ebook img

Exploring mathematics. Problem-solving and proof PDF

308 Pages·2018·2.851 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Exploring mathematics. Problem-solving and proof

Springer Undergraduate Mathematics Series Daniel Grieser Exploring Mathematics Problem-Solving and Proof Springer Undergraduate Mathematics Series Advisory Board M. A. J. Chaplain, University of St. Andrews A. MacIntyre, Queen Mary University of London S. Scott, King’s College London N. Snashall, University of Leicester E. Süli, University of Oxford M. R. Tehranchi, University of Cambridge J. F. Toland, University of Bath More information about this series at http://www.springer.com/series/3423 Daniel Grieser Exploring Mathematics Problem-Solving and Proof 123 DanielGrieser Institut für Mathematik Carl vonOssietzkyUniversität Oldenburg Oldenburg Germany ISSN 1615-2085 ISSN 2197-4144 (electronic) SpringerUndergraduate MathematicsSeries ISBN978-3-319-90319-4 ISBN978-3-319-90321-7 (eBook) https://doi.org/10.1007/978-3-319-90321-7 LibraryofCongressControlNumber:2018939472 MathematicsSubjectClassification(2010): 00-01,00A07,00A09,97D50 TranslationfromtheGermanlanguageedition:MathematischesProblemlösenundBeweisenbyDaniel Grieser,©SpringerFachmedienWiesbaden2013.AllRightsReserved. ©SpringerInternationalPublishingAG,partofSpringerNature2018 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbytheregisteredcompanySpringerInternationalPublishingAG partofSpringerNature Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland For Ricarda and Leonard Preface to the English edition The classical curriculum for university mathematics education has emphasized calculation and – on a higher level – proofs and system- atic development of mathematical theories. In recent years there has beenagrowinginterestinsupplementingthiswithaproblem-solving approach. It has become clear that this is not only fun but also very useful as preparation for understanding the mathematical theories, these tremendous advances that mathematics has made over the cen- turies. These new developments have occurred in Britain, the United States, Germany and certainly other countries as well. In 2011, the University of Oldenburg introduced a new course into the curriculum: ‘Mathematical problem-solving and proving’ (Mathematisches Problemlo¨sen und Beweisen). It was aimed at first- yearstudentswhohavejustfinishedGymnasium(roughlyequivalent to A-levels in England and high school plus epsilon in the US) and are starting a degree in mathematics or mathematics education. This course has been very successful, both in bridging the gap between high school and university, and in providing a fun introduction to the higher mathematics taught at university. Similar courses have sprung up at other universities in Germany, and in Britain and the US, and at otherplacespeoplearediscussingthepossibilityofintroducingthem, or at least introducing elements of such an approach into existing courses. This book arose from my teaching the course twice in Oldenburg, and since many colleagues in English-speaking countries have ex- pressed a great interest in it I decided to translate it into English. There are many other excellent books on problem-solving. What sets this book apart is that it starts at a very elementary level, but then quite explicitly tries to be a bridge to higher mathematics: the emphasis is on your discovery of mathematics by solving problems, but along the way concepts, notation and terminology of higher mathematics (e.g. sets and mappings) are introduced. In addition, most chapters have a section with additional material (titled Going 7 8 PrefacetotheEnglishedition further) which provides a preview of where similar ideas are used in advanced mathematical disciplines. Contents Introduction 13 1 First explorations 23 1.1 Cutting up a log . . . . . . . . . . . . . . . . . . . . . . . 23 1.2 A problem with zeroes . . . . . . . . . . . . . . . . . . . 24 1.3 A problem about lines in the plane . . . . . . . . . . . . 28 1.4 Toolbox . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2 Recursion – a fundamental idea 41 2.1 Recursion in counting problems . . . . . . . . . . . . . 41 2.2 The number of subsets . . . . . . . . . . . . . . . . . . . 44 2.3 Tilings with dominoes . . . . . . . . . . . . . . . . . . . 50 2.4 Solving the Fibonacci recurrence relation. . . . . . . . 54 2.5 Triangulations . . . . . . . . . . . . . . . . . . . . . . . . 61 2.6 Toolbox . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3 Mathematical induction 71 3.1 The induction principle . . . . . . . . . . . . . . . . . . 71 3.2 Colourings . . . . . . . . . . . . . . . . . . . . . . . . . . 74 3.3 Toolbox . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 4 Graphs 83 4.1 The Euler formula for plane graphs . . . . . . . . . . . 83 4.2 Counting in two ways for graphs . . . . . . . . . . . . . 90 4.3 Handshakes and graphs . . . . . . . . . . . . . . . . . . 94 4.4 Five points in the plane, all joined by edges . . . . . . . 95 9 10 Contents 4.5 Going further: Euler’s formula for polyhedra, topol- ogy and the four colour problem . . . . . . . . . . . . . 98 4.6 Toolbox . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 5 Counting 107 5.1 The basic principles of counting . . . . . . . . . . . . . 107 5.2 Counting using bijections . . . . . . . . . . . . . . . . . 117 5.3 Counting in two ways . . . . . . . . . . . . . . . . . . . 123 5.4 Going further: double sums, integrals and infinities . . 128 5.5 Toolbox . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 6 General problem solving strategies 139 6.1 General problem solving strategies . . . . . . . . . . . . 139 6.2 The diagonal of a cuboid . . . . . . . . . . . . . . . . . . 143 6.3 The problem of trapezoidal numbers . . . . . . . . . . . 145 6.4 Going further: sum representations of integers . . . . . 153 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 7 Logic and proofs 157 7.1 Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 7.2 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 8 Elementary number theory 181 8.1 Divisibility, prime numbers and remainders . . . . . . 181 8.2 Congruences . . . . . . . . . . . . . . . . . . . . . . . . . 186 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 9 The pigeonhole principle 195 9.1 The pigeonhole principle, first examples. . . . . . . . . 195 9.2 Remainders as pigeonholes . . . . . . . . . . . . . . . . 199 9.3 An exploration: approximation by fractions . . . . . . . 201 9.4 Order in chaos: the pigeonhole principle in graph theory . . . . . . . . . . . . . . . . . . . . . . . . . 212 9.5 Toolbox . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.