ebook img

Exploration and Visualization in the Web of Big Linked Data: A Survey of the State of the Art PDF

0.16 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Exploration and Visualization in the Web of Big Linked Data: A Survey of the State of the Art

Exploration and Visualization in the Web of Big Linked Data: A Survey of the State of the Art ∗ Nikos Bikakis Timos Sellis NTUAthens& SwinburneUniv. ATHENAR.C. ofTechnology Greece Australia 6 1 ABSTRACT [35]. However,mostoftheseapproachesfailtotakeintoaccount 0 issuesrelatedtoperformanceandscalability. 2 Dataexplorationandvisualizationsystemsareofgreatimportance Inthiswork,wedescribethemajorrequirementandchallenges intheBigDataera. Exploringandvisualizingverylargedatasets n thatshouldbeaddressedbythemodernexplorationandvisualiza- has become a major research challenge, of which scalability is a a tionsystems. Additionally,werefertostate-of-the-artapproaches vitalrequirement. Inthissurvey, wedescribethemajorprerequi- J fromtheDatabaseandInformationVisualizationcommunities,which sites and challenges that should be addressed by the modern ex- 9 attempttohandlesomeofthesechallenges. Further, wedescribe plorationandvisualizationsystems. Consideringthesechallenges, 2 thesystemsthathavebeendevelopedinthecontextofWoD,and wepresenthowstate-of-the-artapproachesfromtheDatabaseand discusstowhichextenttheysatisfythecontemporaryrequirements. InformationVisualizationcommunitiesattempttohandlethem.Fi- ] C nally,wesurveythesystemsdevelopedbySemanticWebcommu- 2. CHALLENGES nityinthecontextoftheWebofLinkedData,anddiscusstowhich H extentthesesatisfythecontemporaryrequirements. Mosttraditionalexplorationandvisualizationsystemsoperatein s. anofflineway,limitedtoaccessingstaticsetsofpreprocesseddata. c Keywords Additionally,theyrestrictthemselvestodealingwithsmalldataset [ sizes,whichcanbeeasilyhandledandexploredwithconventional Visualanalytics,bigdatachallenges,dataexploration,largedatabases, datamanagementand(visual)explorationstechniques. 1 visualexploration,semanticweb,visualizationtools,scalability Ontheotherhand,nowadays, theBigDataerahasrealizedthe v availabilityofthegreatnumber andvarietyofverylargedatasets 9 1. INTRODUCTION 5 that aredynamic innature. Forexample, most datasourcesoffer 0 The purpose of data exploration and visualization is to offer queryorAPIendpointsforonlineaccessandupdates;inothercases 8 waysforinformationperceptionandmanipulation,aswellasknowl- (e.g.,scientificdatabases),newdataisconstantlyarrived(e.g.,on 0 edgeextractionandinference[68,56].Datavisualization1provides a daily/hour basis). Beyond these, modern systems should oper- . users with an intuitive means to explore the content of the data, ateonexploratorycontext. Inanexplorationscenario,itcommon 1 identifyinterestingpatterns,infercorrelationsandcausalities,and thatusersareinterestinginfindingsomethinginterestinganduse- 0 supports sense-making activities. Dataexploration andvisualiza- ful without previously know what exactly aresearching for, until 6 tionsystemsareofgreatimportanceintheBigDataera,inwhich the time they identify it. In this case, users perform a sequence 1 thevolumeandheterogeneityofavailableinformationmakeitdif- ofoperations(e.g.,queries),inwhichtheresultofeachoperation : v ficultforhumanstomanuallyexploreandanalysedata. determine the formulation of the next operation. Finally, an in- i Most traditional systems cannot handle the large size of many creasinglylargenumberofdiverseusers(i.e.,differentpreferences, X contemporary datasets. Exploring and visualizing large datasets skills,etc.) exploreandanalysedatainaplethoraofdifferentsce- r hasbecomeamajorresearchchallenge[24,119,55,103,140,49]. narios. a Therefore, modern systems have to take into account scalability, Therefore, some of the major challenges that should be dealt as a vital requirement. Dealing with scalability, modern systems withbymodernsystems,areposedbythe: (1)Largesizeandthe havetoaddressnumerousissuesrelatedtostorage,access,render- dynamicnatureofdatainconjunctionwiththeexploration-driven ing/presentation,interaction,etc. setting;and(2)Varietyoftasksandusers. IntheWebofData(WoD)context,followingtheabundanceof Linked Data, several recent efforts have offered tools and tech- Large&DynamicDatainExploration-drivenSetting. Oneof niquesforexplorationandvisualizationinmanydifferentdomains themajorchallengesinexplorationandvisualizationisrelatedto thesizethatcharacterizes mostcontemporary datasets. Asecond ∗ Thispaperappearsin6thInternationalWorkshoponLinkedWeb challengeisrelatedtotheavailabilityofqueryandAPIendpoints DataManagement(LWDM2016). foronlinedataaccessandretrieval,aswellasthecaseswherethat 1Throughoutthispaperweusetheterm"visualization"referringto dataisreceivedinastreamfashion.Thelaterposethechallengeof visualdataexploration. handlinglargesetsofdatainadynamicsetting,andasaresult,a preprocessingphase(e.g.,traditionalindexing)isprevented. (cid:13)c2016, Copyright is withtheauthors. Published intheWorkshopPro- In this respect, modern visualization and exploration systems ceedingsoftheEDBT/ICDT2016JointConference(March15,2016,Bor- must be able to efficiently and effectively handle billion objects deaux,France)onCEUR-WS.org(ISSN1613-0073). Distributionofthis dynamicdatasets throughout anexploratory scenario. Therefore, paperispermittedunderthetermsoftheCreativeCommonslicenseCC- scalableandefficientdatastructuresandalgorithmshavetobede- by-nc-nd4.0 LWDM‘16March15,2016,Bordeaux,France veloped. Crucial issues related to storage, access, management, presentation,interaction(e.g.,pan,zoom,search,drill-down),etc. flyexplorationandanalysismustbecoupledwiththediversityof over large dynamic datasets have to be handled. Scalability has preferencesandrequirementsposedbydifferentusersandtasks. becomeamajorchallengeforthemodernsystems. Beyondthese, Therefore,themodernsystemsshouldprovidetheuserwiththe systemshavetoefficientlyoperateonmachineswithlimitedcom- abilitytocustomizetheexplorationexperiencebasedonherprefer- putationalandmemoryresources(e.g.,laptops). encesandtherequirementsposedbytheexaminedtask.Forexam- Ina"conventional" setting(e.g., exploreasmallfragment of a ple,systemsshouldallowtheuserto:(1)organizedataintodiffer- preprocessed dataset), most of the aforementioned issues can be entways,accordingtothetypeofinformationorthelevelofdetail handled by the traditional systems that provide database explo- shewishestoexplore(e.g.,[25]);(2)modifyapproximationcrite- rationandanalysis, suchasTableau2 (previouslyknow asPolaris ria,thresholds,samplingrates,etc. (e.g.,[78]);(3)defineherown [124]),DEVise[98],Spotfire [3],VisDB[81],Lumira3,QlikView4, operations for data manipulation and analysis (e.g., aggregation, Datawatch5,etc.However,ina"modern"setting,whenalargepart statistical, filtering functions), etc. Furthermore, systems should (or the whole) of a billion objects dynamic dataset has to be ex- automatically adjust their parameters, by taking into account the plored, the aforementioned traditional database-oriented systems environmentsetting(e.g.,screenresolution,memorysize)[74,25, cannotbeadopted. 73]. In conjunction with performance issues, modern systems have Beyondthepersonalization,modernsystemsshouldprovidemech- to address challenges related to visual presentation and interac- anismsthatassisttheuserandreducetheeffortneededontheirpart. tion issues. Particularly, systems should be able to present, as Inthisdirection,severalapproacheshavebeenrecentlydeveloped. well as, offer ways to "easily" explore large datasets. Handling Inwhatfollows,wementionsomeofthemostcommonones.Sev- alargenumber ofdataobjectsisachallengingtask; modernsys- eralsystemsassistusersbyrecommendingvisualizationthatseems temshaveto"squeezeabillionrecordsintoamillionpixels"[119]. tobemoreusefulorcapturesurprisingand/orinterestingdata;e.g., Even,inmuchsmallerdatasets,offeringadatasetoverviewisex- [139, 134, 82]. Other approaches help users to discover interest tremelydifficult; inbothcasesinformationoverloadingisacom- areasinthedataset; bycapturinguser interests,theyguideherto monissue.Asaslostatedinthevisualinformationseekingmantra: interestingdataparts;e.g.,[37].Finally,inothercasessystemspro- "overview first, zoom and filter, then details on demand" [118], videexplanationsregardingdatatrendsandanomalies;e.g.,[141]. gainingoverviewiscrucialinthevisualexplorationscenario.Based on the aforementioned, it follows that a basic requirement of the 3. EXPLORATION &VISUALIZATION modernsystemsistodevelopmethodsthatprovidesummariesand abstractionsovertheenormousnumberofdataobjects. SYSTEMS Inorder totacklebothperformance andpresentationsissues, a Thissectionreviewsworksrelatedtoexplorationandvisualiza- large number of systems adopt approximation techniques (a.k.a. tionintheWoD.Alargenumberofworksstudyingissuesrelated data reduction techniques) in whichpartial resultsarecomputed. toWoDvisualexplorationandanalysishavebeenproposedinthe Considering the existing approaches, most of them are based on: literature[35,101,4].Inwhatfollows,weclassifytheseworksinto (1)samplingandfiltering[46,105,2,69,17];or/and(2)aggrega- the following categories: (1) Browsers and exploratory systems tion(e.g.,binning, clustering)[42, 25,74,73,97,138,96,1,15, (Section3.1), (2)Genericvisualizationsystems(Section3.2), (3) 71].Inthisrespect,somemoderndatabase-orientedsystemsadopt Domain,vocabulary&device-specificvisualizationsystems(Sec- approximationtechniquesusingquery-basedapproaches(e.g.,query tion3.3),(4)Graph-basedvisualizationsystems(Section3.4),(5) translation,queryrewriting)[17,74,73]. Ontologyvisualizationsystems(Section3.5),and(6)Visualization Inordertoimproveefficiencyseveralsystemsadoptincremental libraries(Section3.6). (a.k.a.progressive)techniques.Inthesetechniquestheresults/visual elementsarecomputed/constructedincrementallybasedonuserin- 3.1 Browsers & Exploratory Systems teractionorastimeprogresses(e.g.,[123,25]). Numerousrecent WoD browsers have been the first systems developed for WoD systemsintegrateincrementalandapproximatetechniques,inthese utilization and analysis [35, 4]. Similarlyto the traditional ones, approaches,approximateanswersarecomputedincrementallyover WoD browsers provide the functionality for link navigation and progressivelylargersamplesofthedata[46,2,69]. representationofWoDresourcesandtheirproperties;thusenabling Thedynamicsettingpreventsmodernsystemsfrompreprocessed browsing and exploration of WoD in amost intuitive way. WoD thedata.Additionally,itiscommoninexplorationscenariosonlya browsersmainlyusetabularviewsandlinkstoprovidenavigation smallfragmentofdatatobeaccessedbytheuser.Inthiscontext,an overtheWoDresources. adaptiveindexingapproach[67]isusedin[144],wheretheindexes Haystack [111] is one of the first WoD browsers, it exploits are created incrementally and adaptively throughout exploration. stylesheetsinordertocustomizethedatapresentation. Similarly, Similarly, in [25] the hierarchy tree is incrementally constructed Disco6rendersallinformationrelatedtoaparticularRDFresource based onuser’sinteraction. Finally, insomeapproaches, parallel as HTML table with property-value pairs. Noadster [113] per- architecturesareadopted;e.g.,[41,78,77,69]. forms property-based data clustering in order to structure the re- Tosumup,modernsystemsshouldprovidescalabletechniques sults. PiggyBank[66]isaWebbrowserplug-in,thatallowsusers thaton-the-flyeffectively(i.e.,inawaythatcanbeeasilyexplored) toconvertHTMLcontentintoRDF.LESS[13]allowsuserstocre- handlealargenumberofdataobjectsoveranexplorationscenario, atetheir ownWeb-basedtemplatesinorder toaggregateand dis- usingalimitednumberofresources playWoD.Tabulator[21]anotherWoDbrowser,additionallypro- vides maps and timeline visualizations. LENA[87] provides dif- Variety of Tasks&Users. Therequirement of scalable, on-the- ferent views of data, following user’s criteria that are expressed asSPARQLqueries. Visor[110]providesamulti-pivotapproach 2tableau.com forexploringgraphs,allowinguserstoexploremultiplenodesata 3sap-lumira.com time,aswellastoconnectpointsofinterest.Finally,inthecontext 4clickview.com 5datawatch.com 6www4.wiwiss.fu-berlin.de/bizer/ng4j/disco Table1:GenericVisualizationSystems System Year DataTypes⋆ Vis.Types⋆⋆ Recomm. Preferences Statistics Sampling Aggregation Incr. Disk Domain App.Type Rhizomer[30] 2006 N,T,S,H,G C,M,T,TL ✓ generic Web VizBoard[135,136,109] 2009 N,H C,S,T ✓ ✓ ✓ generic Web LODWheel[126] 2011 N,S,G C,G,M,P generic Web SemLens[59] 2011 N S ✓ generic Web LDVM[29] 2013 S,H,G B,M,T,TR ✓ generic Web Payola[84] 2013 N,T,S,H,G C,CI,G,M,T,TL,TR generic Web LDVizWiz[11] 2014 S,H,G M,P,TR ✓ generic Web SynopsViz[26,25] 2014 N,T,H C,P,T,TL ✓ ✓ ✓ ✓ ✓ ✓ generic Web VisWizard[131] 2014 N,T,S B,C,M,P,PC,SG ✓ ✓ generic Web LinkDaViz[129] 2015 N,T,S B,C,S,M,P ✓ ✓ generic Web ViCoMap[112] 2015 N,T,S M ✓ generic Web ⋆N:Numeric,T:Temporal,S:Spatial,H:Hierarchical(tree),G:Graph(network) ⋆⋆B:bubblechart,C:chart,CI:circles,G:graph,M:map,P:pie,PC:parallelcoordinates,S:scatter,SG:streamgraph,T:treemap,TL:timeline,TR:tree of faceted browsing, /facet [62], Humboldt [86] and gFacet [57] Rhizomer[30]providesWoDexplorationbasedonaoverview, providefacetednavigationoverWoDresources. zoomandfilterworkflow. Rhizomeroffersvarioustypesofvisu- Explorator [7] is a WoD exploratory tool that allows users to alizationssuchasmaps,timelines,treemapsandcharts. VizBoard browse a dataset by combining search and facets. VisiNav [53] [135,136,109]isaninformationvisualizationworkbenchforWoD isasystemthatallowsuserstoposeexpressiveexploratory-based buildontopofamashupplatform. VizBoardpresentsdatasetsin queries. The system is built on top of following concepts: key- a dashboard-like, composite, and interactive visualization. Addi- wordsearch,objectfocus,pathtraversal,andfacetselection.Infor- tionally,thesystemprovidesvisualizationrecommendations. Pay- mationWorkbench (IWB)[52] isageneric platformforsemantic ola[84]isagenericframeworkforWoDvisualizationandanaly- datamanagementofferingseveralback-end(e.g.,triplestore)and sis.Theframeworkoffersavarietyofdomain-specific(e.g.,public front-endtools.Regardingthefront-end,IWBoffersaflexibleuser procurement) analysis plugins (i.e., analyzers), aswell as several interfacefordataexplorationandvisualization. Marbles7 formats visualizationtechniques(e.g.,graphs,tables). Inaddition,Payola RDFtriplesusingtheFresnelvocabulary(avocabularyforrender- offers collaborative features for users to create and share analyz- ingRDFresourcesasHTML).Also,itretrievesinformationabout ers. In Payola the visualizations can be customized according to aresourcebyaccessingSemanticWebindexesandsearchengines. ontologiesusedintheresultingdata. Finally, URI Burner8 is a service which retrieves data about re- TheLinkedDataVisualizationModel(LDVM)[29]providesan sources.Fortherequestedresources,itgeneratesanRDFgraphby abstract visualization process for WoD datasets. LDVM enables exploitingexistingontologiesandotherknowledgefromtheWeb. theconnectionofdifferentdatasetswithvariouskindsofvisualiza- tionsinadynamicway. Thevisualization processfollowsafour 3.2 Generic VisualizationSystems stageworkflow: Sourcedata,Analyticalabstraction,Visualization InthecontextofWoDvisualexploration,thereisalargenumber abstraction,andView.LDVMconsidersseveralvisualizationtech- ofgenericvisualizationframeworks,thatofferawiderangeofvi- niques,e.g.,circle,sunburst,treemap,etc. Finally,theLDVMhas sualizationtypesandoperations. Next,weoutlinethebestknown beenadoptedinseveralusecases[85]. VisWizard[131]isaWeb- systemsinthiscategory. basedvisualizationsystem, whichexploitsdatasemanticstosim- InTable1weprovideanoverviewandcompareseveralgeneric plifytheprocessofsettingupvisualizations. VisWizardisableto visualizationsystems.TheYearcolumnpresentsthereleaseddate. analysemultipledatasetsusingbrushingandlinkingmethods.Sim- The Data Types column specifies the supported data types. The ilarly,LinkedDataVisualizationWizard(LDVizWiz)[11]provides Vis.Typescolumnpresentsthetypesofvisualizationsthatarepro- asemi-automaticwayfortheproductionofpossiblevisualization vided. TheRecomm. column indicates systems that offer recom- for WoD datasets. In a same context, LinkDaViz [129] finds the mendation mechanisms for visualization settings (e.g., appropri- suitablevisualizationsforagivepartofadataset. Theframework atevisualizationtype, visualizationparameters). ThePreferences usesheuristicdataanalysisandavisualizationmodelinordertofa- column captures theabilityof theusers toapply data(e.g., filter, cilitateautomaticbindingbetweendataandvisualizationoptions. aggregate) or visual (e.g., increase abstraction) operations. The BalloonSynopsis[117]providesaWoDvisualizerbasedonHTML Statisticscolumn capturestheprovisionof statisticsabout thevi- and JavaScript. It adopts a node-centric visualization approach sualizeddata. TheSamplingcolumnindicatessystemsthatexploit in a tile design. Additionally, it supports automatic information techniques based on sampling and/or filtering. The Aggregation enhancement of the local RDF data by accessing either remote columnindicatessystemsthatexploittechniquesbasedonaggrega- SPARQLendpointsorperformingfederatedqueriesoverendpoints tion(e.g.,binning,clustering).TheIncr.columnindicatessystems using the Balloon Fusion service [116]. Balloon Synopsis offers thatadoptincrementaltechniques;i.e.,theresults/visualizationare customizable filters, namely ontology templates, for the users to computed/generatedbasedonuserinteractionorastimeprogresses. handle and transform (e.g., filter, merge) input data. LODWheel Finally,theDiskcolumnindicatessystemsthatuseexternalmem- [126]isaWeb-basedvisualizing tool whichcombines JavaScript ory(e.g.,file,database)toperformoperationsduringruntime(i.e., libraries(e.g.,MooWheel,JQPlot)inordertovisualizeRDFdata notjustinitiallyloaddatafromdisk). inchartsandgraphs. SemLens[59]isavisualtoolthatcombines scatterplotsandsemanticlenses,offeringvisualdiscoveryofcor- 7mes.github.io/marbles relations and patterns in data. Objects are arranged in a scatter 8linkeddata.uriburner.com plotandareanalysedusinguser-definedsemanticlenses.ViCoMap [112] combines WoD statistical analysis and visualization, in a providekeywordsearchfunctionality. TheFiltercolumnindicates Web-based tool, which offers correlation analysis and data visu- systemsthatprovidemechanismsfordatafiltering. Notethat,Ta- alizationonmaps. ble2alsoincludestheontologyvisualizationsystems(Section3.5) Finally, SynopsViz [26, 25] is a Web-based visualization tool thatfollowanode-linkapproach(indicatedbyusingtheterm"on- built on top of a generic tree-based model. The adopted model tology"intheDomaincolumn). performs a hierarchical aggregation, allowing efficient personal- RelFinder[58]isaWeb-basedtoolthatoffersinteractivediscov- izedmultilevelexplorationoverlargedatasets. Inordertoprovide ery and visualization of relationships (i.e., connections) between scalabilityunderdifferentexplorationscenarios,themodeloffersa selected WoD resources. Fenfire [54] and Lodlive [31] are ex- methodthatincrementallyconstructsthehierarchybasedonuser’s ploratory tools that allow users to browse WoD using interactive interaction,aswellasamethodthatenablesdynamicandefficient graphs. StartingfromagivenURI,theusercanexploreWoDby adaptationofthehierarchytotheuser’spreferences. following the links. LODeX [19] is a tool that generates a rep- resentative summary of aWoD source. The tool takes as input a 3.3 Domain, Vocabulary & Device-specific SPARQLendpointandgeneratesavisual(graph-based) summary VisualizationSystems of the WoD source, accompanied by statistical and structural in- formation of the source. IsaViz [108] allows users to zoom and Inthissection,wepresentsystemsthattargetvisualizationneeds navigateovertheRDFgraph, andalsoitoffersseveral"edit"op- for specific types of data and domains, RDF vocabularies or de- erations (e.g., delete/add/rename nodes and edges). In the same vices. context,graphVizdb[23,22]isbuiltontopofspatialanddatabase Several systems focuson visualizing and exploring geo-spatial techniquesofferinginteractivevisualizationoververylarge(RDF) data. Map4rdf [92] is a faceted browsing tool that enables RDF graphs. ZoomRDF [142] employs a space-optimized visualiza- datasetstobevisualizedonanOSMorGoogleMap. Facete[122] tionalgorithminordertoincreasethenumberofresourceswhich is an exploration and visualization tool for SPARQL accessible are displayed. Trisolda [38] proposes a hierarchical RDF graph data, offering faceted filtering functionalities. SexTant [20] and visualization. It adopts clustering techniques in order to merge Spacetime[133]focusonvisualizingandexploringtime-evolving graph nodes. Paged Graph Visualization (PGV) [36] utilizes a geo-spatial data. TheLinkedGeoData Browser [121] isafaceted Ferris-Wheel approach to display nodes with high degree. RDF browserandeditorwhichisdevelopedinthecontextofLinkedGeo- graph visualizer [115] adopts a node-centric approach to visual- Dataproject. Finally,inthesamecontextDBpediaAtlas[132]of- izeRDFgraphs. Ratherthantryingtovisualizethewholegraph, fersexplorationovertheDBpediadatasetbyexploitingthedataset’s nodes of interest (i.e., staringnodes) are discovered bysearching spatialdata. Furthermore,inthecontextoflinkeduniversitydata, overnodeslabels;thentheusercaninteractivelynavigateoverthe VISUalizationPlayground(VISU)[6]isaninteractivetoolforspec- graph. RDF-Gravity9 visualizes RDF and OWL data. It offers ifyingandcreatingvisualizationsusingthecontentsoflinkeduni- filtering, keyword search and editing the graph layout. Also, the versitydatacloud. Particularly,VISUoffersanovelSPARQLin- nodescanbedisplayedindifferentcolorsandshapesbasedontheir terfaceforcreatingdatavisualizations.Queryresultsfromselected RDFtypes.Adifferentapproachhasbeenadoptedin[127],where SPARQLendpointsarevisualizedwithGoogleCharts. samplingtechniqueshavebeenexploited. Finally,Gephi[15]isa AvarietyofsystemstargetmultidimensionalWoDmodelledwith generic toolthat offersseveral visualizationand analysisfeatures theDataCubevocabulary. CubeViz[43,114]isafacetedbrowser overgraphdata. forexploringstatisticaldata. Thetoolprovidesdatavisualizations usingdifferenttypesofcharts(i.e.,line,bar,column,areaandpie). 3.5 OntologyVisualizationSystems ThePayolaDataCubeVocabulary[60]adoptstheLDVMstages The problems of ontology visualization and exploration have [29] in order to visualize RDF data described by the Data Cube been extensively studied in several research areas (e.g., biology, vocabulary. ThesametypesofchartsasinCubeVizareprovided chemistry). Inwhatfollowswefocusongraph-basedontologyvi- in this tool. The OpenCube Toolkit [75] offers several tools re- sualizationsystemsthathavebeendeveloped intheWoDcontext latedtostatisticalWoD.Forexample,OpenCubeBrowserexplores [47, 40, 51, 91, 80]. In most systems, ontologies are visualized RDFdatacubesbypresentingatwo-dimensionaltable. Addition- following the node-link paradigm [100, 99, 64, 104, 27, 45, 65, ally,theOpenCubeMapViewoffersinteractivemap-basedvisual- 94,5,89,125]10,11. Ontheotherhand,CropCircles[137]usesa izationsofRDFdatacubesbased ontheirgeo-spatial dimension. geometriccontainment approach, representingtheclasshierarchy TheLinkedDataCubesExplorer(LDCE)[79]allowsuserstoex- asasetofconcentriccircles. Furthermore,hybridsapproachesare ploreandanalysestatisticaldatasets. Finally,[106]offersseveral adoptedinotherworks.Knoocks[88]combinescontainment-based mapandchartvisualizationsofdemographic,socialandstatistical andnode-linkapproaches. Inthiswork,ontologiesarevisualized linkedcubedata. asnestedblockswhereeachblockisdepictedasarectanglecon- Regarding device-specific systems, DBpedia Mobile [18] is a tainingasub-branchshownastreemap.Finally,OntoTrix[14]and location-awaremobileapplicationforexploringandvisualizingDB- NodeTrix[61]usenode-linkandadjacencymatrixrepresentations. pedia resources. Who’s Who [32] is an application for exploring andvisualizinginformationfocusingonseveralissuesthatappear 3.6 VisualizationLibraries in the mobile environment. For example, the application consid- Finally,thereisavarietyofJavascriptlibrarieswhichallowWoD erstheusabilityanddataprocessingchallengesrelatedtothesmall visualizations to be embedded in Web pages. Sgvizler [120] isa displaysizeandlimitedresourcesofthemobiledevices. JavaScript wrapper for visualizing SPARQL results. Sgvizler al- 3.4 Graph-based VisualizationSystems lowsuserstospecifySPARQLSelectqueriesdirectlyintoHTML elements.SgvizlerusesGoogleChartstogeneratetheoutput,offer- A large number of systems visualize WoD datasets adopting a ingnumerousvisualizationstypessuchascharts,treemaps,graphs, graph-based(a.k.a.,node-link)approach[102].InTable2wepro- vide an overview and compare several graph-based visualization 9semweb.salzburgresearch.at/apps/rdf-gravity systems. Table2isstructuredinasimilarwaytoTable1. Addi- 10protegewiki.stanford.edu/wiki/OntoGraf tionally, in this table the Keyword column indicates systems that 11protegewiki.stanford.edu/wiki/OWLViz Table2:Graph-basedVisualizationSystems System Year Keyword Filter Sampling Aggregation Incr. Disk Domain App.Type RDF-Gravity9 2003 ✓ ✓ generic Desktop IsaViz[108] 2003 ✓ ✓ generic Desktop RDFgraphvisualizer[115] 2004 ✓ generic Desktop GrOWL[89] 2007 ✓ ✓ ✓ ontology Desktop NodeTrix[61] 2007 ✓ ontology Desktop PGV[36] 2007 ✓ ✓ generic Desktop Fenfire[54] 2008 generic Desktop Gephi[15] 2009 ✓ ✓ ✓ generic Desktop Trisolda[38] 2010 ✓ ✓ ✓ generic Desktop Cytospace[127] 2010 ✓ ✓ ✓ ✓ ✓ generic Desktop FlexViz[45] 2010 ✓ ✓ ontology Web RelFinder[58] 2010 generic Web ZoomRDF[142] 2010 ✓ ✓ ✓ generic Desktop KC-Viz[104] 2011 ✓ ontology Desktop LODWheel[126] 2011 ✓ ✓ generic Web GLOW[64] 2012 ✓ ✓ ontology Desktop Lodlive[31] 2012 ✓ generic Web OntoTrix[14] 2013 ✓ ✓ ontology Desktop LODeX[19] 2014 ✓ ✓ generic Web VOWL2[100,99] 2014 ontology Web graphVizdb[23,22] 2015 ✓ ✓ ✓ ✓ generic Web timelines,etc.Visualbox[50]providesanenvironmentwhereusers tionsbasedonuserinteraction. Asaresult,eachtime,onlyapart can build and debug SPARQL queries in order to retrieve WoD; oftheexamineddatasetneedstobeloadedinmainmemory. then, a set of visualization templates is provided to visualize re- Thegraph-basedexplorationandvisualizationsystemsarepre- sults. Visualbox uses several visualization libraries like Google sentedinTable2. ThesesystemsareofgreatimportanceinWoD, ChartsandD3[28],offering14visualizationtypes. duetothegraphstructureoftheRDFdatamodel.Althoughseveral systemsoffersamplingoraggregationmechanisms,mostofthese systems load the whole graph in main memory. Given the large 4. DISCUSSION memoryrequirementsofgraphlayoutalgorithmsinordertodrawa Inthissectionwediscusstowhichextentthesystemsdeveloped largegraph,thecurrentWoDsystemsarerestrictedtohandlesmall intheWoDcontextfulfilledthenowadaysrequirements,focussing sizedgraphs. onperformanceandscalabilityissues,availabilityofpersonalized Inordertobeabletohandlelargegraphs,modernWoDsystems servicesfacilitiesforassistingusersthroughexploration. should adopt more sophisticated techniques similar to those pro- As previously mentioned, most of WoD exploration and visu- posed by the information visualization community. Particularly, alizationsystemsdonothandleissuesrelatedtoperformanceand state-of-the-art systems for exploring large graphs utilize hierar- scalability. Theybasicallyadopttraditionaltechniquesinorderto chical aggregation approaches where the graph is recursively de- handlesmallsetsofdata. composedintosmallersub-graphs(inmostcasesusingclustering AswecanobservefromTable1,genericsystemssupportseveral and partitioning) that form a hierarchy of abstraction layers [93, typesofdata(e.g.,numeric,temporal,graph,spatial)andprovide 10, 95, 9, 8, 1, 143, 12, 15, 71, 130]. Other approaches adopt aplethoraofvisualizationtypes. Additionally,anincreasingnum- edgebundlingtechniqueswhichaggregategraphedgestobundles ber of recent systems (e.g., LinkDaViz, Vis Wizard, LDVizWiz, [48, 44, 107, 90, 34, 63]. Beyond hierarchical approaches, WoD LDVM)focusonprovidingrecommendationmechanisms. Partic- systemsshouldalsoconsiderdisk-basedimplementations,suchas ularity,thesesystemsmainlyrecommendthemostsuitablevisual- [22,1,72,127,130]. izationtechniquebyconsideringthetypeofinputdata. Tosumup,WoDcommunityshouldconsiderscalabilityandper- Regardingvisual scalability, aswecan seeinTable1, none of formance as vital requirements for the development of the future thesystems,withtheexceptionsofSynopsVizandVizBoardcases, exploration and visualization systems. Handing large datasets is adopt approximation techniques (i.e., sampling/filtering, aggrega- crucial in the Big Data era. Therefore, in what follows we sum- tion).Hence,theexistingapproachesassumethatalltheexamined marize some possible directions for the future WoD exploration dataobjectscanbepresentedonthescreenandhandledbytradi- andvisualizationsystems.Approximationtechniquessuchassam- tionalvisualizationtechniques.Duetothisassumption,thecurrent plingandaggregationthathavebeenwidelyusedinsystemsfrom systemsrestricttheirapplicabilitytosmallsetsofdata. database and information visualization communities, have to be Inconjunctionwiththelimitedvisualscalability,mostoftheex- adopted and adjusted to WoD data and requirements. Systems istingsystems(exceptforSynopsViz)donotexploitexternalmem- should be integrated with disk structures, retrieving data dynam- oryduringruntime.Particularly,theyinitiallyloadalltheexamined ically during runtime. Also caching and prefetching techniques objectsinmainmemory,assumingthatthemainmemoryislarge maybeexploited; e.g., [128, 76, 70, 16, 33, 83, 39]. Datastruc- enough. AnalternativeapproachisadoptedbytheSynopsVizsys- turesandindexesshouldbedevelopedfocusingonWoDtasksand tem, which incrementally retrieves data and generates visualiza- data,suchasNanocubes[96]inthecontextofspatio-temporaldata [22] N.Bikakis,J.Liagouris,M.Krommyda,G.Papastefanatos, exploration, and HETree [25] in numeric and temporal datasets. andT.Sellis.TowardsScalableVisualExplorationofVery Finally, considering users’ perspective, beyond visualization rec- LargeRDFGraphs.InESWC,2015. ommendations,modernWoDsystemsshouldprovidemoresophis- [23] N.Bikakis,J.Liagouris,M.Krommyda,G.Papastefanatos, andT.Sellis.graphVizdb: AScalablePlatformfor ticatedmechanismsthatcaptureusers’preferencesandassistthem InteractiveLargeGraphVisualization.InICDE,2016. throughoutlargedataexplorationandanalysistasks. [24] N.BikakisandG.Papastefanatos.VisualExplorationand AnalyticsofBigData:ChallengesandApproaches,2016. 5. REFERENCES [25] N.Bikakis,G.Papastefanatos,M.Skourla,andT.Sellis.A [1] J.Abello,F.vanHam,andN.Krishnan.ASK-GraphView: HierarchicalAggregationFrameworkforEfficient ALargeScaleGraphVisualizationSystem.TVCG,12(5), MultilevelVisualExplorationandAnalysis,2015.Techn. 2006. Rep.,http://arxiv.org/abs/1511.04750. [2] S.Agarwal,B.Mozafari,A.Panda,H.Milner,S.Madden, [26] N.Bikakis,M.Skourla,andG.Papastefanatos. andI.Stoica.BlinkDB:QuerieswithBoundedErrorsand rdf:SynopsViz-AFrameworkforHierarchicalLinkedData BoundedResponseTimesonVeryLargeData.InEuroSys, VisualExplorationandAnalysis.InESWC,2014. 2013. [27] T.Boinski,A.Jaworska,R.Kleczkowski,andP.Kunowski. [3] C.Ahlberg.Spotfire:AnInformationExploration Ontologyvisualization.InITNGSWUI,2010. Environment.SIGMODRecord,25(4),1996. [28] M.Bostock,V.Ogievetsky,andJ.Heer.D3Data-Driven [4] F.Alahmari,J.A.Thom,L.Magee,andW.Wong. Documents.TVCG,17(12),2011. EvaluatingSemanticBrowsersforConsumingLinkedData. [29] J.M.Brunetti,S.Auer,R.García,J.Klímek,and InADC,2012. M.Necaský.FormalLinkedDataVisualizationModel.In [5] H.Alani.TGVizTab:AnOntologyVisualisationExtension iiWAS,2013. forProtege.InWorkshoponVisualizingInformationin [30] J.M.Brunetti,R.Gil,andR.García.FacetsandPivoting KnowledgeEngineering,2003. forFlexibleandUsableLinkedDataExploration.In [6] M.Alonen,T.Kauppinen,O.Suominen,andE.Hyvönen. InteractingwithLinkedDataWorkshop,2012. ExploringtheLinkedUniversityDatawithVisualization [31] D.V.Camarda,S.Mazzini,andA.Antonuccio.LodLive, Tools.InESWC,2013. exploringthewebofdata.InI-SEMANTICS,2012. [7] S.F.C.Araújo,D.Schwabe,andS.D.J.Barbosa. [32] A.E.Cano,A.Dadzie,andM.Hartmann.Who’sWho-A ExperimentingwithExplorator:aDirectManipulation LinkedDataVisualisationToolforMobileEnvironments. GenericRDFBrowserandQueryingTool.InVisual InESWC,2011. InterfacestotheSocialandtheSemanticWeb,2009. [33] S.Chan,L.Xiao,J.Gerth,andP.Hanrahan.Maintaining [8] D.Archambault,T.Munzner,andD.Auber.Grouse: interactivitywhileexploringmassivetimeseries.InIEEE Feature-Based,SteerableGraphHierarchyExploration.In VAST,2008. EuroVis,2007. [34] W.Cui,H.Zhou,H.Qu,P.C.Wong,andX.Li. [9] D.Archambault,T.Munzner,andD.Auber.GrouseFlocks: Geometry-BasedEdgeClusteringforGraphVisualization. SteerableExplorationofGraphHierarchySpace.TVCG, TVCG,14(6),2008. 14(4),2008. [35] A.DadzieandM.Rowe.ApproachestovisualisingLinked [10] D.Archambault,T.Munzner,andD.Auber.Tugging Data:Asurvey.SemanticWeb,2(2),2011. GraphsFaster:EfficientlyModifyingPath-Preserving [36] L.Deligiannidis,K.Kochut,andA.P.Sheth.RDFdata HierarchiesforBrowsingPaths.TVCG,17(3),2011. explorationandvisualization.InWorkshopon [11] G.A.AtemezingandR.Troncy.Towardsalinked-data CyberInfrastructure: InformationManagementineScience, basedvisualizationwizard.InCOLD,2014. 2007. [12] D.Auber.Tulip-AHugeGraphVisualizationFramework. [37] K.Dimitriadou,O.Papaemmanouil,andY.Diao. InGraphDrawingSoftware.2004. Explore-by-Example: AnAutomaticQuerySteering [13] S.Auer,R.Doehring,andS.Dietzold.LESS– FrameworkforInteractiveDataExploration.InSIGMOD, Template-BasedSyndicationandPresentationofLinked 2014. Data.InESWC,2010. [38] J.DokulilandJ.Katreniaková.UsingClustersinRDF [14] B.Bach,E.Pietriga,andI.Liccardi.VisualizingPopulated Visualization.InAdvancesinSemanticProcessing,2009. OntologieswithOntoTrix.IJSWIS,9(4),2013. [39] P.R.Doshi,E.A.Rundensteiner,andM.O.Ward. [15] M.Bastian,S.Heymann,andM.Jacomy.Gephi:AnOpen PrefetchingforVisualDataExploration.InDASFAA,2003. SourceSoftwareforExploringandManipulatingNetworks. [40] M.Dudás,O.Zamazal,andV.Svátek.Roadmappingand InICWSM,2009. NavigatingintheOntologyVisualizationLandscape.In [16] L.Battle,R.Chang,andM.Stonebraker.Dynamic EKAW,2014. PrefetchingofDataTilesforInteractiveVisualization, [41] A.Eldawy,M.Mokbel,andC.Jonathan.HadoopViz:A 2015.TechnicalReport. MapReduceFrameworkforExtensibleVisualizationofBig [17] L.Battle,M.Stonebraker,andR.Chang.Dynamic SpatialData.InICDE,2016. reductionofqueryresultsetsforinteractivevisualizaton.In [42] N.ElmqvistandJ.Fekete.HierarchicalAggregationfor BigData,2013. InformationVisualization:Overview,Techniques,and [18] C.BeckerandC.Bizer.ExploringtheGeospatialSemantic DesignGuidelines.TVCG,16(3),2010. WebwithDBpediaMobile.J.WebSem.,7(4),2009. [43] I.Ermilov,M.Martin,J.Lehmann,andS.Auer.Linked [19] F.Benedetti,L.Po,andS.Bergamaschi.AVisual OpenDataStatistics:CollectionandExploitation.In SummaryforLinkedOpenDatasources.InISWC,2014. KnowledgeEngineeringandtheSemanticWeb,2013. [20] K.Bereta,C.Nikolaou,M.Karpathiotakis,K.Kyzirakos, [44] O.Ersoy,C.Hurter,F.V.Paulovich,G.Cantareiro,and andM.Koubarakis.SexTant:VisualizingTime-Evolving A.Telea.Skeleton-BasedEdgeBundlingforGraph LinkedGeospatialData.InISWC,2013. Visualization.TVCG,17(12),2011. [21] T.Berners-Lee,Y.Chen,L.Chilton,D.Connolly, [45] S.Falconer,C.Callendar,andM.-A.Storey.A R.Dhanaraj,J.Hollenbach,A.Lerer,andD.Sheets. VisualizationServicefortheSemanticWeb.InKnowledge Tabulator:ExploringandAnalyzinglinkeddataonthe EngineeringandManagementbytheMasses.2010. SemanticWeb.InSWUI,2006. [46] D.Fisher,I.O.Popov,S.M.Drucker,andM.C.Schraefel. [72] J.F.R.Jr.,H.Tong,A.J.M.Traina,C.Faloutsos,and TrustMe,I’mPartiallyRight:IncrementalVisualization J.Leskovec.GMine:ASystemforScalable,Interactive LetsAnalystsExploreLargeDatasetsFaster.InCHI,2012. GraphVisualizationandMining.InVLDB,2006. [47] B.Fu,N.F.Noy,andM.-A.Storey.EyeTrackingtheUser [73] U.Jugel,Z.Jerzak,G.Hackenbroich,andV.Markl.Faster Experience-AnEvaluationofOntologyVisualization VisualAnalyticsthroughPixel-PerfectAggregation. Techniques.SemanticWebJournal,2015. PVLDB,7(13),2014. [48] E.R.Gansner,Y.Hu,S.C.North,andC.E.Scheidegger. [74] U.Jugel,Z.Jerzak,G.Hackenbroich,andV.Markl. MultilevelAgglomerativeEdgeBundlingforVisualizing VDDA:automaticvisualization-drivendataaggregationin LargeGraphs.InPacificVis,2011. relationaldatabases.VLDBJ,2015. [49] P.Godfrey,J.Gryz,andP.Lasek.InteractiveVisualization [75] E.Kalampokis,A.Nikolov,P.Haase,R.Cyganiak, ofLargeDataSets,2015.TechnicalReport. A.Stasiewicz,A.Karamanou,M.Zotou,D.Zeginis, [50] A.Graves.CreationofVisualizationsBasedonLinked E.Tambouris,andK.A.Tarabanis.ExploitingLinkedData Data.InWIMS,2013. CubeswithOpenCubeToolkit.InISWC,2014. [51] F.Haag,S.Lohmann,S.Negru,andT.Ertl.OntoViBe:An [76] A.Kalinin,U.Çetintemel,andS.B.Zdonik.Interactive OntologyVisualizationBenchmark.InVISUAL,2014. DataExplorationUsingSemanticWindows.InSIGMOD, [52] P.Haase,M.Schmidt,andA.Schwarte.TheInformation 2014. WorkbenchasaSelf-ServicePlatformforLinkedData [77] A.Kalinin,U.Çetintemel,andS.B.Zdonik.Searchlight: Applications.InCOLD,2011. EnablingIntegratedSearchandExplorationoverLarge [53] A.Harth.VisiNav:Asystemforvisualsearchand MultidimensionalData.PVLDB,8(10),2015. navigationonwebdata.J.WebSem.,8(4),2010. [78] N.Kamat,P.Jayachandran,K.Tunga,andA.Nandi. [54] T.Hastrup,R.Cyganiak,andU.Bojars.BrowsingLinked DistributedandInteractiveCubeExploration.InICDE, DatawithFenfire.InWWW,2008. 2014. [55] J.HeerandS.Kandel.InteractiveAnalysisofBigData. [79] B.KämpgenandA.Harth.OLAP4LD-AFrameworkfor ACMCrossroads,19(1),2012. BuildingAnalysisApplicationsOverGovernmental [56] J.HeerandB.Shneiderman.InteractiveDynamicsfor Statistics.InESWC,2014. VisualAnalysis.Commun.ACM,55(4),2012. [80] A.Katifori,C.Halatsis,G.Lepouras,C.Vassilakis,and [57] P.Heim,T.Ertl,andJ.Ziegler.FacetGraphs:Complex E.G.Giannopoulou.Ontologyvisualizationmethods-a SemanticQueryingMadeEasy.InESWC,2010. survey.ACMComput.Surv.,39(4),2007. [58] P.Heim,S.Lohmann,andT.Stegemann.Interactive [81] D.KeimandH.-P.Kriegel.VisDB:DatabaseExploration RelationshipDiscoveryviatheSemanticWeb.InESWC, usingMultidimensionalVisualization.IEEEComputer 2010. GraphicsandApplications,14(5),1994. [59] P.Heim,S.Lohmann,D.Tsendragchaa,andT.Ertl. [82] A.Key,B.Howe,D.Perry,andC.R.Aragon.VizDeck: SemLens:visualanalysisofsemanticdatawithscatterplots Self-organizingDashboardsforVisualAnalytics.In andsemanticlenses.InI-SEMANTICS,2011. SIGMOD,2012. [60] J.Helmich,J.Klímek,andM.Necaský.VisualizingRDF [83] H.A.Khan,M.A.Sharaf,andA.Albarrak.DivIDE: DataCubesUsingtheLinkedDataVisualizationModel.In efficientdiversificationforinteractivedataexploration.In ESWC,2014. SSDBM,2014. [61] N.Henry,J.Fekete,andM.J.McGuffin.NodeTrix:a [84] J.Klímek,J.Helmich,andM.Necaský.Payola: HybridVisualizationofSocialNetworks.TVCG,13(6), CollaborativeLinkedDataAnalysisandVisualization 2007. Framework.InESWC,2013. [62] M.Hildebrand,J.vanOssenbruggen,andL.Hardman. [85] J.Klímek,J.Helmich,andM.Necaský.UseCasesfor /facet:ABrowserforHeterogeneousSemanticWeb LinkedDataVisualizationModel.InLDOW,2015. Repositories.InISWC,2006. [86] G.KobilarovandI.Dickinson.Humboldt:Exploring [63] D.Holten.HierarchicalEdgeBundles:Visualizationof LinkedData.InLDOW,2008. AdjacencyRelationsinHierarchicalData.TVCG,12(5), [87] J.KochandT.Franz.LENA-BrowsingRDFDataMore 2006. ComplexThanFoaf.InISWC,2008. [64] W.Hop,S.deRidder,F.Frasincar,andF.Hogenboom. [88] S.KriglsteinandR.Motschnig-Pitrik.Knoocks:New UsingHierarchicalEdgeBundlestovisualizecomplex VisualizationApproachforOntologies.InConferenceon ontologiesinGLOW.InACMSAC,2012. InformationVisualisation,2008. [65] A.Hussain,K.Latif,A.Rextin,A.Hayat,andM.Alam. [89] S.Krivov,R.Williams,andF.Villa.GrOWL:Atoolfor ScalableVisualizationofSemanticNetsusingPower-Law visualizationandeditingofOWLontologies.J.WebSem., Graphs.AMIS,8(1),2014. 5(2),2007. [66] D.Huynh,S.Mazzocchi,andD.R.Karger.PiggyBank: [90] A.Lambert,R.Bourqui,andD.Auber.WindingRoads: ExperiencetheSemanticWebInsideYourWebBrowser. RoutingEdgesintoBundles.CGF,29(3),2010. InISWC,2005. [91] M.Lanzenberger,J.Sampson,andM.Rester.Visualization [67] S.Idreos,M.L.Kersten,andS.Manegold.Database inOntologyTools.InCISIS,2009. Cracking.InCIDR,2007. [92] A.d.Leon,F.Wisniewki,B.Villazón-Terrazas,and [68] S.Idreos,O.Papaemmanouil,andS.Chaudhuri.Overview O.Corcho.Map4rdf-FacetedBrowserforGeospatial ofDataExplorationTechniques.InSIGMOD,2015. Datasets.InUsingOpenData:policymodeling,citizen [69] J.Im,F.G.Villegas,andM.J.McGuffin.VisReduce:Fast empowerment,datajournalism,2012. andResponsiveIncrementalInformationVisualizationof [93] C.Li,G.Baciu,andY.Wang.ModulGraph: LargeDatasets.InBigData,2013. Modularity-basedVisualizationofMassiveGraphs.In [70] P.Jayachandran,K.Tunga,N.Kamat,andA.Nandi. VisualizationinHighPerformanceComputing,2015. CombiningUserInteraction,SpeculativeQueryExecution [94] T.LiebigandO.Noppens.OntoTrack:Asemantic andSamplingintheDICESystem.PVLDB,7(13),2014. approachforontologyauthoring.J.WebSem.,3(2-3),2005. [71] J.F.R.Jr.,H.Tong,J.Pan,A.J.M.Traina,C.T.Jr.,and [95] Z.Lin,N.Cao,H.Tong,F.Wang,U.Kang,andD.H.P. C.Faloutsos.LargeGraphAnalysisintheGMineSystem. Chau.DemonstratingInteractiveMulti-resolutionLarge TKDE,25(1),2013. GraphExploration.InICDMWorkshops,2013. [96] L.D.Lins,J.T.Klosowski,andC.E.Scheidegger. [121] C.Stadler,J.Lehmann,K.Höffner,andS.Auer. NanocubesforReal-TimeExplorationofSpatiotemporal LinkedGeoData: Acoreforawebofspatialopendata. Datasets.TVCG,19(12),2013. SemanticWeb,3(4),2012. [97] Z.Liu,B.Jiang,andJ.Heer.imMens:Real-timeVisual [122] C.Stadler,M.Martin,andS.Auer.Exploringthewebof QueryingofBigData.CGF,32(3):421–430,2013. spatialdatawithfacete.InWWW,2014. [98] M.Livny,R.Ramakrishnan,K.S.Beyer,G.Chen, [123] C.D.Stolper,A.Perer,andD.Gotz.ProgressiveVisual D.Donjerkovic,S.Lawande,J.Myllymaki,andR.K. Analytics:User-DrivenVisualExplorationofIn-Progress Wenger.DEVise:IntegratedQueryingandVisual Analytics.TVCG,20(12),2014. ExplorationofLargeDatasets.InSIGMOD,1997. [124] C.StolteandP.Hanrahan.Polaris:ASystemforQuery, [99] S.Lohmann,S.Negru,F.Haag,andT.Ertl.VOWL2: AnalysisandVisualizationofMulti-Dimensional User-OrientedVisualizationofOntologies.InEKAW,2014. RelationalDatabases.InInfoVis,2000. [100] S.Lohmann,S.Negru,F.Haag,andT.Ertl.Visualizing [125] M.D.Storey,N.F.Noy,M.A.Musen,C.Best,R.W. OntologieswithVOWL.SemanticWebJournal,2015. Fergerson,andN.A.Ernst.Jambalaya: aninteractive [101] N.MarieandF.L.Gandon.SurveyofLinkedDataBased environmentforexploringontologies.InIUI,2002. ExplorationSystems.InIESD,2014. [126] M.Stuhr,D.Roman,andD.Norheim.LODWheel- [102] S.Mazumdar,D.Petrelli,K.Elbedweihy,V.Lanfranchi, JavaScript-basedVisualizationofRDFData.InCOLD, andF.Ciravegna.Affectivegraphs:Thevisualappealof 2011. LinkedData.SemanticWeb,6(3),2015. [127] S.Sundara,M.Atre,V.Kolovski,S.Das,Z.Wu,E.I. [103] K.Morton,M.Balazinska,D.Grossman,andJ.D. Chong,andJ.Srinivasan.Visualizinglarge-scaleRDFdata Mackinlay.SupporttheDataEnthusiast:Challengesfor usingSubsets,Summaries,andSamplinginOracle.In Next-GenerationData-AnalysisSystems.PVLDB,7(6), ICDE,2010. 2014. [128] F.Tauheed,T.Heinis,F.Schürmann,H.Markram,and [104] E.Motta,P.Mulholland,S.Peroni,M.d’Aquin,J.M. A.Ailamaki.SCOUT:PrefetchingforLatentFeature Gómez-Pérez,V.Mendez,andF.Zablith.ANovel FollowingQueries.PVLDB,5(11),2012. ApproachtoVisualizingandNavigatingOntologies.In [129] K.Thellmann,M.Galkin,F.Orlandi,andS.Auer. ISWC,2011. LinkDaViz-AutomaticBindingofLinkedDatato [105] Y.Park,M.J.Cafarella,andB.Mozafari. Visualizations.InISWC,2015. Visualization-AwareSamplingforVeryLargeDatabases. [130] C.Tominski,J.Abello,andH.Schumann.CGV-An InICDE,2016. InteractiveGraphVisualizationSystem.Computers& [106] I.Petrou,M.Meimaris,andG.Papastefanatos.Towardsa Graphics,33(6),2009. methodologyforpublishingLinkedOpenStatisticalData. [131] G.Tschinkel,E.E.Veas,B.Mutlu,andV.Sabol.Using eJournalofeDemocracy&OpenGovernment,6(1),2014. SemanticsforInteractiveVisualAnalysisofLinkedOpen [107] D.Phan,L.Xiao,R.B.Yeh,P.Hanrahan,andT.Winograd. Data.InISWC,2014. FlowMapLayout.InInfoVis,2005. [132] F.Valsecchi,M.Abrate,C.Bacciu,M.Tesconi,and [108] E.Pietriga.IsaViz:aVisualEnvironmentforBrowsingand A.Marchetti.DBpediaAtlas:MappingtheUncharted AuthoringRDFModels.InWWW,2002. LandsofLinkedData.InLDOW,2015. [109] J.PolowinskiandM.Voigt.VISO:AShared,Formal [133] F.ValsecchiandM.Ronchetti.Spacetime:aTwo KnowledgeBaseAsaFoundationforSemi-automatic DimensionsSearchandVisualisationEngineBasedon InfovisSystems.InCHI,2013. LinkedData.InSEMAPRO,2014. [110] I.O.Popov,M.M.C.Schraefel,W.Hall,andN.Shadbolt. [134] M.Vartak,S.Madden,A.G.Parameswaran,and ConnectingtheDots:AMulti-pivotApproachtoData N.Polyzotis.SEEDB:AutomaticallyGeneratingQuery Exploration.InISWC,2011. Visualizations.PVLDB,7(13),2014. [111] D.A.QuanandR.Karger.Howtomakeasemanticweb [135] M.Voigt,S.Pietschmann,L.Grammel,andK.Meißner. browser.InWWW,2004. Context-awareRecommendationofVisualization [112] P.RistoskiandH.Paulheim.VisualAnalysisofStatistical Components.IneKNOW,2012. DataonMapsusingLinkedOpenData.InESWC,2015. [136] M.Voigt,S.Pietschmann,andK.Meißner.A [113] L.Rutledge,J.vanOssenbruggen,andL.Hardman. Semantics-Based,End-User-CenteredInformation MakingRDFpresentable:integratedglobalandlocal VisualizationProcessforSemanticWebData.InSemantic semanticWebbrowsing.InWWW,2005. ModelsforAdaptiveInteractiveSystems.2013. [114] P.E.R.Salas,F.M.D.Mota,K.K.Breitman,M.A. [137] T.D.WangandB.Parsia.CropCircles:TopologySensitive Casanova,M.Martin,andS.Auer.PublishingStatistical VisualizationofOWLClassHierarchies.InISWC,2006. DataontheWeb.Int.J.SemanticComputing,6(4),2012. [138] H.Wickham.Bin-Summarise-Smooth:AFrameworkfor [115] C.Sayers.Node-centricRDFGraphVisualization,2004. VisualisingLargeData.Technicalreport,2013. TechnicalReportHPLaboratories. [139] K.Wongsuphasawat,D.Moritz,A.Anand,J.D.Mackinlay, [116] K.Schlegel,F.Stegmaier,S.Bayerl,M.Granitzer,and B.Howe,andJ.Heer.Voyager:ExploratoryAnalysisvia H.Kosch.BalloonFusion:SPARQLRewritingbasedon FacetedBrowsingofVisualizationRecommendations. UnifiedCo-ReferenceInformation.InDESWeb,2014. TVCG,22(1),2016. [117] K.Schlegel,T.Weißgerber,F.Stegmaier,C.Seifert, [140] E.Wu,L.Battle,andS.R.Madden.TheCaseforData M.Granitzer,andH.Kosch.BalloonSynopsis:AModern VisualizationManagementSystems.PVLDB,7(10),2014. Node-CentricRDFViewerandBrowserfortheWeb.In [141] E.WuandS.Madden.Scorpion:ExplainingAwayOutliers ESWC,2014. inAggregateQueries.PVLDB,6(8),2013. [118] B.Shneiderman.TheEyesHaveIt:ATaskbyDataType [142] K.Zhang,H.Wang,D.T.Tran,andY.Yu.ZoomRDF: TaxonomyforInformationVisualizations.InIEEE semanticfisheyezoomingonRDFdata.InWWW,2010. SymposiumonVisualLanguages,1996. [143] M.Zinsmaier,U.Brandes,O.Deussen,andH.Strobelt. [119] B.Shneiderman.ExtremeVisualization:Squeezinga InteractiveLevel-of-DetailRenderingofLargeGraphs. BillionRecordsintoaMillionPixels.InSIGMOD,2008. TVCG,18(12),2012. [120] M.G.Skjæveland.Sgvizler:AJavaScriptWrapperforEasy [144] K.Zoumpatianos,S.Idreos,andT.Palpanas.Indexingfor VisualizationofSPARQLResultSets.InESWC,2012. interactiveexplorationofbigdataseries.InSIGMOD, 2014.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.