ebook img

Explicit moduli spaces of abelian varieties with automorphisms PDF

21 Pages·2010·0.16 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Explicit moduli spaces of abelian varieties with automorphisms

Explicit moduli spacesof abelian varietieswith automor- phisms Explicit moduli spaces of abelian Bertvan varieties with automorphisms Geemen (jointwork withMatthias Schu¨tt) Bert van Geemen (joint work with Matthias Schu¨tt) Trento,September2010 Outline Explicit moduli spacesof abelian varietieswith automor- phisms 1 Introduction Bertvan Geemen (jointwork withMatthias Schu¨tt) 2 The moduli spaces of ppav’s Outline 3 The Shimura varieties The Shimura curve The Shimura surface Introduction Explicit Example of a Shimura variety: moduli spacesof a moduli space of ppav’s with an automorphism, abelian varietieswith i.e. of triples (X,L,φ): automor- ∼ phisms X a complex torus (X = V/Γ), Bertvan L ample line bundle on X, which gives a principal Geemen (jointwork polarization (equiv: h0(L) = 1), withMatthias Schu¨tt) φ is an automorphism of (X,L): Introduction φ : X −∼=→ X, φ(0) = 0, φ∗L ∼ L. Themoduli spacesof ppav’s A : Moduli space of ppav’s with level structure ∗ TheShimura g,∗ vTahreiSehtiimeusracurve (for example, ∗ = level n: α : A[n] −∼=→ (Z/nZ)2g) TheShimura surface which is a Galois cover with group G of A : g A −→ A = A /G. g,∗ g g,∗ Shimura variety as fixed point set Explicit moduli spacesof abelian varietieswith Given (X,L,φ) and a point [(X,L,α)] ∈ A then automor- g,∗ phisms define φ∗[(X,L,α)] = [(X,L,α◦φ)], Bertvan Geemen (jointwork you get φ∗ ∈ G, (more precisely: α◦φ∗◦α−1 ∈ G) withMatthias Schu¨tt) [(X,L,α)] = [(X,L,α◦φ)] (isomorphic objects), so Introduction [(X,L,α)] is a fixed point for φ∗ ∈ G in A g,∗ Themoduli spacesof ppav’s Hence: moduli space of triples (X,L,φ), TheShimura with level structure ∗, varieties TheShimuracurve is the fixed point locus (Ag,∗)φ∗, a Shimura variety. TheShimura surface G-equivariant map Explicit moduli spacesof abelian varietieswith Given a G-equivariant embedding automor- phisms Bertvan Θ : Ag,∗ −→ PN, Θ◦g = Mg ◦Θ, Geemen (jointwork withMatthias for g ∈ G, M ∈ Aut(PN), Schu¨tt) g the image of the moduli space of triples (X,L,φ) Introduction with level structure ∗ is Themoduli spacesof ppav’s Θ((A )φ∗) = Θ(A ) ∩ P TheShimura g,∗ g,∗ λ varieties TheShimuracurve where P is an eigenspace of M . TheShimura λ g surface Outline Explicit moduli spacesof abelian To do: varietieswith automor- phisms specify the triples (A,L,φ), Bertvan Geemen specify level structure ∗, (jointwork withMatthias find G-equivariant map Θ : A −→ PN, Schu¨tt) g,∗ determine M ∈ Aut(PN) and its eigenspaces P , Introduction φ∗ λ Themoduli find equations for Θ(A ), spacesof g,∗ ppav’s study the intersection Θ(A )∩P . TheShimura g,∗ λ varieties TheShimuracurve Applications to Arithmetic and Geometry of Shimura TheShimura surface varieties The Abelian varieties Explicit moduli spacesof (B0,L0) := Jac(C), C : y2 = x5+1 abelian varietieswith automor- C is a genus 2 curve, B0 is a ppav with automorphism phisms Bertvan φ : B −→ B , φ = φ∗, φ (x,y) = (ζx,y) Geemen 0 0 C C (jointwork withMatthias where ζ is a primitve 5-th root of unity ((B ,L ,φ) is unique). Schu¨tt) 0 0 (B ,L ,φ) is rigid. Consider the 4 dim ppav with 0 0 Introduction automorphism Themoduli spacesof ppav’s (A ,L,φ ) := (B ×B ,L (cid:2)L ,φ×φk). 0 k 0 0 0 0 TheShimura varieties TheShimuracurve Deformation space has dimension: TheShimura surface (cid:26) 1 k = 2,3, dim (Deformations (A ,L,φ )) = 0 k 2 k = 4. The level structure ∗=(2,4) Explicit Symmetric theta structure of level two, (2,4). moduli spacesof abelian varietieswith A −→ A −→ A −→ A . automor- g,4 g,(2,4) g,2 g phisms (cid:124) (cid:123)(cid:122) (cid:125) group(Z/2Z)2g Bertvan Geemen (cid:124) (cid:123)(cid:122) (cid:125) (jointwork groupG withMatthias Schu¨tt) There is a non-split exact sequence: Introduction Themoduli 0 −→ (Z/2Z)2g −→ G −→ Sp(2g,F ) −→ 0. spacesof 2 ppav’s TheShimura Sp(2g,F ) is generated by transvections: for v ∈ F2g varieties 2 2 TheShimuracurve TheShimura surface t : F2g −→ F2g, w (cid:55)−→ w +E(w,v)v, v 2 2 E : F2g ×F2g → F = Z/2Z is the symplectic form. 2 2 2 The G-equivariant map Θ : A −→ PN g,(2,4) Explicit moduli The theta constants provide a natural G-equivariant map spacesof abelian varietieswith Θ : A −→ PN, N +1 = 2g. automor- g,(2,4) phisms Bertvan Over C, the map Θ is induced by the map Geemen (jointwork withMatthias Schu¨tt) H −→ PN, τ (cid:55)−→ (... : Θ[σ](τ) : ...) g σ∈(Z/2Z)g Introduction with theta constants Themoduli spacesof ppav’s Θ[σ](τ) = (cid:88) e2πit(m+σ/2)τ(m+σ/2). TheShimura varieties m∈Zg TheShimuracurve TheShimura surface Θ(A ) is birationally isomorphic with A . g,(2,4) g,(2,4) For g = 2: Θ(A ) = P3 − {30 lines}. 2,(2,4) Determine M ∈ Aut(PN) g Explicit moduli Can easily find M ∈ Aut(PN) for g ∈ (Z/2Z)2g ⊂ G. spacesof g abelian (”Heisenberg group action”) varietieswith automor- phisms For any transvection t ∈ Sp(2g,F ) can find M ∈ Aut(PN) Bertvan v 2 tv (jGoienetmweonrk (Mtv is a linear combination of I and Mv). withMatthias Schu¨tt) Hence can find M for any g ∈ G. g Introduction In case g = 2, Sp(2g,F ) ∼= S (symmetric group). Themoduli 2 6 spacesof Transvections correspond to transpositions. ppav’s TheShimura Can easily find element of order five h ∈ G and varieties TheShimuracurve corresponding Mh ∈ Aut(P3). TheShimura surface M has four fixed points in P3−{30 lines} = Θ(A ), h 2,(2,4) By unicity, each fixed point is a [(B ,L ,α)] and h = φ∗. 0 0

Description:
abelian varieties with automor-phisms Bert van Geemen Applications to Arithmetic and Geometry of Shimura varieties. Explicit moduli spaces of abelian varieties with
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.