecificobject,neutrinosescapeevendenseenvironmentsandcanreachusfromdistant E placesintheuniverse,therebyprovidinguswithauniquetooltoexplorecosmicaccelerators.Thisarticlesummarizes H ourknowledgeabouttheobservedastrophysicalneutrinofluxandcurrentstatusofthesearchforindividualcosmic . h neutrinosources. Attheend,itgivesanoverviewofplansforfutureneutrinotelescopeprojects. p - Keywords: high-energyneutrinos,neutrinoastronomy,neutrinotelescopes,ANTARES,BAIKAL,IceCube, o KM3NeT,cosmicneutrinoflux,point-likeneutrinosources,gamma-raybursts r t s a [ 1. Introduction tonsorheaviernuclei[1],aclearpicturewhethersuper- novaremnantsareindeedthemainsourcesoftheGalac- 1 ThediscoveryofcosmicraysbyVictorHessin1912 tic cosmic rays is still missing. Furthermore, the ori- v markedthebeginningofastroparticlephysicswhichhas 8 gin of ultra-high energy cosmic rays (UHECRs) above 9 enabled us to explore the Universe at the highest en- (cid:38) 3×1018eVremainsacompletemystery. Withtheir 7 ergies reaching up to several 105PeV. But even more unique properties, neutrinos will help in solving these 7 than 100 years later, the central question regarding the andotherimportantastrophysicalquestions,astheirob- 0 sources that can accelerate particles to energies far be- servation from an object or region would unambigu- . 1 yond what is achievable with man-made accelerators ously identify it as a source of high-energy protons or 0 is mostly unanswered. First of all, cosmic rays can- heaviernuclei.Thishasbeenoneofthemaindriversfor 5 not directly reveal their sources except maybe at the thedevelopmentandconstructionofneutrinotelescopes 1 very highest energies as the charged particles are de- : overthepastdecades.Atthesametime,thefactthatun- v flected in the galactic and intergalactic magnetic fields tilrecentlythehigh-energyneutrinoskyhasbeentotal i X andhencedonotpointbacktotheirorigin.High-energy terra incognita implies a high potential for unexpected gamma-ray photons, which are produced in the inter- r discoveries. a action of cosmic rays with matter or photon fields, on Thelowinteractioncrosssectionthatrendersneutri- the other hand, can also be generated via up-scattering nosveryvaluablefortheexplorationofthehigh-energy oflow-energyphotonsbyacceleratedelectrons(inverse universe, however, also makes them very hard to de- Compton scattering). Though the gamma-ray spectra tect. In particular, over the past years it has become of at least two supernova remnants seem to originate clearthathugedetectorsofatleastkm3 sizeareneces- from pion decay and hence from acceleration of pro- sarytoeventuallyopenthisexcitingnewwindowtothe universe(seee.g.[2,3]). 1http://icecube.wisc.edu A.Kappes/NuclearPhysicsBProceedingsSupplement00(2015)1–10 2 Figure1:SchematicviewsoftheBAIKAL(left)[4],ANTARES(middle)[5]andIceCube(right)[6]neutrinodetectors.TheEiffelTowerisshown forscalecomparison. 2. Neutrinotelescopes (Fig.1,right),thesuccessorofAMANDA,startedwith the aim to build the first km3-scale neutrino telescope The idea for neutrino telescopes was first published [10]. Initsfinalconfiguration,reachedin2010,thede- in1960byMarkov[7]. Thedetectionprincipleisbased tector consists of 5160 optical modules instrumenting on the registration of the Cherenkov light induced by one km3 of clear glacial ice at depths between 1450m charged particles generated in neutrino interactions in and2450matthegeographicSouthPole. Physicsdata anopticallytransparentmediumlikeiceorwater. This taking started in 2006 with 9 installed strings. In con- lightisrecordedwithalargenumberofphotomultipli- trast to the other detectors, the IceCube Observatory ersarrangedinathree-dimensionalarray. Thedirection comprisesanairshowerarrayatthesurfacecalledIce- andenergyoftheneutrinoisreconstructedusingthear- Top[6]. Itsmainpurposeistheinvestigationofcosmic rival time of the photons (measured with nanosecond rays in the energy range between 1015eV and 1018eV precision),themeasuredlightintensityandtheposition [11]. This article concentrates on results from the Ice- ofthephotomultipliers. CubeandANTARESdetectorsasthesearecurrentlythe Thetechnicalrealizationofsuchatelescopeindeep most sensitive detectors in the Southern and Northern ocean water was pioneered by the DUMAND Collab- hemisphere,respectively. oration between 1973 and 1995 [8] but terminated af- ter a technical failure of the first deployed string. In Twobasiceventtopologiesinneutrinotelescopescan the1980’s,theconstructionofdetectorsinLakeBaikal bedistinguished. Charged-currentinteractionsofmuon [4] and in the ice at the South Pole were proposed. neutrinos produce long track-like patterns due to the The NT200 in Lake Baikal was completed in 1998, resulting muon crossing the detector (muon channel; instrumenting a volume of 10−4km3 with 192 optical Fig. 2, top). On the other hand, neutral-current inter- modules on eight strings (Fig. 1, left). Three addi- actionsofallneutrinoflavors,orchargedcurrentinter- tional strings at larger distances were added in 2005– actions of electron neutrinos, induce a more spherical 2007. The AMANDA detector at the South Pole [9] hitpatternoriginatingfromthecascadeofparticlespro- took data from 1996 until 2009. In its final configu- ducedattheinteractionvertex(cascadechannel;Fig.2, ration it consisted of 667 optical modules instrument- bottom). In case a charged current muon neutrino or ing a volume of about 10−2km3. Installation of a neu- tauneutrinointeractionwithsubsequenttaudecayinto trino telescope in the deep ocean was pursued by the amuonhappensinsidethedetectorthesetwotopologies ANTARES,NEMOandNESTORCollaborationsinthe overlap thereby complicating the reconstruction. The Mediterranean Sea. The ANTARES detector (Fig. 1, directionofelongatedmuontrackscanbereconstructed middle) was eventually built off the coast of southern withsub-degreeprecisionathighenergies,significantly France near Toulon [5] with construction lasting from betterthanthatofcascades.Attherelevantenergies,the 2002 to 2008. It comprises 885 optical modules on 12 neutrinoisapproximatelycollinearwiththemuonand, stringsandinstrumentsavolumeof10−2km3.Datatak- hence, the muon channel is the prime channel for the ing started early in the construction phase and is on- search for point-like sources of cosmic neutrinos. On going. In 2005, construction of the IceCube detector the other hand, cascades deposit all of their energy in- A.Kappes/NuclearPhysicsBProceedingsSupplement00(2015)1–10 3 Figure3:Atmosphericneutrinofluxesasafunctionofenergy.Shown arepredictionsfortheconventionalelectronandmuonneutrinofluxes togetherwiththerespectivemeasurements.Predictionsfortheprompt neutrinofluxesarealsoshown. Thisplotisbasedontheplotpub- lishedin[12]withanupdatetotheIceCubemeasurementofelectron neutrinosdisplayedinred. Figure2:Neutrinointeractionsignaturesinaneutrinotelescope(here, twoeventsfromIceCubedata).Thesizeofthecoloredspheresispro- portionaltothenumberofdetectedphotonsinanopticalmoduleand thecolorindicatesthearrivaltimeofthefirstphotononthatmod- investigate very interesting physics topics like for ex- ule,withredbeingearlyandbluelatetimes. Top:Track-likepattern fromamuonoriginatingfromachargedcurrentinteractionofamuon ample neutrino oscillations [13, 14]. Figure 3 shows neutrino. Bottom: cascade-like pattern from e.g. a neutral current the atmospheric muon and electron neutrino fluxes as neutrinointeraction. measured by several experiments, together with the- oretical predictions. The conventional neutrino flux side the detector and therefore allow for a much better [15] originates from the decay of kaons and pions reconstructionoftheirenergywitharesolutionofupto produced in cosmic-ray interactions in the atmosphere 10%athighenergies. (π±,K± → µ± + νµ) and the subsequent muon decay (µ± → e±+ν +ν ). Electronneutrinosarelessabun- µ e dantthanmuonneutrinosastheyareonlygeneratedin 3. Atmosphericmuonandneutrinofluxes muondecays. Theν /ν ratiodecreaseswithincreasing e µ energy as an increasing number of muons reaches the The main background for the detection of cosmic detectorbeforedecaying.Atenergiesabove(cid:38)100TeV, neutrinos originates from muons and neutrinos pro- electronneutrinosfromthedecayofK andK consti- L S ducedininteractionsofcosmicrayswithEarth’satmo- tute a significant fraction of the total electron neutrino sphere. Atmosphericmuonsarecommonlysuppressed flux [16]. Measurements of the conventional neutrino bylookingthroughtheEarthtotheoppositehemisphere fluxescoverabroadenergyrangeuptoenergiesofsev- using the Earth as an absorber. However, for energies eral100TeVandarewelldescribedbytheoreticalpre- above∼100TeVtheEarthstartstobecomeopaquealso dictions.Thepromptneutrinofluxstemsfromthedecay for neutrinos which renders the upward direction the ofcharmedparticlesgeneratedintheveryearlyphaseof onlypartoftheskyfromwhichneutrinoswithEeVen- theairshowerdevelopment. Astheseparticlesarevery ergiesandabovecanbeobserved. Fortunately,atthese short-livedtheydecaywithoutinteractionandtherefore energies the atmospheric muon background is negligi- yield a harder spectrum compared to the conventional ble. neutrinoflux,withaboutequalfluxesofmuonandelec- Atmosphericneutrinosareatoughbackgroundforall tron neutrinos. Currently, there exists no measurement searchesforcosmicneutrinos. Ontheotherhand,they ofthispromptfluxanditsnormalizationhaslargetheo- areinvaluableasacalibrationsourceandalsoallowto reticaluncertainties[17]. A.Kappes/NuclearPhysicsBProceedingsSupplement00(2015)1–10 4 Figure4:IceCubepre-trialsignificanceskymapinequatorialcoordi- nates. TheblacklineindicatestheGalacticplane,andtheblackplus signindicatestheGalacticCenter.Themostsignificantfluctuationin Figure6: SensitivityoftheIceCubedetectorinmuonneutrinostoa eachhemisphereisindicatedwithasquaremarker.Takenfrom[19]. point-likesourceswithanE−2spectrumasfunctionofdeclinationfor differentenergyranges. 10-6 MACRO upper limits (2300 d) IceCube sensitivity (1373 d, preliminary) -1]s 10-7 IAcNeCTAubReE Sup speenrs liitmiviittsy ((11337338 dd,) preliminary) 4.1. Searchesforpoint-likesources -2 m 10-8 ANTARES upper limits (1338 d) Searches for point-like sources have the advantage c V 10-9 that for a particular source they observe only a small e T x [ 10-10 portionofthesky(typicalangularresolutionsformuon flu× 10-11 neutrinos are around 0.5◦) thereby reducing the back- 2E 10-12 ground of atmospheric neutrinos considerably. Up to now, IceCube has observed about 180,000 up- going muon neutrinos in 1373 days of livetime [19], -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 sin(δ) ANTARES in a similar time about 5,500 [20]. None ofthetwoexperimentshasfoundasignificantdeviation Figure5:Sensitivities(solidlines)andupperlimits(symbols)ofvari- from the background, neither in searches on the whole ousexperimentsinmyonneutrinosforpoint-likesourcesasafunction skynorforselectedsources. ofdeclinationassuminganunbrokenE−2spectrum.Datatakenfrom Thisleadstoupperlimitsonthemuonneutrinoflux [19,20,21]. from point-like sources which are plotted in Fig. 5 as functionofdeclinationforanassumedE−2sourcespec- trum.ThecomparisontotheupperlimitsfromMACRO 4. Theclassicalpictureofneutrinoastronomy [21]illustratesthehugeimprovementinsensitivityofa factor 1000over thepast 15years. Currently, IceCube isthemostsensitiveoperatingneutrinotelescope.Inthe Comparedtoatmosphericmuonsandneutrinos,cos- northernsky,itssensitivitystartstoapproachthediscov- mic neutrinos are expected to have a harder spectrum eryregionbelow∼10−12TeVcm−2s−1whereaccording followingapower-lawwithanindexofabout−2asin- tocalculations[2,3]fluxesfrom(Galactic)sourcesare ferredfromshockacceleration(seee.g.[18]andrefer- expected. For sources in the southern sky, ANTARES encestherein)inobjectslikesupernovaremnantsorjets located in the Mediterranean Sea is currently the most of active galactic nuclei. Therefore, cosmic neutrinos sensitive detector [20, 22], in particular in the TeV to are expected to dominate over the atmospheric back- PeVrange,wherethesensitivityofIceCuberapidlyde- ground above a certain energy threshold. In order to teriorates due to the huge background of atmospheric lowerthisenergythresholdintotheTeVtoPeVrange, muons (Fig. 6). This energy region is in particular where in particular Galactic sources are anticipated to interesting for Galactic sources which are expected to produceneutrinos,”classical”neutrinoastronomyuses emit neutrinos in this energy range. However, with its theEarthasshieldagainsttheoverwhelmingfluxofat- ∼ 100 times smaller volume, the overall sensitivity of mosphericmuons. ANTARESismuchlowerthanthatofIceCube. A.Kappes/NuclearPhysicsBProceedingsSupplement00(2015)1–10 5 rameters are still poorly determined or completely un- IceCubePreliminary 100 known, leading to significant uncertainties in the pre- 10−7 Ahlersetal. dictedfluxes. Thissituationisimprovedwithso-called Waxman-Bahcall 90 1sr)− 80 nelesu,ttrhoenneesucatrpineomfloudxelissocfloGsRelBysti[e2d3,to24th].eIonbtsheersveemdoedx-- 21s−−10−8 70 L(%) tragalacticcosmic-rayspectrum. Becauseofthisdirect m C link,thesemodelsaremorerobustagainstassumptions c 60 n GeV usio on unmeasured parameters. IceCube has searched for 2εεΦ()(νbb10−9 90% 68% 345000 Excl csthuoecrrcmeelosasdtiesolons.sfaForifg[un2re6eu]t7prisrnhoovoswidwsinittghhesoeigvxnecrilfiu5sc0iao0nntblcuimornsitststa,rnawidnitcthsoomoun-t pares it to predictions from two neutron-escape mod- 104 105 5100%6 107 20 els. Thoughnotallmodelshavebeenfullyexcludedyet Neutrinobreakenergyεb(GeV) withintheiruncertainties,thepersistentnullresultssig- nificantlyquestiontheroleofGRBsasmajorsourcesof Figure7:Compatibilityofneutrinofluxpredictionsbasedoncosmic theUHECRs. rayproductioninGRBswithobservations.Thehorizontalaxisshows theenergyofthefirstbreakinthestandarddouble-brokenpowerlaw neutrino spectrum ofGRBs in the fireball model, which is propor- 5. Neutrinosfromabove–thepowerofveto tionaltothesquareoftheLorentzfactoroftheejectedmaterial. The verticalaxisdisplaysthenormalizationoftheneutrinofluxwhichis For a long time, the field of view of neutrino tele- relatedtotheacceleratedprotonflux.Theareabelowthelinesarethe allowedvaluesintheneutrinofluxversusneutrinobreakenergyplane scopeswasthoughttoberestrictedtotheoppositehemi- atthecorrespondingconfidencelevel.Modelpredictions[23,24]with sphere for the observation of cosmic neutrinos in the estimateduncertaintiesareshownaspoints. TeVrange.However,neutrinosinteractinginsidethein- strumented volume can be separated from atmospheric muons,whichenterthedetectorfromtheoutside,byre- 4.2. Neutrinosfromgamma-raybursts quiringthattheouterlayersofthedetectordonotcon- ApartfromActiveGalacticNuclei(AGNs),Gamma- tain any correlated signals. As atmospheric neutrinos Ray Bursts (GRBs) are currently the only good candi- are always produced together with muons in the atmo- dates for the sources of the ultra-high energy cosmic sphere,thistechniquecanevenbeusedtosuppressthe rays above 1019eV. The fact that GRBs are transient fluxofatmosphericneutrinosasfirstsuggestedin[28]. phenomenawithdurationsfrombelowasecondtosev- Dependingonthesizeofthevetoregion,thistechnique eralhundredseconds,allowsforanothersignificantre- allows for lowering the energy threshold for observa- ductionoftheatmosphericbackground. tions of down-going cosmic neutrinos significantly at ThecurrentlyleadingmodelforGRBsisthefireball theexpenseofrestrictingtheeffectivevolumeforneu- model [25] with the energy source being the rapid ac- trinointeractionstothenon-vetovolumeofthedetector. cretion of a large mass onto a black hole formed af- The latter could be avoided by using a detector at the ter the collapse of a super-massive star. In this model, surfacelikeIceToptorejectatmosphericshowers. With a highly relativistic outflow (fireball) dissipates its en- itscurrentextension,however,thesolidanglecoverage ergy via synchrotron or inverse Compton radiation of of IceTop is rather limited and up to now it has only electrons accelerated in internal shock fronts. This ra- beenusedtocheckforthepresenceofanairshowerin diation in the keV–MeV range is observed as a broken coincidencewithanIceCubeeventinhindsight. power-lawspectrumingammarays.Inadditiontoelec- trons, protons are thought to be accelerated which in- teract with the keV–MeV photons via pγ → π+,π0. 6. DiscoveryofcosmicneutrinoswithIceCube The decaying charged pions produce neutrinos of en- ergyO(1014eV). Becauseofthe∆+resonance,theneu- Thevetomethoddescribedabovewasdevelopedand trino spectrum mirrors the broken power-law shape of applied to search for cosmic neutrinos of all flavors in the gamma-ray spectrum with the break lying in the the IceCube detector. In two years of data, 28 events 100TeVrange. Thecoolingofthepionsathigherener- wereobservedoveranexpectedbackgroundof10.6+5.0 −3.6 giesinmagneticfieldsintroducesasecondbreakinthe yielding a significance of 4.2σ [31]. Adding another PeVrange. year of data provided 9 additional events and raised Despite being the leading model, several of its pa- therejectionofthebackground-onlyhypothesisto5.7σ A.Kappes/NuclearPhysicsBProceedingsSupplement00(2015)1–10 6 Figure8:High-energyneutrinosasobservedbyIceCubein3yearsofdata.Left:Numberofmeasuredeventsandpredictedfluxesasfunctionof depositedenergyequivalenttoanelectromagneticshower. Right: Distributionofdataandpredictionsasafunctionofdeclinationfordeposited energies>60TeV(samecolorcodeasleft).Takenfrom[27]. 23 37 9 31 17 16 8 11 26 36 29 35 4 6 27 5 11830◦ 1 34 Norther3n SHoeu3tmihseprhn erHeemisphere215822422 112415 2300 19 3 -180◦ 21 10 7 Galactic 0 TS=2log(L/L0) 11.3 Figure9: ArrivaldirectionsoftheeventsinGalacticcoordinatesof high-energyneutrinosobservedbyIceCube. Shower-likeeventsare markedwith+(resolution∼ 15◦)andthosecontainingmuontracks with×(resolution(cid:46)1◦).TheColorscaleindicatesthecompatibility withthebackground-onlyhypothesisforapoint-likesource. Nosig- nificantclusteringwasobservedwiththemostsignificantfluctuation Figure 10: ANTARES exclusion limit at 90% CL. for a neutrino havingap-valueof84%.Takenfrom[27]. sourceneartheGalacticCenterassumingwidthsbetween0◦ (point source)and3◦. Thebluehorizontallinerepresentsthesourceflux predictedin[29].Takenfrom[22]. [27]. Threeofthealtogether37eventsdepositedmore than 1PeV of energy inside the detector 2. Figure 8 (left) shows the distribution of observed and expected (Fig.8,right). events as a function of deposited energy. A clear ex- A combined fit of a conventional, prompt and E−2 cessathighenergiescanbeobservedwhichcanbeac- astrophysical neutrino flux to the data between 60TeV counted for with an astrophysical component. In the and 3PeV yields a best-fit astrophysical normalization northernsky,thefluxofcosmicneutrinosissuppressed of E2φ = (0.95±0.3)×10−8GeVcm−2sr−1; the best- due to Earth absorption whereas in the southern sky it fit slope is E−2.3±0.3 with a normalization of E2φ = stays constant and is clearly separated from the atmo- 1.5×10−8(E/100TeV)−0.3GeVcm−2sr−1[27].Theob- spheric neutrino flux which is suppressed by the veto servedeventsarecompatiblewithanisotropicneutrino fluxwithaflavorratio(ν :ν :ν )of(1:1:1)asexpected e µ τ fromfullmixingduetoneutrinooscillations. Thissug- 2Note, that this energy corresponds to the amount of light de- geststhattheobservedcosmicneutrinofluxistoalarge positedbyanelectromagneticcascadeofthatenergy,andinparticular extent of extra-galactic origin with possibly a compo- doesnotaccountfortheenergycarriedawaybytheneutrinoinaNC interactionorbythemuonwhenitleavesthedetector. nentfromtheMilkyWay’shalo. A.Kappes/NuclearPhysicsBProceedingsSupplement00(2015)1–10 7 Figure11: Atmosphericandastrophysicalneutrinofluxesmeasured Figure 12: Artist’s view of a high-energy (blue volume) and low- byIceCubetogetherwithcorrespondingpredictions.Takenfrom[30]. energy (green volume) extension of the IceCube neutrino detector. ThecurrentIceCubedetectorisshowninred. Searchesforadirectional(Fig.9)ortemporalcluster- ingoftheeventsaswellascorrelationswiththeGalac- tic plane yield negative results [27]. Though statisti- cally not significant, a cluster of seven events near the Galactic Center inspired flux calculations for a poten- tialassociatedsource[29]. TheANTARESCollabora- tiontestedthishypothesisandexcludestheexistenceof suchasourcewithanextensionofupto0.5◦withmore than90%CL[22](Fig.10). In the meantime, cosmic neutrinos have also been Figure13: Artist’sviewofasurfacevetofortheIceCubeneutrino seenwiththeIceCubedetectorinup-goingmuonneutri- detector. nos: intwoyearsofdataananalysisthatsearchedfora diffusecosmicneutrinofluxobservedanexcessof3.9σ sor experiments or on upgrading their detectors to the (preliminary)athighenergiesoverthepredictedatmo- gigatonscale. spheric background. The best-fit astrophysical compo- In order to coordinate these efforts, an umbrella or- nent(greenhorizontalbandinFig.11)iscompatiblein ganization, the Global Neutrino Network (GNN), was slope and normalization with the cosmic neutrino flux founded in 2013 [32]. It includes all current neutrino discussedabove. telescope projects ANTARES, BAIKAL, IceCube and KM3NeTandaimsatdevelopingacoherentstrategyfor 7. Futurestrategies thefield. Thiscoverso.a.tounderstandhowthediffer- entdetectorscomplementeachotherinthebestway,the Currently,onlytheIceCubedetectorprovidesthere- coordinationofalertandmulti-messengerpolicies, de- quired volume to investigate the observed cosmic neu- velopmentofstandardsfordataexchange,cross-checks trino flux. Though the full potential of reconstruction ofresultsaswellastheorganizationofmeetingsforex- andselectionmethodshasnotbeenfullyexploitedyet, changeofexpertise. it is foreseeable that even after 10 years of operation, IceCube will only have gathered about 90 astrophysi- 7.1. NextgenerationIceCube calmuonneutrinosabove100TeV,100cascadesabove The IceCube Collaboration is currently planning an 60TeV and 10 events above 1PeV. For a detailed in- extensionoftheexistingdetectorwithabout120addi- vestigation of the properties of the astrophysical flux tionalstrings,eachequippedwithupto96opticalmod- and in particular the search for individual sources of ules. AnartistconceptionofsuchanextendedIceCube neutrinoemission,significantlymoreeventswillbere- detectorisdepictedinFig.12. Intensivestudiesforop- quired. Accordingly,thecollaborationsofallthreerun- timizing this future detector are underway. 80 of these ning neutrino telescopes are either working on succes- strings are foreseen for a high-energy extension with a A.Kappes/NuclearPhysicsBProceedingsSupplement00(2015)1–10 8 7.2. KM3NeT The KM3NeT Collaboration, which comprises the expertise of all previous Mediterranean neutrino tele- scopeprojects(ANTARES,NEMO,NESTOR),intends tobuildamulti-km3 neutrinotelescopeintheMediter- ranean Sea [37]. For the optical module, it uses an innovative design [38] with31 small 3” photomultipli- ersinsteadofasinglelarge(8–10”)photomultiplieras adopted in current neutrino telescopes. Among oth- ers, this configuration yields three times the sensitive area of an optical module with a single 10” photomul- tiplier, provides intrinsic directional sensitivity and al- lows for improved photon counting. The full detector Figure14: IncreaseinmuonneutrinoeventsforthecurrentIceCube detectorcomparedtopurelyup-goingmuonneutrinosasafunctionof will contain over 12,000 of these sensors distributed theradiusofa100%efficientsurfacevetoforvariousenergythresh- over about 600 vertical lines arranged in 6 so-called olds.Fortheneutrinospectrumthebest-fitcosmicneutrinofluxwith building blocks of 115 lines each. It is planned to in- anindexof−2.3andnohigh-energycutoffwasassumed.Takenfrom stall these building blocks at sites near France, Italy [33]. and Greece. A single building block will allow to re- construct the direction of muon neutrinos with reso- widehorizontalspacingofupto300m,yieldinginstru- lutions down to 0.1◦ at high energies. Furthermore, mentedvolumesbetween5and10km3andangularres- studies show that a precision of 3◦ in the direction re- olutions down to 0.1◦ with an energy threshold in the constructionofcascadescanbereachedat10TeV,and some10TeVrange. better than 2◦ above 100TeV. This would for the first The remaining 40 strings are planned to be installed time allow to also use the cascade channel in searches inaverydenseconfigurationcalledPINGUinthecenter forpoint-likeneutrinosources,therebysignificantlyin- ofthecurrentlyexistingdetectortoallowfortherecon- creasingthenumberofeventsforagivenflux. structionofneutrinosintheGeVrange. Themaingoal A first phase of KM3NeT with 31 strings has been ofPINGUisthemeasurementoftheneutrinomasshier- funded with 31MAC and will be installed until the end archyexploitingmattereffectsintheoscillationpattern of2016togetherwith8towerscontaining”traditional” ofatmosphericneutrinos(fordetailssee[34]). optical modules with one large PMT per module. The Inadditiontothein-iceextensions,thepotentialofan main purpose of this first phase is the demonstration extended IceTop-like detector for vetoing atmospheric of the functionality of the detector design but it will muons and neutrinos at the surface via the registration alsoprovideimprovedperformanceovertheANTARES of the associated air shower is being investigated (see detector. Afterwards, the construction of two building Fig. 13). Such a surface veto has the virtue that the blocksisenvisaged(additionalcosts50–60MAC). Such wholeicevolumebetweenthedeepdetectorandthesur- aconfigurationwouldhaveaboutthesameinstrumented facewouldbeavailableforneutrinointeractionsthereby volume as the current IceCube detector with the main significantly enlarging the effective volume. In order purpose to verify and further investigate the observed tocoverareasonablylargesolidangle,suchadetector cosmicneutrinoflux. Figure15(left)displaysaprelim- would have to extend horizontally significantly further inary estimate of the sensitivity in tracks and cascades than the detector in the deep ice. The energy thresh- to this flux. With the full detector in the final phase old is determined by the density of detection elements (additional costs 140–160MAC), KM3NeT will instru- whichcanbeverysimplecomparedtothecurrentIce- ment between 3 and 6km3 of water and be sensitive Top detectors as only basic signal information is re- to Galactic neutrino sources like the supernova rem- quired. A first preliminary study concerning the gain nantRXJ1713.7-3946orthepulsarwindnebulaVelaX in signal muon neutrinos with such a surface veto for (Fig. 15, right). The KM3NeT Collaboration currently thecurrentIceCubedetectorisdepictedinFig.14. For also investigates the performance of a densely instru- arealisticenergythresholdof100TeVandanextension mented detector called ORCA consisting of one build- radius of 5km, an increase of about 75% compared to ing block. As with PINGU, the main goal is the mea- up-goingmuonneutrinoscanbeexpected. surementoftheneutrinomasshierarchy. A.Kappes/NuclearPhysicsBProceedingsSupplement00(2015)1–10 9 KM3NeT Phase-1.5 (detector with 2 building blocks) - Preliminary )σ 7 e ( c 6 n a c nifi 5 g Si 4 muon tracks θzenith>80° 3 cascades 2 1 flux per flavour 1.2 10-8 E-2 exp(-E/3 PeV) GeV-1 sr-1 s-1 cm-2 0 0 1 2 3 4 5 N year Figure15:Left:SensitivityofKM3NeTwithtwobuildingblock(115lineseach)tothecosmicneutrinofluxdiscoveredbyIceCubeasafunction ofobservationtimeformuontracksandcascades. Takenfrom[35]. Right: SensitivityofKM3NeTwithsixbuildingblockstothesupernova remnantRXJ1713.7-3946andthepulsarwindnebulaVelaXasafunctionofobservationtimeassumingthattheobservedgamma-rayfluxfully originatesfromπ0decay.Takenfrom[36]. 7.3. Baikal in full swing and, pending funding, could be realized within 10–15 years. With these new detectors we will TheBaikalCollaborationplansthestepwiseinstalla- thenhopefullybeabletofullyopenthisnewandexcit- tion of a km3-scale array in Lake Baikal dubbed GVD ingwindowtotheuniverse. (GigatonVolumeDetector)[39]. Itwillconsistofclus- tersof8stringswithupto48opticalmodulesperstring. Phase 1 of the project envisages 12 clusters. In 2008- 9. Acknowledgements 2013, the basic elements were tested and engineering strings operated. Meanwhile, the first cluster is de- The author gratefully acknowledges the support by ployed to a large part and completion is planned for the German Ministry for Education and Research April2015. (BMBF),grantnumbers05A11KHBand05A14WE3. 8. Summary References Thediscoveryofanastrophysicalneutrinofluxwith [1] M.Ackermann,etal.(Fermi-LATCollaboration),Detectionof the Characteristic Pion-Decay Signature in Supernova Rem- the IceCube detector has provided a strong boost for nants,Science339(2013)807,PreprintarXiv:1302.3307. neutrino astronomy and the community is currently [2] A.Kappes,J.Hinton,C.Stegmann,F.A.Aharonian,Potential workingintensivelyonfullyexploitingtheavailableand neutrinosignalsfromGalacticγ-raysources,ApJ656(2007) upcomingdataaswellasunderstandingthenatureand 870,Preprintastro-ph/0607286. [3] F. Vissani, F. Aharonian, N. Sahakyan, On the detectability sources of these neutrinos. However, it is quite clear ofhigh-energyGalacticneutrinosources, Astropart.Phys.34 thatevenafter10yearsofrunningwiththecurrentde- (2011)778,PreprintarXiv:1101.4842. tectors,onlyalimitednumberofastrophysicalneutrinos [4] I.Belolaptikov,etal.(BAIKALCollaboration),TheBaikalun- willhavebeencollected,likelynotsufficienttoanswer derwaterneutrinotelescope:Design,performanceandfirstre- sults,Astropart.Phys.7(1997)263. themanyquestionsthathaveemerged. Inparticular, it [5] M. Ageron, et al. (ANTARES Collaboration), ANTARES: the will probably be difficult to identify the sources of the firstunderseaneutrinotelescope,Nucl.Inst.Meth.A656(2011) Galacticandextra-galacticcosmicrays. 11,PreprintarXiv:1104.1607. Therefore, in order to exploit the full potential of [6] R. Abbasi, et al. (IceCube Collaboration), IceTop: The sur- facecomponentofIceCube,Nucl.Inst.Meth.A700(2013)188, neutrino astronomy, a next generation of neutrino tele- PreprintarXiv:1207.6326. scopes with instrumented volumes in the 5–10km3 [7] M. A. Markov, in: E. C. G. Sudarshan, J. H. Tinlot, A. C. range with good vetoing efficiency for atmospheric Melissinos(Eds.),Proc.oftheTenthAnnualIntern.Rochester muons and neutrinos and full sky coverage in up- and Conf.onHigh-EnergyPhysics,NewYork:Interscience,1960. [8] A. Roberts, The Birth of high-energy neutrino astronomy: A down-going neutrinos is required. The planning and PersonalhistoryoftheDUMANDproject,Rev.Mod.Phys.64 performance studies for these detectors are currently (1992)259. A.Kappes/NuclearPhysicsBProceedingsSupplement00(2015)1–10 10 [9] E. Andre´s, et al. (AMANDA Collaboration), Observation of [29] M. Gonzalez-Garcia, F. Halzen, V. Niro, Reevaluation of the high-energy neutrinos using Cherenkov detectors embedded ProspectofObservingNeutrinosfromGalacticSourcesinthe deepinAntarcticice,Nature410(2001)441. LightofRecentResultsinGammaRayandNeutrinoAstronomy, [10] R. Abbasi, et al. (IceCube Collaboration), The IceCube Astropart.Phys.57-58(2014)39,PreprintarXiv:1310.7194. data acquisition system: Signal capture, digitization, [30] G.Hill(IceCubeCollaboration),Firstdetectionofhigh-energy and timestamping, Nucl. Inst. Meth. A 601 (2009) 294, astrophysical neutrinos with IceCube, talk at XXVI Interna- PreprintarXiv:0810.4930. tionalConferenceonNeutrinoPhysicsandAs-trophysics(Neu- [11] M.Aartsen,etal.(IceCubeCollaboration),Measurementofthe trino2014),Boston,USA(2014). cosmicrayenergyspectrumwithIceTop-73, Phys.Rev.D88 [31] M.Aartsen,etal.(IceCubeCollaboration),EvidenceforHigh- (2013)042004,PreprintarXiv:1307.3795. EnergyExtraterrestrialNeutrinosattheIceCubeDetector,Sci- [12] M.Aartsen,etal.(IceCubeCollaboration),Measurementofthe ence342(2013)1242856,PreprintarXiv:1311.5238. Atmospheric νe flux in IceCube, Phys. Rev. Lett. 110 (2013) [32] URLhttp://www.globalneutrinonetwork.org 151105,PreprintarXiv:1212.4760. [33] A.Karle,AnextgenerationIceCube,talkatNeutrinosBeyond [13] S. Adrian-Martinez, et al. (ANTARES Collaboration), Mea- IceCube,Arlington,USA(2014). surement of Atmospheric Neutrino Oscillations with the [34] M. Aartsen, et al. (IceCube-PINGU Collaboration), Letter ANTARES Neutrino Telescope, Phys.Lett. B714 (2012) 224, of Intent: The Precision IceCube Next Generation Upgrade PreprintarXiv:1206.0645. (PINGU),PreprintarXiv:1401.2046(2014). [14] M.Aartsen,etal.(IceCubeCollaboration),MeasurementofAt- [35] C. James (KM3NeT Collaboration), KM3NeT – a multi-km3 mosphericNeutrinoOscillationswithIceCube,Phys.Rev.Lett. neutrinotelescopefortheMediterranean,talkatTheoryMeet- 111(8)(2013)081801,PreprintarXiv:1305.3909. ing Experiment 2014: Neutrinos and Cosmos (TMEX 2014), [15] M.Honda,T.Kajita,K.Kasahara,S.Midorikawa,T.Sanuki, Warsaw,Poland(2014). Calculationofatmosphericneutrinofluxusingtheinteraction [36] M.deJong(KM3NeTCollaboration),StatusofKM3NeT,talk modelcalibratedwithatmosphericmuondata,Phys.Rev.D75 atXXVIInternationalConferenceonNeutrinoPhysicsandAs- (2007)043006,PreprintarXiv:astro-ph/0611418. trophysics(Neutrino2014),Boston,USA(2014). [16] T.K.Gaisser, S.R.Klein, Anewcontributiontotheconven- [37] P. Bagley, et al. (KM3NeT Collaboration), KM3NeT, Techni- tionalatmosphericneutrinofluxPreprintarXiv:1409.4924. cal Design Report for a deep-sea research infrastructure in [17] R. Enberg, M. H. Reno, I. Sarcevic, Prompt neutrino fluxes theMediterraneanSeaincorporatingaverylargevolumeneu- from atmospheric charm, Phys. Rev. D78 (2008) 043005, trino telescope, ISBN 978-90-6488-033-9 (2010). URL www. PreprintarXiv:0806.0418. km3net.org/public.php [18] C. Dermer, G. Powale, Gamma Rays from Cosmic [38] H.Lo¨hner,etal.(KM3NeTCollaboration),Themulti-PMTop- Rays in Supernova Remnants, A&A A34 (2013) 553, ticalmoduleforKM3NeT,Nucl.Inst.Meth.A718(2013)513– PreprintarXiv:1210.8071. 515. [19] M. Aartsen, et al. (IceCube Collaboration), Searches for Ex- [39] A. Avrorin, et al. (BAIKAL Collaboration), The prototyp- tendedandPoint-likeNeutrinoSourceswithFourYearsofIce- ing/earlyconstructionphaseoftheBAIKAL-GVDproject,Nucl. CubeData,PreprintarXiv:1406.6757(2014). Inst.Meth.A742(2014)82,PreprintarXiv:1308.1833. [20] S. Adrian-Martinez, et al. (ANTARES Collaboration), Search for Cosmic Neutrino Point Sources with Four Year Data of the ANTARES Telescope, ApJ 760 (2012) 53, PreprintarXiv:1207.3105. [21] M. Ambrosio, et al. (MACRO Collaboration), Neutrino as- tronomy with the MACRO detector, ApJ 546 (2001) 1038, PreprintarXiv:astro-ph/0002492. [22] S.Adrian-Martinez,etal.(ANTARESCollaboration),Searches forPoint-likeandextendedneutrinosourcesclosetotheGalac- tic Centre using the ANTARES neutrino Telescope, ApJ 786 (2014)L5,PreprintarXiv:1402.6182. [23] E.Waxman,J.N.Bahcall,High-energyneutrinosfromcosmo- logical gamma-ray burst fireballs, Phys. Rev. Lett. 78 (1997) 2292,PreprintarXiv:astro-ph/9701231. [24] M.Ahlers,M.C.Gonzalez-Garcia,F.Halzen,GRBsonproba- tion: testingtheUHECRparadigmwithIceCube, Astropart. Phys.35(2011)87,PreprintarXiv:1103.3421. [25] P.Meszaros,M.J.Rees,Relativisticfireballsandtheirimpact onexternalmatter-modelsforcosmologicalgamma-raybursts, ApJ405(1993)278. [26] R.Abbasi,etal.(IceCubeCollaboration),Anabsenceofneu- trinosassociatedwithcosmic-rayaccelerationinγ-raybursts, Nature484(2012)351,PreprintarXiv:1204.4219. [27] M. Aartsen, et al. (IceCube Collaboration), Observation of High-Energy Astrophysical Neutrinos in Three Years of IceCube Data, Phys. Rev. Lett. 113 (2014) 101101, PreprintarXiv:1405.5303. [28] S.Scho¨nert,T.K.Gaisser,E.Resconi,O.Schulz,Vetoingat- mosphericneutrinosinahighenergyneutrinotelescope,Phys. Rev.D79(2009)043009,PreprintarXiv:0812.4308.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.