ebook img

Exploring Analytic Geometry with Mathematica PDF

883 Pages·1999·2.82 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Exploring Analytic Geometry with Mathematica

Exploring Analytic Geometry with Mathematica(cid:13) R LIMITED WARRANTY AND DISCLAIMER OF LIABILITY ACADEMICPRESS(\AP")ANDANYONEELSEWHOHASBEENINVOLVEDINTHECREATIONOR PRODUCTIONOFTHEACCOMPANYINGCODE(\THEPRODUCT")CANNOTANDDONOTWAR- RANT THE PERFORMANCE OR RESULTS THAT MAY BE OBTAINED BY USING THE PRODUCT. THEPRODUCTISSOLD\ASIS"WITHOUTWARRANTYOFANYKIND(EXCEPTASHEREAFTER DESCRIBED),EITHEREXPRESSEDORIMPLIED,INCLUDING,BUTNOTLIMITEDTO,ANYWAR- RANTYOFPERFORMANCEORANYIMPLIEDWARRANTYOFMERCHANTABILITYORFITNESS FOR ANY PARTICULAR PURPOSE. AP WARRANTS ONLY THAT THE CD-ROM ON WHICH THE CODEISRECORDEDISFREEFROMDEFECTSINMATERIALANDFAULTYWORKMANSHIPUN- DER THE NORMAL USE AND SERVICE FOR A PERIOD OF NINETY (90) DAYS FROM THE DATE THE PRODUCT IS DELIVERED. THE PURCHASER’S SOLE AND EXCLUSIVE REMEDY IN THE EVENT OF A DEFECT IS EXPRESSLY LIMITED TO EITHER REPLACEMENT OF THE CD-ROM ORREFUNDOFTHEPURCHASEPRICE,ATAP’SSOLEDISCRETION. IN NO EVENT, WHETHER AS A RESULT OF BREACH OF CONTRACT, WARRANTY, OR TORT (INCLUDING NEGLIGENCE), WILL AP OR ANYONE WHO HAS BEEN INVOLVED IN THE CRE- ATION OR PRODUCTION OF THE PRODUCT BE LIABLE TO PURCHASER FOR ANY DAMAGES, INCLUDINGANYLOSTPROFITS,LOSTSAVINGSOROTHERINCIDENTALORCONSEQUENTIAL DAMAGESARISINGOUTOFTHEUSEOFINABILITYTOUSETHEPRODUCTORANYMODIFICA- TIONSTHEREOF,ORDUETOTHECONTENTSOFTHECODE,EVENIFAPHASBEENADVISED OFTHEPOSSIBILITY OFSUCHDAMAGES,ORFORANYCLAIMBYANYOTHERPARTY. Any request for replacement of a defective CD-ROMmust be postage prepaid and must be accompanied by the original defective CD-ROM, your mailing address and telephone number, and proof of date of purchase and purchase price. Send such requests, stating the nature of the problem, to Academic Press Customer Service,6277SeaHarborDrive,Orlando,FL32887,1-800-321-5068. APshallhavenoobligationtorefundthe purchasepriceortoreplaceaCD-ROMbasedonclaimsofdefectsinthenatureoroperationoftheProduct. Some states do not allow limitation on how long an implied warranty lasts, nor exclusions or limitations of incidental or consequential damages, so the above limitations and exclusions may not apply to you. This warranty gives you speci(cid:12)c legal rights, and you may also have other rights which vary from jurisdiction to jurisdiction. THERE-EXPORTOFUNITEDSTATESORIGINSOFTWAREISSUBJECTTOUNITEDSTATESLAWS UNDER THE EXPORT ADMINISTRATION ACT OF 1969 AS AMENDED. ANY FURTHER SALE OF THEPRODUCTSHALLBEINCOMPLIANCEWITHTHEUNITEDSTATESDEPARTMENTOFCOM- MERCE ADMINISTRATION REGULATIONS. COMPLIANCE WITH SUCH REGULATIONS IS YOUR RESPONSIBILITY ANDNOTTHERESPONSIBILITY OFAP. MathematicaandMathReader areregisteredtrademarksofWolframResearch,Inc. AcrobatReader isaregisteredtrademarkofAdobeSystems,Inc. Exploring Analytic Geometry with Mathematica(cid:13) R Donald L. Vossler BME, Kettering University, 1978 MM, Aquinas College, 1981 ACADEMIC PRESS San Diego London Boston New York Sydney Tokyo Toronto Preface The study of two-dimensional analytic geometry has gone in and out of fashion several times overthepastcentury,howeverthisclassic(cid:12)eldofmathematicshasonceagainbecomepopular duetothegrowingpowerofpersonalcomputersandtheavailabilityofpowerfulmathematical softwaresystems,suchasMathematica,thatcanprovideaninteractiveenvironmentforstudy- ing the (cid:12)eld. By combining the power of Mathematica with an analytic geometry software system calledDescarta2D,the author has succeededin meshing an ancient(cid:12)eld ofstudy with modern computational tools, the result being a simple, yet powerful, approach to studying analytic geometry. Students, engineers and mathematicians alike who are interested in ana- lytic geometry can use this book and software for the study, researchor just plain enjoyment of analytic geometry. Mathematica provides an attractive environment for studying analytic geometry. Mathe- matica supports both numeric and symbolic computations, meaning that geometry problems canbe solvednumerically,producingapproximateorexactanswers,aswellasproducinggen- eral formulas with variables. Mathematica also has good facilities for producing graphical plots which are useful for visualizing the graphs of two-dimensional geometry. Features Exploring Analytic Geometry with Mathematica, Mathematica and Descarta2D provide the following outstanding features: (cid:15) The book can serve as classical analytic geometry textbook with in-line Mathematica dialogs to illustrate key concepts. (cid:15) A large number of examples with solutions and graphics is keyed to the textual devel- opment of each topic. (cid:15) Hints are provided for improving the reader’s use and understanding of Mathematica and Descarta2D. (cid:15) More advanced topics are covered in explorations provided with each chapter, and full solutions are illustrated using Mathematica. v vi Preface (cid:15) AdetailedreferencemanualprovidescompletedocumentationforDescarta2D,withcom- plete syntax for over 100 new commands. (cid:15) Complete source code for Descarta2D is provided in 30 well-documented Mathematica notebooks. (cid:15) ThecompletebookisintegratedintotheMathematicaHelpBrowserforeasyaccessand reading. (cid:15) A CD-ROM is included for convenient, permanent storage of the Descarta2D software. (cid:15) A complete software system and mathematical reference is packaged as an a(cid:11)ordable book. Classical Analytic Geometry Exploring Analytic Geometry with Mathematica begins with a traditional development of an- alytic geometry that has been modernized with in-line chapter dialogs using Descarta2D and Mathematica to illustrate the underlying concepts. The following topics are covered in 21 chapters: Coordinates (cid:15) Points (cid:15) Equations (cid:15) Graphs (cid:15) Lines (cid:15) Line Segments (cid:15) Cir- cles (cid:15) Arcs (cid:15) Triangles (cid:15) Parabolas (cid:15) Ellipses (cid:15) Hyperbolas (cid:15) General Conics (cid:15) Conic Arcs (cid:15) Medial Curves (cid:15) Transformations (cid:15) Arc Length (cid:15) Area (cid:15) Tan- gent Lines (cid:15) Tangent Circles (cid:15) Tangent Conics (cid:15) Biarcs. Eachchapterbeginswithde(cid:12)nitionsofunderlyingmathematicalterminologyanddevelops the topic with more detailed derivations and proofs of important concepts. Explorations EachchapterinExploringAnalyticGeometrywithMathematica concludeswithmoreadvanced topics in the form of exploration problems to more fully develop the topics presented in each chapter. Therearemorethan100ofthesemorechallengingexplorations,andthefullsolutions areprovidedontheCD-ROMasMathematicanotebooksaswellasprintedinPartVIIIofthe book. Sampleexplorationsincludesomeofthemorefamoustheoremsfromanalyticgeometry: Carlyle’s Circle (cid:15) Castillon’s Problem (cid:15) Euler’s Triangle Formula (cid:15) Eyeball The- orem (cid:15) Gergonne’s Point (cid:15) Heron’s Formula (cid:15) Inversion (cid:15) Monge’s Theorem (cid:15) Reciprocal Polars(cid:15) Reflection in a Point (cid:15) Stewart’s Theorem (cid:15) plus many more. Preface vii Descarta2D Descarta2D provides a full-scale Mathematica implementation of the concepts developed in Exploring Analytic Geometry with Mathematica. Areferencemanualsectionexplainsindetail theusageofover100newcommandsthatareprovidedbyDescarta2Dforcreating,manipulat- ing and querying geometric objects in Mathematica. To support the study and enhancement of the Descarta2D algorithms, the complete source code for Descarta2D is provided, both in printed form in the book and as Mathematica notebook (cid:12)les on the CD-ROM. CD-ROM The CD-ROM provides the complete text of the book in Abode Portable Document Format (PDF)for interactivereading. Inaddition,the CD-ROMprovidesthe followingMathematica notebooks: (cid:15) Chapters with Mathematica dialogs, 24 interactive notebooks (cid:15) Reference material for Descarta2D, three notebooks (cid:15) Complete Descarta2D source code, 30 notebooks (cid:15) Descarta2D packages, 30 loadable (cid:12)les (cid:15) Explorationsolutions, 125 notebooks. These notebooks have been thoroughly tested and are compatible with Mathematica Version 3.0.1 and Version 4.0. Maximum bene(cid:12)t of the book and software is gained by using it in conjunction with Mathematica, but a passive reading and viewing of the book and notebook (cid:12)les can be accomplished without using Mathematica itself. Organization of the Book Exploring Analytic Geometry with Mathematica is a 900-pagevolume divided into nine parts: (cid:15) Introduction (Getting Started and Descarta2D Tour) (cid:15) Elementary Geometry (Points, Lines, Circles, Arcs, Triangles) (cid:15) Conics (Parabolas,Ellipses, Hyperbolas, Conics, Medial Curves) (cid:15) Geometric Functions (Transformations, Arc Length, Area) (cid:15) Tangent Curves (Lines, Circles, Conics, Biarcs) (cid:15) Descarta2D Reference (philosophy and command descriptions) (cid:15) Descarta2D Packages (complete source code) viii Preface (cid:15) Explorations (solution notebooks) (cid:15) Epilogue (Installation Instructions, Bibliography and a detailed index). About the Author Donald L. Vossler is a mechanical engineer and computer software designer with more than 20 years experience in computer aided design and geometric modeling. He has been involved in solidmodeling since its inception inthe early 1980’sandhas contributedto the theoretical foundationofthesubjectthroughseveralpublishedpapers. Hehasmanagedthedevelopment of a number of commercial computer aided design systems and holds a US Patent involving the underlying data representations of geometric models. Contents I Introduction 1 1 Getting Started 3 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Historical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 What’s on the CD-ROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 Mathematica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.5 Starting Descarta2D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.6 Outline of the Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 Descarta2D Tour 9 2.1 Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3 Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.4 Line Segments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.5 Circles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.6 Arcs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.7 Triangles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.8 Parabolas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.9 Ellipses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.10 Hyperbolas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.11 Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.12 Area and Arc Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.13 Tangent Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.14 Symbolic Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.15 Next Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 II Elementary Geometry 25 3 Coordinates and Points 27 3.1 Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.2 Rectangular Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ix x Contents 3.3 Line Segments and Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.4 Midpoint between Two Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.5 Point of Division of Two Points . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.6 Collinear Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.7 Explorations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4 Equations and Graphs 39 4.1 Variables and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.2 Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.3 Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.4 Solving Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.5 Graphs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.6 Parametric Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.7 Explorations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 5 Lines and Line Segments 51 5.1 General Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5.2 Parallel and Perpendicular Lines . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5.3 Angle between Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5.4 Two{Point Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 5.5 Point{Slope Form. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 5.6 Slope{Intercept Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 5.7 Intercept Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 5.8 Normal Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 5.9 Intersection Point of Two Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5.10 Point Projected Onto a Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 5.11 Line Perpendicular to Line Segment . . . . . . . . . . . . . . . . . . . . . . . . 72 5.12 Angle Bisector Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 5.13 Concurrent Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5.14 Pencils of Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 5.15 Parametric Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 5.16 Explorations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 6 Circles 85 6.1 De(cid:12)nitions and Standard Equation . . . . . . . . . . . . . . . . . . . . . . . . . 85 6.2 General Equation of a Circle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 6.3 Circle from Diameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 6.4 Circle Through Three Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 6.5 Intersection of a Line and a Circle . . . . . . . . . . . . . . . . . . . . . . . . . 91 6.6 Intersection of Two Circles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 6.7 Distance from a Point to a Circle . . . . . . . . . . . . . . . . . . . . . . . . . . 95 6.8 Coaxial Circles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 6.9 Radical Axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 6.10 Parametric Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Description:
By combining the power of Mathematica with an analytic geometry software system called eral formulas with variables. Mathematica also has good
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.