ebook img

Exploring Classical Mechanics. A Collection of 350+ Solved Problems for Students, Lecturers, and Researchers PDF

381 Pages·2020·11.008 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Exploring Classical Mechanics. A Collection of 350+ Solved Problems for Students, Lecturers, and Researchers

OUPCORRECTEDPROOF – FINAL,8/7/2020,SPi EXPLORING CLASSICAL MECHANICS OUPCORRECTEDPROOF – FINAL,8/7/2020,SPi Exploring Classical Mechanics A Collection of 350+ Solved Problems for Students, Lecturers, and Researchers Gleb L. Kotkin Valeriy G. Serbo Novosibirsk State University,Russia Second revised and enlarged English edition 1 OUPCORRECTEDPROOF – FINAL,8/7/2020,SPi 3 GreatClarendonStreet,Oxford,OX26DP, UnitedKingdom OxfordUniversityPressisadepartmentoftheUniversityofOxford. ItfurtherstheUniversity’sobjectiveofexcellenceinresearch,scholarship, andeducationbypublishingworldwide.Oxfordisaregisteredtrademarkof OxfordUniversityPressintheUKandincertainothercountries ©GlebL.KotkinandValeriyG.Serbo2020 Themoralrightsoftheauthorshavebeenasserted FirstEditionpublishedin2020 Impression:1 Allrightsreserved.Nopartofthispublicationmaybereproduced,storedin aretrievalsystem,ortransmitted,inanyformorbyanymeans,withoutthe priorpermissioninwritingofOxfordUniversityPress,orasexpresslypermitted bylaw,bylicenceorundertermsagreedwiththeappropriatereprographics rightsorganization.Enquiriesconcerningreproductionoutsidethescopeofthe aboveshouldbesenttotheRightsDepartment,OxfordUniversityPress,atthe addressabove Youmustnotcirculatethisworkinanyotherform andyoumustimposethissameconditiononanyacquirer PublishedintheUnitedStatesofAmericabyOxfordUniversityPress 198MadisonAvenue,NewYork,NY10016,UnitedStatesofAmerica BritishLibraryCataloguinginPublicationData Dataavailable LibraryofCongressControlNumber:2020937520 ISBN978-0-19-885378-7(hbk.) ISBN978-0-19-885379-4(pbk.) DOI:10.1093/oso/9780198853787.001.0001 Printedandboundby CPIGroup(UK)Ltd,Croydon,CR04YY OUPCORRECTEDPROOF – FINAL,8/7/2020,SPi Preface to the second English edition This book was written by the working physicists for students of physics faculties of universities. ThefirstEnglisheditionofthisbookunderthetitleCollectionofProblemsinClassical Mechanics was published by Pergamon Press in 1971 with the invaluable help by the translation editor D. ter Haar. This second English publication is based on the fourth Russianeditionof2010andincludesnewproblemsfromamongthoseusedinteaching at the physics faculty of Novosibirsk State University as well as the problems added in the publications in Spanish and French. As a result, this book contains 357 problems insteadofthe289problemsthatappearedinthefirstEnglishedition. We are grateful to A.V.Mikhailov for useful discussions of some new problems, to Z.K.Silagadze for numerous indications of misprints and inaccuracies in previous editions,andtoO.V. Karpushinaforaninvaluablehelpinpreparationofthismanuscript. Inthisedition,themainnotationsare: m, e, r, p, and M=[r,p] – mass, charge, radius vector, momentum, and angular momentumofaparticle,respectively; L,H,E,and U – Lagrangian function,Hamiltonian function,energy,and potential energyofasystem,respectively; EandB–electricandmagneticfieldintensities,respectively; ϕ andA–scalarandvectorpotentials,respectively,oftheelectromagneticfield; c–velocityoflight;and d(cid:3)–solidangleelement. Forproblemsaboutthemotionofparticlesinelectromagneticfields,weuseGaussian units,andinproblemsonelectricalcircuits,SIunits. OUPCORRECTEDPROOF – FINAL,8/7/2020,SPi From the Preface to the first English edition This collection is meant for physics students. Its contents correspond roughly to the mechanicscourseinthetextbooksbyLandauandLifshitz[1],Goldstein[4],orterHaar [6]. We hope that the reading of this collection will give pleasure not only to students studying mechanics, but also to people who already know it. We follow the order in which the material is presented by Landau and Lifshitz,except that we start using the Lagrangianequationsin§4.Theproblemsin§§1–3canbesolvedusingtheNewtonian equationsofmotiontogetherwiththeenergy,linearmomentumandangularmomentum conservationlaws. As a rule, the solution of a problem is not finished with obtaining the required formulae.Itisnecessarytoanalysetheresult,andthisisbynomeansthe“mechanical” part of the solution.It is also very useful to investigate what happens if the conditions oftheproblemarevaried.Wehave,therefore,suggestedfurtherproblemsattheendof severalsolutions. A large portion of the problems were chosen for the practical classes with students fromthephysicsfacultyoftheNovosibirskStateUniversityforacourseontheoretical mechanics given by Yu.I. Kulakov. We want especially to emphasize his role in the choiceandcriticaldiscussionofalargenumberofproblems.WeoweagreatdebttoI.F. Ginzburg for useful advice and hints which we took into account.We are very grateful toV.D.Krivchenkovwhoseactiveinteresthelpedustopersevereuntiltheend. WeareextremelygratefultoD.terHaarforhishelpinorganizinganEnglishedition ofourbook. OUPCORRECTEDPROOF – FINAL,8/7/2020,SPi §1 Integration of one-dimensional equations of motion 1.1. DescribethemotionofaparticleinthefollowingpotentialfieldsU(x): a) U(x)=A(e−2αx−2e−αx)(Morsepotential,Fig.1a); b) U(x)=− U0 (Fig.1b); cosh2αx c) U(x)=U tan2αx(Fig.1c). 0 (a) (b) (c) U U U x x x Figure1 1.2. Describe the motion of a particle in the field U U(x)=−Ax4 forthecasewhenitsenergyisequaltozero. E 1.3. Give an approximate description of the motion of a particleinthefieldU(x)nearthetuningpointx=a(Fig.2). a x Hint:UseaTaylorexpansionofU(x)nearthepointx=a. ConsiderthecasesU(cid:2)(a)(cid:3)=0andU(cid:2)(a)=0,U(cid:2)(cid:2)(a)(cid:3)=0. Figure2 1.4. DeterminehowtheperiodofaparticlemovinginthefieldinFig.3tendstoinfinity asitsenergyE approachesU . m ExploringClassicalMechanics:ACollectionof350+SolvedProblemsforStudents,Lecturers,andResearchers.FirstEdition. GlebL.KotkinandValeriyG.Serbo,OxfordUniversityPress(2020).©GlebL.KotkinandValeriyG.Serbo2020. DOI:10.1093/oso/9780198853787.001.0001 OUPCORRECTEDPROOF – FINAL,8/7/2020,SPi 4 ExploringClassicalMechanics [1.5 U U U E m U E m a x x1 b a c x2 x Figure3 Figure4 1.5. a) Estimate the period of the particle motion in the field U(x) (Fig. 4), when its energyisclosetoU (i.e.,E−U (cid:4)U −U ). m m m min b)Determineduringwhichpartoftheperiodtheparticleisintheintervalfromxto x+dx. c)Determineduringwhichpartoftheperiodtheparticlehasamomentummx˙inthe intervalfromptop+dp. d) In the plane x, p=mx˙ represent qualitatively lines E(x,p)=const for the cases E<U ,E=U ,E>U . m m m 1.6. Aparticleofmassmmovesalongacircleofradiusl inaverticalplaneunderthe influence of the field of gravity (mathematical pendulum).Describe its motion for the casewhenitskineticenergyE inthelowestpointisequalto2mgl. Estimate the period of revolution of the pendulum for the case when E−2mgl(cid:4)2mgl. 1.7. Describe the motion of a mathematical pendulum for an arbitrary value oftheenergy. Hint:Thetimedependenceoftheanglethependulummakeswiththeverticalcanbe expressedintermsofellipticfunctions(e.g.see[1],§37). 1.8. Determinethechangeinthemotionofaparticlemovingalongasectionwhichdoes notcontainturningpointswhenthefieldU(x)ischangedbyasmallamountδU(x). Consider the applicability of the results obtained for the case of a section near the turningpoint. 1.9. FindthechangeinthemotionofaparticlecausedbyasmallchangeδU(x)inthe fieldU(x)inthefollowingcases: a) U(x)= 1mω2x2, δU(x)= 1mαx3; 2 3 b) U(x)= 1mω2x2, δU(x)= 1mβx4. 2 4 1.10. Determine the change in the period of a finite orbit of a particle caused by the changeinthefieldU(x)byasmallamountδU(x). OUPCORRECTEDPROOF – FINAL,8/7/2020,SPi 1.12] §1. Integrationofone-dimensionalequationsofmotion 5 1.11. FindthechangeintheperiodofaparticlemovinginafieldU(x)causedbyadding tothefieldU(x)asmalltermδU(x)inthefollowingcases: a) U(x)= 1mω2x2 (aharmonicoscillator), δU(x)= 1mβx4; 2 4 b) U(x)= 1mω2x2, δU(x)= 1mαx3; 2 3 c) U(x)=A(e−2αx−2e−αx), δU(x)=−Veαx (V (cid:4)A). 1.12. TheparticlemovesinthefieldU(x)= U0 withtheenergyE>U .Findthe cosh2αx 0 particledelaytimeatthemotionfromx=−∞tox=+∞incomparisonwiththefree motiontimewiththesameenergy. OUPCORRECTEDPROOF – FINAL,8/7/2020,SPi §2 Motion of a particle in three-dimensional fields 2.1. Describe qualitatively the motion of a particle in the field U(r)=−α − γ for r r3 differentvaluesoftheangularmomentumandoftheenergy. 2.2. Findthetrajectoriesandthelawsofmotionofaparticleinthefield (cid:2) −V, whenr<R, U U(r)= 0, whenr>R R r (Fig.5,“spherical rectangular potential well”) for different values −V oftheangularmomentumandoftheenergy. 2.3. Determine the trajectory of a particle in the field U(r)= Figure5 α + β . Give an expression for the change in the direction of r r2 velocity when the particle is scattered as a function of angular momentumandenergy. 2.4. Determine the trajectory of a particle in the field U(r)= α − β .Find the time it r r2 takestheparticletofalltothecentreofthefieldfromadistancer.Howmanyrevolutions aroundthecentrewilltheparticlethenmake? 2.5. Determine the trajectory of a particle in the field U(r)=−α + β . Find the r r2 angle(cid:5)ϕ betweenthedirectionofradiusvectorattwosuccessivepassagesthroughthe pericentre(i.e.,whenr=r );alsofindtheperiodoftheradialoscillations,T .Under min r whatconditionswilltheorbitbeaclosedone? 2.6. Determine the trajectory of a particle in the field U(r)=−α − β .A field of this r r2 kindarisesinthemotionofarelativisticparticleintheCoulombfieldinthespecialtheory ofrelativity;see[7],§42.1fordetails. ExploringClassicalMechanics:ACollectionof350+SolvedProblemsforStudents,Lecturers,andResearchers.FirstEdition. GlebL.KotkinandValeriyG.Serbo,OxfordUniversityPress(2020).©GlebL.KotkinandValeriyG.Serbo2020. DOI:10.1093/oso/9780198853787.001.0001 OUPCORRECTEDPROOF – FINAL,8/7/2020,SPi 2.16] §2. Motionofaparticleinthree-dimensionalfields 7 2.7. ForwhatvaluesoftheangularmomentumM isitpossibletohavefiniteorbitsin thefieldU(r)forthefollowingcases: a) U(r)=−αe−(cid:7)r; b)U(r)=−Ve−(cid:7)2r2. r 2.8. AparticlefallsfromafinitedistancestowardsthecentreofthefieldU(r)=−αr−n. Will it make a finite number of revolutions around the centre? Will it take a finite time tofalltowardsthecentre?Findtheequationoftheorbitforsmallr. 2.9. AparticleinthefieldU(r)fliesofftoinfinityfromadistancer(cid:2)=0.Isthenumber ofrevolutionsaroundthecentremadebytheparticlefiniteforthefollowingcases? a) U(r)=αr−n b)U(r)=−αr−n 2.10. HowlongwillittakeaparticletofallfromadistanceRtothecentreofthefield U(r)=−α/r.The initial velocity of the particle is zero.Treat the orbit as a degenerate ellipse. 2.11. Oneparticleofmassmmovesalongthex-axisfromalongdistancewithvelocity v towards the origin O of the coordinate system. Another particle of the same mass movestowardstheoriginOalongthey-axisfromalongdistancewiththesamevelocity magnitude. If the particles didn’t interact, the second would pass through point O in timeτ afterthefirstone.However,theyrepulsefromeachother,andpotentialenergyof interaction is U(r)=α/r,where r is the distance between particles.Find the minimum distancebetweentheparticles. 2.12. Two particles with masses m and m move with velocities v and v from long 1 2 1 2−→ distances along the crossing lines, the distance between which is equal to AB=ρ. If particlesdidn’tinteract,particle1wouldpassthepointofminimumdistanceAattime τ earlierthanparticle2wouldpassthepointB.However,thereistheforceofattraction betweentheparticles,whichisgivenbythepotentialenergyU(r)=−β/r2. a) Atwhatrelationbetweenρ andτ willparticlescollide? b) AtwhatdistancefromthepointAwillsuchacollisionoccur? 2.13. Determinetheminimaldistancebetweentheparticles,theoneapproachingfrom infinitywithanimpactparameterρ andaninitialvelocityvandtheotheroneinitiallyat rest.Themassesoftheparticlesarem andm ,andtheinteractionlawisU(r)=α/rn. 1 2 2.14. Determine in the centre of a mass system the finite orbits of two particles of massesm andm ,andaninteractionlawU(r)=−α/r. 1 2 2.15. Determinethepositionofthefocusofabeamofparticlesclosetothebeamaxis, whentheparticlesarescatteredinacentralfieldU(r)undertheassumptionthataparticle flyingalongtheaxisisturnedback. 2.16. Findtheinaccessibleregionofspaceforabeamofparticlesflyingalongthez-axis withavelocityvandbeingscatteredbyafieldU(r)=α/r.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.