ebook img

Exploration of the Tree-Level S-Matrix of Massless Particles PDF

0.1 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Exploration of the Tree-Level S-Matrix of Massless Particles

FortschrittederPhysik,17January2012 Exploration of the Tree-Level S-Matrix of Massless Particles PaoloBenincasa∗ Departamento de F´ısica de Part´ıculas, Universidade de Santiago de Compostela, E-157782, Santiago de Compostela,Spain Keywords ScatteringAmplitudes,PerturbationTheory 2 Inrecentyears,theBCFWconstructionprovidedaverypowerfultoolforcomputingscatteringamplitudes 1 aswellasitshedlightontheperturbationtheorystructure. Inthistalk,Idiscussthelong-standingissue 0 of the boundary term arising when the amplitudes do not vanish as some momenta are taken to infinity 2 alongsomecomplexdirection. Inparticular,weprovideanewsetofon-shellrecursionrelationsvalidfor n suchtheoriesanddiscussitsconsequencesonourunderstandingontheperturbationtheorystructureofthe a S-Matrix. J 6 Copyrightlinewillbeprovidedbythepublisher 1 ] h 1 Introduction t - p Interactingtheoriesinasymptoticallyflatspacetimecanbestudiedatweakcouplingthroughtheanalysis e h ofthescatteringamplitudes,whichprovidetheprobabilitythatacertainnumberofasymptoticstatesscatter [ toproduceotherasymptoticstates. ThebestwaythatscatteringamplitudeshavebeenunderstoodsofarisbymeanoftheFeynmandiagram 1 v representation,whicharediagrammaticrulescomingfromaLagrangianformulationofthetheories.Such 1 arepresentationmakesmanifesttwobasicpropertiesofthetheories:Poincare´invarianceandthelocalityof 9 theinteractions.Thereare,however,someside-effects.Firstofall,theindividualFeynmandiagramsmay 1 breakothersymmetriesofthetheories(e.g. itisindeedthecaseforgaugesymmetries). Furthermore,the 3 numberofdiagramsdramaticallyincreaseswiththeincreaseofthenumberofexternalstates,makingthe . 1 calculationmoreandmorecumbersome.Finally,thesimplicityofthescatteringamplitudecanbehidden, 0 asithappensforexampleinthecaseofscatteringofgluonsandgravitonsattreelevel.Intheformercase, 2 afterhavingsummedupahighnumberofFeynmandiagrams,then-gluonamplitudesturnsouttobezero 1 : ifalltheexternalgluonsareinthesamehelicitystate(oratmostonegluonisinadifferenthelicitystate v withrespecttotheothers),whileitacquirethesimpleParke-TaylorformforMHVamplitudes[1]. Inthe i X lattercase,instead,thecomputationofthen-gravitonamplitudewouldrequiretokeepintoaccountallthe r k-pointvertices(withk ≤ n). a Itisthereforefairtoaskwhetheritispossibletoformulatesomeotherrepresentationwhichcanpoint out the simplicity of the scattering amplitudes, and to which extent we really understand perturbation theory. Thequestionabouttheexistenceofotherdiagrammaticrepresentationscanbealreadyansweredposi- tively.AfirstexampleistheCSW-expansion[2],whichischaracterisedbyoff-shelldiagramsconstructed outofjustMHV-verticesandmakesmanifestlocalitywhiletheLorentzinvarianceofthetheoryisbroken by the individualdiagrams. This representation is however not general and it holds just for Yang-Mills theories. A second (and more general) example is provided by the BCFW-construction [3,4], which is instead anon-shelldiagrammaticexpansioninwhich thegaugeinvarianceofthe theoryis notbrokenat intermediatestages, Lorentzinvariancestaysmanifest. Thepriceonepaysisthattheindividualon-shell diagramsbreakslocality. ∗ e-mail:[email protected]. Copyrightlinewillbeprovidedbythepublisher 2 P.Benincasa:ExplorationoftheTree-LevelS-MatrixofMasslessParticles It is instead probablyneededa deeperunderstandingof the perturbativestructureof interactingtheo- ries, evenat tree level. First of all, one can try to use Occam’s razor and try to understandwhich is the minimalsetofassumptionstoformulateageneralS-matrixtheoryinflatspace. Inparticular,theBCFW- constructionseemstosuggestthatsucha minimalsetcanbeformedbyPoincare´ invariance,analyticity, Existence of one-particlestates, Locality of the wholeS-matrix [5]. Thisfact, togetherwith its intrinsic generalityasamethod,suggeststheBCFW-constructionasagoodstartingproblemtoconcretelyapproach thisproblem. 2 BCFW-construction A way to understand the structure of scattering amplitudes is through the analysis of their singularities. Thiscanhoweverbeareallydifficultproblemtoface,giventhatthescatteringamplitudescanbeseenas analytic functionsof Lorentzinvariantsand the numberof Lorentzinvariantsincreaseswith the number of externalstates. A drastic simplification can be obtainedby introducinga 1-parameterdeformationof the complexified momentum space, such that the both the massless on-shell condition p2 = 0 and the momentumconservationarepreserved[4]. Adeformationwithsuchcharacteristicsisindeednotunique, andthesimplestoneisobtainedbydeformingthemomentaoftwoparticles(namelylabelledbyiandj), leavingtheonesoftheothersunchanged: p(i)(z) = p(j)−zq, p(j)(z) = p(j)+zq, p(k)(z) = p(k), ∀k 6= {i, j}, (1) withtheon-shellconditionfixingthemomentumqtosatisfythefollowingrelations: q2 = 0, p(i)·q = 0 = p(j)·q. (2) With such a deformation, the amplitudes are mapped into a 1-parameter family of amplitudes M → n M(i,j)(z). One can thereforeanalyse the singularitystructure of the amplitudesas a functionof z only. n Generallyspeaking,thescatteringamplitudesarecharacterisedbybothpolesandbranchpoints.Focusing onthepolestructureishoweverequivalenttofocusingonthetreelevelandthepolesareprovidedbythe z-dependentinternalpropagators,i.e.theyarepresentinthosechannelswheretheinternalmomentumcan bewrittenasasumcontainingeitherp(i) orp(j) 1 1 P2 = ⇒ z = Ik . (3) [P2 (z)]2 P2 −2z P ·q Ik P ·q Ik Ik Ik Ik Asthelocationofapoleisapproac(cid:0)hed,the(cid:1)internalpropagatorgoeson-shell,andtheamplitudefactorises, withtheresidueofthepolewhichisgivenintermsoftheproductoftwoon-shellsub-amplitudes M(i,j)(z) z→∼zk ML(i,j)(zIk)MR(i,j)(zIk). (4) n P2 (z) Ik Thissuggeststhepossibilitytoconnectthewholeamplitudetotheon-shelllower-pointamplitudes 1 dz M(i,j)(z )M(i,j)(z ) 0 = M(i,j)(z) = M(i,j)(0)− L k R k −C(i,j), (5) 2πi z n n P2 n IR k∈XP(i,j) k wheretheintegrationisperformedalongthewholeRiemannsphereR,M(i,j)(0)coincideswiththephys- n icalamplitudeandtheboundarytermC(i,j) istheresidueofthesingularityatinfinity,whichiszeroifthe n amplitudevanishesasz → ∞(constructibilitycondition). Insuchacase,(5)impliesthattheamplitude canbewrittenassumofproductsofon-shelllower-pointsamplitudes M(i,j)(ˆi,I ,−Pˆ )M(i,j)(Pˆ ,J ,ˆj) M = L k iIk R iIk k . (6) n P2 k∈XP(i,j) iIk ThisstructurehasbeenshowntoholdinYang-Millstheory[4], inGR[6], aswellasforN = 4 Super- symmetricYang-MillstheoryandN =8Supergravity[7]. Copyrightlinewillbeprovidedbythepublisher fdpheaderwillbeprovidedbythepublisher 3 3 BCFWconstruction: generalisedrecursive relations Therearehoweverseveraltheories(e.g.:Q.E.D.,Einstein-Maxwell)whichdonotsatisfytheconstructibil- ityconditionand,therefore,theboundarytermisnon-zero. Inthiscase,the1-parameterfamilyofampli- tudesM(i,j)(z)acquirestheform n M(i,j)(z )M(i,j)(z ) M(i,j)(z) = L k R k +C(i,j)(z). (7) n P2(z) n k∈XP(i,j) k Sincethefirsttermin(7)containsallthepolesatfinitelocation,thefunctionC(i,j)(z)isjustapolynomial n inzoforderν, ν C(i,j)(z) = C(i,j)+ a(i,j)zl, (8) n n l l=1 X whereν is aswelltheorderthe amplitudeM(i,j)(z)divergeswith, asz istakento infinity,andthe0-th n ordertermistheonlywhichsurvivesin(5)contributingtothephysicalamplitude. Thequestionwenow needtoanswerishowtoactuallycomputetheboundaryterm1. Theknowledgeofthepolesdoesnotseem to be enough to fully determine the amplitude when the constructibility condition is not satisfied. This means that we need to resort to some new quantity. Given that a tree-level amplitude is just a rational function,thenaturalquantitiestoconsidertogetherwithpolesarethezeroes[10]. Let{z(s)}besubsetof 0 zeroeswithmultiplicitym(s)andγ(s)beacontourincludingjustz(s)andnootherzeroorpoles. Fromthe 0 0 expressions(7)and(8),onegetsthefollowingsystemofequations Nfin 1 M(i,j)(z) P M(i,j)(z )M(i,j)(z ) 0 = dz n = (−1)r−1 L k R k +δ C(i,j)+ 2πiIγ0(s) z−z0(s) r Xk=1(−2Pk·q) z0(s)−zk r r,1 n (9) ν (cid:0) (cid:1) l! (cid:0) (cid:1) r = 1,...,m(s) + a(i,j)zl−r+1, with , (l−r+1)!(r−1)! l 0 s = 1,...,nz l=1 (cid:26) X whosesolutionrevealsaconnectionbetweenC(i,j)andasumofproductsofon-shellscatteringamplitudes n withfewerexternalstates. Theexplicitexpressionitself(see[10])isnotparticularlyilluminating. How- ever,onceitisreinsertedin(7),itallowstorewritethescatteringamplitudeinsuchawaythattheoverall structureoftheBCFWexpansionisstillpreserved[10] f(ν,n) M = M(i,j)(ˆi,I ,−Pˆ ) iIk M(i,j)(Pˆ ,J ,ˆj), (10) n L k iIk P2 R iIk k k∈XP(i,j) iIk withthe“weights”f(ν,n)being iIk 1, ν < 0, f(ν,n) =  (11) iIk  νl=+11 1− P2Pi2Izk(l) , ν ≥ 0, (cid:18) iIk(cid:16) 0 (cid:17)(cid:19) Therecursionrelation(Q10)allowstostatethattheBCFW-structureisgeneralisedtoanyconsistenttheory at tree level, meaning that, for any consistent theory, the amplitudes can be expressed in terms of sum of products of lower-point on-shell amplitudes and propagators, now with a simple weight (11) which dependson the locationofa subsetof zeroesof the amplitudes. Iteratingthe recursiverelation, onecan 1 Somestepsinthisdirectionhasbeendoneinspecificcasesin[8,9] Copyrightlinewillbeprovidedbythepublisher 4 P.Benincasa:ExplorationoftheTree-LevelS-MatrixofMasslessParticles expressann-pointamplitudesjustintermsofpropagatorsandthesmallestamplitudepresentinthetheory. For theories with 3-particle interactions, this is indeed the 3-particle amplitude, which is determinedby momentum conservation and Lorentz invariance [5]. In the case instead the smallest interaction is an higherpointone,generallyspeakingonecanalwaysintroduceanauxiliarymassiveparticlestodefine3- particleinteractionsandthanintegrateitout,asithasbeendoneinthecaseofλφ4 [5]. Evenifthismight not be computationallyconvenient,it pointsout that also these theoriescan be determinedby 3-particle amplitudes. 4 Zeroes and collinear/multiparticlelimits If on one side (10) is a valid mathematical expression which reveals a general structure for tree-level amplitudes,ontheothersideitseemstobenotreallypracticalgiventhatageneralwaytodeterminethe zeroesisnotknown.However,therecursionrelation(10)providesarepresentationfortheamplitudesand, therefore,mustfactoriseproperlywhencollinear/multiparticlelimitsaretaken.Suchlimitscanbegrouped infourclasses lim P2 M = M(i, I , −P )M(P ,J ,j), Pi2Ik→0 iIk n k iIk iIk k lim P2M = M (K, −P )M (P ,Q,i,j), K n s+1 K n−s+1 K PK2 →0 (12) lim P2 M = M (k , k , −P )M (P ,K,i,j), Pk21k2→0 k1k2 n 3 1 2 k1k2 n−1 k1k2 lim P2M = M (i, j, −P )M (P ,K), Pi2j→0 ij n 3 ij n−1 ij andtheiranalysisleadstothefollowingconditionsofthezeroes P2(z(l)) = hi,kiα(l)[i,j], P2 (z(l)) = hi,jiα(l)[j,k], ik 0 ik jk 0 jk lim f(ν,n) = f(ν,n−s+1), lim f(ν,n) = 1, PK2→0 iIk iIk Pi2Ik→0 iIk lim f(ν,n) = f(ν,n−1), lim f(ν,n) = f(ν,n−1), [k1,k2]→0 ik¯ i(k1k2) hk1,k2i→0 jk¯ j(k1k2) (13) hi,ki δ−1 [i,j] 2hi+δ−ν H(k) lim (−1)2(hi+hj+hk)+δ+ν+1 n−1 = 1, [i,j]→0 k "(cid:18)hi,ji(cid:19) (cid:18)[i,k](cid:19) νl=+11αi(lk)# X [j,k] δ−1 hi,ji δ−2hj−ν HQ˜(k) lim (−1)2(hi+hk)+δ+ν+1 n−1 = 1, hi,ji→0 k "(cid:18)[i,j](cid:19) (cid:18)hj,ki(cid:19) νl=+11αj(lk)# X wherethenotationhasbeendetailedin[10]. Here,itisimportanttoknowjQustthatHisadimensionless helicityfactor,δisthenumberofderivativesofthe3-particleinteractions,andthattheBCFW-deformation (1) has been implemented by considering the bispinorial representation of the momenta p = λ λ˜ aa˙ a a˙ and shifting the spinorsas λ˜(i)(z) = λ˜(i) −zλ˜(j), λ(j) = λ(j) +zλ(i). The relations(13) suggeststhe possibilitytoconnectthe“weights”ofthen-particleamplitudeswiththeonesofthelowerpointones. At present,suchageneralconnectionisstillmissing. However,theconditions(13)aresolvableforanumber ofcases2. 5 Softlimitsof3-particleamplitudes andcomplex-UV behaviour The analysis in the previous section points out that the collinear limit P2 → 0 appears in the BCFW- ij representationasasoftsingularity[12],anditcanbetakenaspˆ(i) → 0orpˆ(j) → 0. Furthermore,inthis 2 Afurtheranalysisofthezeroeswasrecentlydonein[11]. Copyrightlinewillbeprovidedbythepublisher fdpheaderwillbeprovidedbythepublisher 5 limittheonlyon-shelldiagramswhichcontributearetheonesshowingathree-particleamplitudewithone ofthedeformedmomenta,thatisthemomentumwhichbecomessoft. Ifthesofteningofthismomentum isabletoproducethecorrectpolethantheamplitudefactorisesproperlyinthischannelandthestandard BCFW-representationisvalid,otherwisearetheweightswhichhavetocontributetotheformationofthe rightsingularity,as implied bythe first line in (13). The softbehaviourof the 3-particleamplitudescan therefore be taken as a criterion for the validity of the standard BCFW-representation. The analysis of the collinear limit P2 → 0 on the generalised BCFW-representation (10) allows to prove that such a ij soft-behaviourcoincideswiththelarge-zbehaviourofthewholeamplitude[13]. Arigorousproofofthis equalityinthecaseofthestandardBCFW-representationisnotknown,butithasbeencheckedforallthe knowncases. Suchabehaviourcanbegenerallywrittenjustintermsofthenumberofthederivativesof the3-particleinteractionandthehelicityofthedeformedparticles ν = δ+2h and/or ν = δ−2h , (14) i j which are respectively valid if the collinear limit P2 → 0 translates to the soft limit pˆ(i) → 0 or to ij pˆ(j) → 0,whileinthecaseboththesesoftlimitscanebetaken,thetworelationsin(14)coincide. This strikinglyimpliesthatalso theinformationaboutthecomplex-UVbehaviourofthe n-particleamplitude ofagiventheoryisencodedintheirbuildingblocksanditisindependentonthenumberofexternalstates. 6 Explorationofthespace oftheories Ithasbeennoticedin[13]thattheconditions(13)drasticallysimplifiesinthecaseofthe4-particleampli- tudes Nfin P Pi2sr(z0(l)) = (−1)NPfin Pi2j NPfin, (15) r=1 Y (cid:0) (cid:1) whereNfinisthenumberofpolesatfinitelocation,whichcanbejustoneortwo.Suchaconditionallowsto P generalisethefour-particleconsistencytestproposedin[5].Theideaistocomputethe4-particleamplitude throughtwo differentBCFW-deformations. Imposing that the two results coincide bringson non-trivial constraintsontheS-matrix[5] M(i,j)(0) = M(i,k)(0). (16) 4 4 In[5]thistestallowedtorediscovertheJacobi-identityinYang-MillsandN = 1Supergravity,inwhich boththegaugesymmetryandsupersymmetryemergefromtheconsistencyofthetheory. Thegeneralised BCFW-representation, together with the condition on the zeroes (15), allows to rediscover the existent theories not satisfying the constructibility condition, which turn out to belong to the class of theories characterisedbythe3-particleamplitudeswith(∓s,∓s,±s)and(∓s′,±s′,∓s)(seetable1). Thetheoriescanbegenericallyclassifiedthroughthedimensionofthe3-particlecouplingconstant,or equivalentlythrough the numberof derivative of the 3-particle interaction, which implies that 3-particle amplitudesarecharacterisedbywell-definedhelicityconfigurations. Theconsistencytestseemstoreveal theappearanceofunexpectedinteractionsinwhichthespinoftheparticlesishigherthan2. Somecom- mentsarenowin order. The4-particleamplitudesinthese theoriesareallcharacterisedbythe presence of just one factorisation channel. This meansthat the representation(10) is still meaningfulif and only if the deformationchosenhassuch a channelas a BCFW-channel. Ifit wereotherwise, the 1-parameter familyofamplitudeswouldnothaveanypoleatfinitelocationandthewholeamplitudewouldbegiven bytheboundaryterm. Furthermore,intheformercase,theabsenceofasecondfactorisationchanneldoes not allow us to performthe analysis which broughtto the relation (15) which fixes the conditionon the zeroes. If one thinks aboutthe limits in which the amplitudesbecome trivial as a generic property,it is reasonabletoassumethatthecondition(15)canstillhold.Thisisindeedastrongassumptionwhichneeds tobechecked. Copyrightlinewillbeprovidedbythepublisher 6 P.Benincasa:ExplorationoftheTree-LevelS-MatrixofMasslessParticles s Conditions Interactions s=0 s′ = 1,κ=κ′ Yukawa 2 s′ =0,κ=0 scalarQEDandYM+scalars s=1 s′ = 1,κ=0 QEDandYM+fermions 2 s′ =1,κ=κ′ YM s′ =0,κ=κ′ scalarGR s=2 s′ = 1,κ=κ′ FermionGravity 2 s′ =1,κ=κ′ Einstein-Maxwell s′ = 3,κ=κ′ N =1supergravity 2 s′ =2,κ=κ′ GR Table1 Summaryofthetheoriescharacterisedbycouplingswiths-derivativeinteractions. Another characteristic of these theories is that the boundaryterm turns out to be a polynomialin the Lorentz invariants. A simple dimensionalanalysis revealsthat it has a structure of a contact interaction withL = (δ−2)n−2(δ−3)derivativeswhichincreaseasnincreases. Therefore,thesetheoriesseem n tobeendowedwithhigher-derivativeinteractiontermswiththeincreaseofthenumberofexternalstates. Thiscanbeinterpretedasasignatureofnon-localityforthesetheories. Furthermore,theconsistencyofthe4-particleamplitudesforthesetheoriesindeeddoesnotimplythe consistencyneitherofthewholetheoriesnoroftheirtree-level.Pathologiescan,forexample,alreadyarise at5-particlelevel: thefactthattheconsistencytesthasbeenpassedat4-particleleveldoesnotimplythat ithastobepassedgenerically.Furthermore,ghostsmightappearatloops. Finally,asageneralcomment,itisfairtopointoutthatouranalysisconcernsjustthosetheorieswhose propagatorsaregivenby1/P2. Acknowledgements IwouldliketothanktheorganisersforthestimulatingenvironmentcreatedattheXVIIth Eu- ropeanWorkshoponStringTheory. ItisalsoapleasuretothankEduardoCondewhocollaboratedwithmeonthe workswhichthistalkisbasedon.MyworkisfundedinpartbyMICINNundergrantFPA2008-01838,bytheSpanish Consolider-Ingenio2010ProgrammeCPAN(CSD2007-00042)andbyXuntadeGalicia(Conseller´ıadeEducac´ıon, grant INCITE09206 121 PR and grant PGIDIT10PXIB206075PR) and by FEDER.I am supported as well by the MInisteriodeCienciaeINNovacio´nthroughtheJuandelaCiervaprogram. References [1] S.J.ParkeandT.R.Taylor,Phys.Rev.Lett.56,2459(1986). [2] F.Cachazo,P.Svrcek,andE.Witten,JHEP09,006(2004). [3] R.Britto,F.Cachazo,andB.Feng,Nucl.Phys.B715,499(2005). [4] R.Britto,F.Cachazo,B.Feng,andE.Witten,Phys.Rev.Lett.94(2005). [5] P.BenincasaandF.Cachazo(2007). [6] P.Benincasa,C.Boucher-Veronneau,andF.Cachazo,JHEP11,057(2007). [7] N.Arkani-Hamed,F.Cachazo,andJ.Kaplan,JHEP1009,016(2010). [8] B.Feng,J.Wang,Y.Wang,andZ.Zhang,JHEP01,019(2010). [9] B.FengandC.Y.Liu,JHEP07,093(2010). [10] P.BenincasaandE.Conde,JHEP1111,074(2011). [11] B.Feng,Y.Jia,H.Luo,andM.Luo(2011). [12] P.C.SchusterandN.Toro,JHEP0906,079(2009). [13] P.BenincasaandE.Conde(2011). Copyrightlinewillbeprovidedbythepublisher

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.