ebook img

Exploring Geometry PDF

477 Pages·2012·5.36 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Exploring Geometry

Exploring Geometry Michael Hvidsten Gustavus Adolphus College DRAFT: August 7, 2012 ii Copyright @ 2004 by Michael Hvidsten Final draft, August 2004. All rights reserved. No part of this publication may be reproduced, stored, or transmitted without prior consent of the author. Contents Preface ix Acknowledgments xiii 1 Geometry and the Axiomatic Method 1 1.1 Early Origins of Geometry . . . . . . . . . . . . . . . . . . . . 1 1.2 Thales and Pythagoras . . . . . . . . . . . . . . . . . . . . . . 4 1.2.1 Thales . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2.2 Pythagoras . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3 Project 1 - The Ratio Made of Gold . . . . . . . . . . . . . . 8 1.3.1 Golden Section . . . . . . . . . . . . . . . . . . . . . . 9 1.3.2 Golden Rectangles . . . . . . . . . . . . . . . . . . . . 14 1.4 The Rise of the Axiomatic Method . . . . . . . . . . . . . . . 18 1.5 Properties of Axiomatic Systems . . . . . . . . . . . . . . . . 26 1.5.1 Consistency . . . . . . . . . . . . . . . . . . . . . . . . 27 1.5.2 Independence . . . . . . . . . . . . . . . . . . . . . . . 28 1.5.3 Completeness . . . . . . . . . . . . . . . . . . . . . . . 29 1.5.4 Go¨del’s Incompleteness Theorem . . . . . . . . . . . . 30 1.6 Euclid’s Axiomatic Geometry . . . . . . . . . . . . . . . . . . 33 1.6.1 Euclid’s Postulates . . . . . . . . . . . . . . . . . . . . 34 1.7 Project 2 - A Concrete Axiomatic System . . . . . . . . . . . 40 2 Euclidean Geometry 51 2.1 Angles, Lines, and Parallels . . . . . . . . . . . . . . . . . . . 52 2.2 Congruent Triangles and Pasch’s Axiom . . . . . . . . . . . . 63 2.3 Project 3 - Special Points of a Triangle . . . . . . . . . . . . . 68 2.3.1 Circumcenter . . . . . . . . . . . . . . . . . . . . . . . 68 2.3.2 Orthocenter . . . . . . . . . . . . . . . . . . . . . . . . 70 2.3.3 Incenter . . . . . . . . . . . . . . . . . . . . . . . . . . 73 iii iv CONTENTS 2.4 Measurement and Area . . . . . . . . . . . . . . . . . . . . . 74 2.4.1 Mini-Project - Area in Euclidean Geometry . . . . . . 75 2.4.2 Cevians and Areas . . . . . . . . . . . . . . . . . . . . 78 2.5 Similar Triangles . . . . . . . . . . . . . . . . . . . . . . . . . 80 2.5.1 Mini-Project - Finding Heights . . . . . . . . . . . . . 87 2.6 Circle Geometry . . . . . . . . . . . . . . . . . . . . . . . . . 89 2.7 Project 4 - Circle Inversion . . . . . . . . . . . . . . . . . . . 97 2.7.1 Orthogonal Circles Redux . . . . . . . . . . . . . . . . 102 3 Analytic Geometry 107 3.1 The Cartesian Coordinate System . . . . . . . . . . . . . . . 109 3.2 Vector Geometry . . . . . . . . . . . . . . . . . . . . . . . . . 112 3.3 Project 5 - B´ezier Curves . . . . . . . . . . . . . . . . . . . . 117 3.4 Angles in Coordinate Geometry . . . . . . . . . . . . . . . . . 124 3.5 The Complex Plane . . . . . . . . . . . . . . . . . . . . . . . 130 3.5.1 Polar Form . . . . . . . . . . . . . . . . . . . . . . . . 131 3.5.2 Complex Functions . . . . . . . . . . . . . . . . . . . . 133 3.5.3 Analytic Functions and Conformal Maps (Optional) . 136 3.6 Birkhoff’s Axiomatic System . . . . . . . . . . . . . . . . . . 140 4 Constructions 147 4.1 Euclidean Constructions . . . . . . . . . . . . . . . . . . . . . 147 4.2 Project 6 - Euclidean Eggs. . . . . . . . . . . . . . . . . . . . 159 4.3 Constructibility . . . . . . . . . . . . . . . . . . . . . . . . . . 163 4.4 Mini-Project - Origami Construction . . . . . . . . . . . . . . 173 5 Transformational Geometry 181 5.1 Euclidean Isometries . . . . . . . . . . . . . . . . . . . . . . . 182 5.2 Reflections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 5.2.1 Mini-Project - Isometries through Reflection . . . . . 189 5.2.2 Reflection and Symmetry . . . . . . . . . . . . . . . . 190 5.3 Translations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 5.3.1 Translational Symmetry . . . . . . . . . . . . . . . . . 196 5.4 Rotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 5.4.1 Rotational Symmetry . . . . . . . . . . . . . . . . . . 203 5.5 Project 7 - Quilts and Transformations . . . . . . . . . . . . . 206 5.6 Glide Reflections . . . . . . . . . . . . . . . . . . . . . . . . . 212 5.6.1 Glide Reflection Symmetry . . . . . . . . . . . . . . . 215 5.7 Structure and Representation of Isometries . . . . . . . . . . 217 5.7.1 Matrix Form of Isometries . . . . . . . . . . . . . . . . 218 CONTENTS v 5.7.2 Compositions of Rotations and Translations . . . . . . 221 5.7.3 Compositions of Reflections and Glide Reflections . . 223 5.7.4 Isometries in Computer Graphics . . . . . . . . . . . . 224 5.7.5 Summary of Isometry Compositions . . . . . . . . . . 225 5.8 Project 8 - Constructing Compositions . . . . . . . . . . . . . 227 6 Symmetry 233 6.1 Finite Plane Symmetry Groups . . . . . . . . . . . . . . . . . 235 6.2 Frieze Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 6.3 Wallpaper Groups . . . . . . . . . . . . . . . . . . . . . . . . 244 6.4 Tiling the Plane . . . . . . . . . . . . . . . . . . . . . . . . . 254 6.4.1 Escher . . . . . . . . . . . . . . . . . . . . . . . . . . . 254 6.4.2 Regular Tessellations of the Plane . . . . . . . . . . . 256 6.5 Project 9 - Constructing Tessellations . . . . . . . . . . . . . 259 7 Non-Euclidean Geometry 263 7.1 Background and History . . . . . . . . . . . . . . . . . . . . . 263 7.2 Models of Hyperbolic Geometry . . . . . . . . . . . . . . . . . 266 7.2.1 Poincar´e Model . . . . . . . . . . . . . . . . . . . . . . 266 7.2.2 Mini-Project - The Klein Model . . . . . . . . . . . . 271 7.3 Basic Results in Hyperbolic Geometry . . . . . . . . . . . . . 275 7.3.1 Parallels in Hyperbolic Geometry . . . . . . . . . . . . 276 7.3.2 Omega Points and Triangles . . . . . . . . . . . . . . . 281 7.4 Project 10 - The Saccheri Quadrilateral . . . . . . . . . . . . 286 7.5 Lambert Quadrilaterals and Triangles . . . . . . . . . . . . . 290 7.5.1 Lambert Quadrilaterals . . . . . . . . . . . . . . . . . 290 7.5.2 Triangles in Hyperbolic Geometry . . . . . . . . . . . 293 7.6 Area in Hyperbolic Geometry . . . . . . . . . . . . . . . . . . 297 7.7 Project 11 - Tiling the Hyperbolic Plane . . . . . . . . . . . . 301 7.8 Models and Isomorphism . . . . . . . . . . . . . . . . . . . . 306 8 Non-Euclidean Transformations 313 8.1 Mo¨bius Transformations . . . . . . . . . . . . . . . . . . . . . 317 8.1.1 Fixed Points and the Cross Ratio . . . . . . . . . . . . 317 8.1.2 Geometric Properties of M¨obius Transformations . . . 319 8.2 Isometries in the Poincar´e Model . . . . . . . . . . . . . . . . 322 8.3 Isometries in the Klein Model . . . . . . . . . . . . . . . . . . 327 8.4 Mini-Project - The Upper Half-Plane Model . . . . . . . . . . 330 8.5 Weierstrass Model . . . . . . . . . . . . . . . . . . . . . . . . 333 8.6 Hyperbolic Calculation . . . . . . . . . . . . . . . . . . . . . . 333 vi CONTENTS 8.6.1 Arclength of Parameterized Curves . . . . . . . . . . . 334 8.6.2 Geodesics . . . . . . . . . . . . . . . . . . . . . . . . . 336 8.6.3 The Angle of Parallelism. . . . . . . . . . . . . . . . . 337 8.6.4 Right Triangles . . . . . . . . . . . . . . . . . . . . . . 338 8.6.5 Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340 8.7 Project 12 - Infinite Real Estate? . . . . . . . . . . . . . . . . 342 9 Fractal Geometry 347 9.1 The Search for a “Natural” Geometry . . . . . . . . . . . . . 347 9.2 Self-Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . 349 9.2.1 Sierpinski’s Triangle . . . . . . . . . . . . . . . . . . . 349 9.2.2 Cantor Set . . . . . . . . . . . . . . . . . . . . . . . . 352 9.3 Similarity Dimension . . . . . . . . . . . . . . . . . . . . . . . 353 9.4 Project 13 - An Endlessly Beautiful Snowflake . . . . . . . . . 356 9.5 Contraction Mappings . . . . . . . . . . . . . . . . . . . . . . 362 9.6 Fractal Dimension . . . . . . . . . . . . . . . . . . . . . . . . 372 9.7 Project 14 - IFS Ferns . . . . . . . . . . . . . . . . . . . . . . 375 9.8 Algorithmic Geometry . . . . . . . . . . . . . . . . . . . . . . 385 9.8.1 Turtle Geometry . . . . . . . . . . . . . . . . . . . . . 385 9.9 Grammars and Productions . . . . . . . . . . . . . . . . . . . 388 9.9.1 Space-filling Curves . . . . . . . . . . . . . . . . . . . 389 9.10 Project 15 - Words into Plants . . . . . . . . . . . . . . . . . 394 A Book I of Euclid’s Elements 401 A.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401 A.2 The Postulates (Axioms) . . . . . . . . . . . . . . . . . . . . . 403 A.3 Common Notions . . . . . . . . . . . . . . . . . . . . . . . . . 403 A.4 Propositions (Theorems) . . . . . . . . . . . . . . . . . . . . . 403 B Brief Guide to Geometry Explorer 411 B.1 The Main Geometry Explorer Window . . . . . . . . . . . . . 412 B.2 Selecting Objects . . . . . . . . . . . . . . . . . . . . . . . . . 413 B.3 Active vs. Inactive Tools . . . . . . . . . . . . . . . . . . . . . 416 B.4 Labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416 B.5 Object Coloring . . . . . . . . . . . . . . . . . . . . . . . . . . 417 B.6 Online Help . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418 B.7 Undo/Redo of Actions . . . . . . . . . . . . . . . . . . . . . . 418 B.8 Clearing and Resizing the Canvas . . . . . . . . . . . . . . . . 419 B.9 Saving Files as Images . . . . . . . . . . . . . . . . . . . . . . 420 B.10 Main Window Button Panels . . . . . . . . . . . . . . . . . . 421 CONTENTS vii B.10.1 Create Panel . . . . . . . . . . . . . . . . . . . . . . . 421 B.10.2 Construct Panel . . . . . . . . . . . . . . . . . . . . . 421 B.10.3 Transform Panel . . . . . . . . . . . . . . . . . . . . . 425 B.11 Measurement in Geometry Explorer . . . . . . . . . . . . . . . 429 B.11.1 Neutral Measurements . . . . . . . . . . . . . . . . . . 430 B.11.2 Euclidean-only Measurements . . . . . . . . . . . . . . 431 B.11.3 Hyperbolic-only Measurements . . . . . . . . . . . . . 432 B.11.4 User Input Measurements . . . . . . . . . . . . . . . . 432 B.12 Using Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . 432 B.13 Using the Calculator . . . . . . . . . . . . . . . . . . . . . . . 433 B.14 Hyperbolic Geometry . . . . . . . . . . . . . . . . . . . . . . 434 B.15 Analytic Geometry . . . . . . . . . . . . . . . . . . . . . . . . 436 B.16 Turtle Geometry . . . . . . . . . . . . . . . . . . . . . . . . . 436 C Birkhoff’s Axioms 441 D Hilbert’s Axioms 443 E The 17 Wallpaper Groups 445 Bibliography 451 Index 455 Preface It may well be doubted whether, in all the range of science, there is any field so fascinating to the explorer, so rich in hidden treasures,sofruitfulindelightfulsurprises,asPureMathematics. —Lewis Carroll (Charles Dodgson), 1832–1898 Anexplorerisonewhoseeksoutnewworldsandideas. AsLewisCarroll would probably agree, exploration is not always easy—the explorer can at times find the going tough. But, the treasures and surprises that active exploration of ideas brings is worth the effort. Geometry is one of the richest areas for mathematical exploration. The visual aspects of the subject make exploration and experimentation natural and intuitive. At the same time, the abstractions developed to explain geometric patterns and connections make the subject extremely powerful and applicable to a wide variety of physical situations. In this book we give equal weight to intuitive and imaginative exploration of geometry as well as to abstract reasoning and proofs. As any good school teacher knows, intuition is developed through play, the sometimes whimsical following of ideas and notions without clear goals in mind. To encourage a playful appreciation of geometric ideas, we have incorporated many computer explorations in the text. The software used in these explorations is Geometry Explorer, a virtual geometry laboratory where one can create geometric objects (like points, circles, polygons, areas, etc.), carry out transformations on these objects (dilations, reflections, ro- tations, and translations), and measure aspects of these objects (like length, area, radius, etc.). As such, it is much like doing geometry on paper (or sand) with a ruler and compass. However, on paper such constructions are static—points placed on the paper can never be moved again. In Geometry Explorer, all constructions are dynamic. One can draw a segment and then grab one of the endpoints and move it around the canvas, with the segment movingaccordingly. Thus, onecanconstructageometricfigureandtestout ix x PREFACE hypotheses by experimentation with the construction. The development of intuitive notions of geometric concepts is a critical first step in understanding such concepts. However, intuition alone cannot providethebasisforprecisecalculationandanalysisofgeometricquantities. For example, one may know experimentally that the sides of a right triangle followthePythagoreanTheorem,butdataalonedonotshowwhythisresult is true. Only a logical proof of a result will give us confidence in using it in any given situation. Throughout this text there is a dual focus on intuition/experimentation on the one hand and on explanation/proofs on the other. This integration of exploration and explanation can be seen most clearly in the use of major projects to tie together concepts in each chapter. For example, the first project explores the golden ratio and its amazing and ubiquitous properties. Studentsnotonlyexperimentallydiscoverthepropertiesofthegoldenratio, but are asked to dig deeper and analyze why these properties are true. The goal of the projects is to have students actively explore geometry through a three-fold approach. Students will first see a topic introduced in the text. Then, they will explore that topic using Geometry Explorer or by means of in-class group projects. Finally, they will review and report on their exploration, discussing what was discovered, conjectured, and proved during the course of the project. The beginning of each project is designated by a special heading—the projecttitlesetbetweentwohorizontallines. Theconclusionofeachproject is designated by an ending horizontal line. Projects are illustrated with screen shots from the Geometry Explorer program, which comes bundled with the text. Using Geometry Explorer EachprojectincludesaseriesofspecificgeometricactivitiesusingGeometry Explorer. The following conventions will be used for directing computer explorations: • Menu References All menu references will be in bold face type and will reference the menu option to click on. Parent menus will be listed in parentheses to assist in navigating to the correct menu. For example, the phrase “Click on Hide (View menu)” means to go to the Hide menu under the View menu and select that menu.

Description:
1.5.4 Gödel's Incompleteness Theorem . Geometry has two great treasures: one is the theorem of Pytha- .. and actresses considered beautiful.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.