ebook img

Explicit Evaluations of Sums of Sequence Tails PDF

0.12 MB·
by  Ce Xu
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Explicit Evaluations of Sums of Sequence Tails

Explicit Evaluations of Sums of Sequence Tails Ce Xu∗ Xiaolian Zhou† School of Mathematical Sciences, Xiamen University 7 Xiamen 361005,P.R. China 1 0 2 n Abstract In this paper, we use Abel’s summation formula to evaluate several quadratic sums a of the form: J N 4 F (A,B;x) := (A−A )(B−B )xn, x ∈[−1,1], N n n ] nX=1 T where the sequences A ,B are defined by the sums n n N n n . th An = ak,Bn = bk, ak,bk = o(n−p),ℜ(p) > 1 a k=1 k=1 m X X [ and A = lim An,B = lim Bn,F (A,B;x) = lim Fn(A,B;x). We give an explicit formula n→∞ n→∞ n→∞ 1 of Fn(A,B;x). Furthermore, we also evaluate several other series involving multiple zeta star v values. 5 2 Keywords Sequence; harmonic numbers; Abel’s summation formula; Riemann zeta function; 7 multiple zeta star values, tails. 3 0 AMS Subject Classifications (2010): 11M06; 11M32. . 1 0 7 1 Introduction 1 : v In recent years there has been significant interest in investigating sums of products of Riemann i X zeta tails and multiple zeta values. The subject of this paper is studying quadratic and cubic r sums a ∞ ∞ F (A,B;x) = (A−A )(B −B )xn,F (A,B,ζ(r))= (A−A )(B −B )(ζ(r)−ζ (r)), n n n n n n=1 n=1 X X where n n 1 1 H = ζ (1) = , ζ (r)= , r,n ∈ N= {1,2,3···} n n j n jr j=1 j=1 X X are classical harmonic number and generalized harmonic numbers or partial sums of the series ∞ 1 ζ(s)= , ℜ(s)> 1 js j=1 X ∗Corresponding author. Email: [email protected] †Email: [email protected](X. ZHOU) 1 defining the Riemann zeta function, respectively, where the empty sum ζ0(r) is conventionally understood to be zero. In recent papers [9,10], O. Furdui, A. Sˆıntˇamaˇrian and C. V˘alean prove some results on sums of products of the tails of the Riemann zeta function, i.e., ∞ 1 ζ(s)−ζ (s)= . n js j=n+1 X In [9], O. Furdui and A. Sˆıntˇamaˇrian shown that quadratic series ∞ F(ζ(s),ζ(s)) = (ζ(s)−ζ (s))2, s ∈ N/{1} n n=1 X can be expressed as a rational linear combination of zeta function values, binomial coefficients and products of two zeta function values. In [10], O. Furdui and C. V˘alean proven that the series ∞ F(ζ(s),ζ(s+1)) = (ζ(s)−ζ (s))(ζ(s+1)−ζ (s+1)), s∈ N/{1} n n n=1 X can be expressed in terms of Riemann zeta function values and a special integral involving a polylogarithm function. The polylogarithm function defined as follows ∞ xn Li (x) = ,ℜ(p)> 1, |x|≤ 1. p np n=1 X Furthermore, in [12], M. E. Hoffman shown a simple general result for the quadratic sum ∞ F(ζ(p),ζ(q)) = (ζ(p)−ζ (p))(ζ(q)−ζ (q)), p,q ∈ N/{1} n n n=1 X in terms of the multiple zeta values ζ(s1,s2,...,sm) defined by 1 ζ(s1,s2,...,sm) = ks1···ksm, k1>··X·>km≥1 1 m wherefor convergence s1+s2+···+sj > j for j = 1,2,...,m. Moreover, Hoffman also provided an explicit evaluation of sums of products of three or more Riemann zeta tails in a closed form in terms of multiple zeta values (see Theorem 4.3 in the reference [12]). The multiple zeta value ζ(s1,s2,...,sm)issaid tohavedepthmandweight s1+...+sm. Multiplezeta valuesofgeneral depthwereintroducedindependentlyby Hoffman [11] andD.Zagier [19], butfordepthtwo they were already studied by Euler. In [5], Borwein and Girgensohn gave some evaluation multiple zeta values of depth three. In this paper, we discuss the analytic representations of F(A,B;x) and F(A,B,ζ(r)). Using certain integral representations, we can prove that the cubic series ∞ F (ζ(p),ζ(q),ζ(r)) = (ζ(p)−ζ (p))(ζ(q)−ζ (q))(ζ(r)−ζ (r)), p,q,r ∈ N/{1} n n n n=1 X can be expressed in terms of multiple zeta star values defined by 1 ζ⋆(s1,s2,...,sm)= ks1···ksm, s1 ∈ N/{1},si ∈ N,(i = 2,3,...). k1≥··X·≥km≥1 1 m 2 ∞ ζ (p) Obviously, ζ⋆(m,p) = n . Furthermore,wealsogive someevaluation ofsumsofproducts nm n=1 X of alternating Riemann Zeta Tails. For example, ∞ (ζ(m)−ζ (m)) ζ¯(p)−ζ¯ (p) n n n=1 X (cid:0) (cid:1) ∞ ζ (m−1) ζ¯ (p−1) = n (−1)n−1+ n −ζ(m)ζ¯(p)−ζ¯(m+p−1), np nm n=1(cid:26) (cid:27) X whereζ¯(p)andζ¯ (p)standforthealternatingRiemannZetafunctionandalternating harmonic n numbers defined by ∞ k−1 n k−1 (−1) (−1) ζ¯(p)= ,ζ¯ (p)= ,n ∈N,ℜ(p) ≥ 1. kp n kp k=1 k=1 X X ∞ ζ (p) ∞ ζ¯ (p) ∞ ζ (p) ∞ ζ¯ (p) n n n−1 n n−1 n The evaluation of linear sums , (−1) , (−1) and in nm nm nm nm n=1 n=1 n=1 n=1 X X X X terms of values of Riemann zeta function (or alternating Riemann Zeta function) and polylog- arithm function at positive integers is known when (p,m) = (1,3),(2,2) or p+m is odd (see [2,3,7,14,17,18]). For example, ∞ ζ¯ (1) 7 5 n = ζ(3)ln2− ζ(4), n3 4 16 n=1 X ∞ H 1 11 1 1 7 n n−1 2 4 n3 (−1) = −2Li4 2 + 4 ζ(4)+ 2ζ(2)ln 2− 12ln 2− 4ζ(3)ln2, n=1 (cid:18) (cid:19) X ∞ ζ¯ (1) 3 1 1 1 n n−1 2 4 n3 (−1) = 2ζ(4)+ 2ζ(2)ln 2− 12ln 2−2Li4 2 , n=1 (cid:18) (cid:19) X ∞ ζ (2) 51 1 7 1 n n−1 2 4 n2 (−1) = −16ζ(4)+4Li4 2 + 2ζ(3)ln2−ζ(2)ln (2)+ 6ln 2. n=1 (cid:18) (cid:19) X Furthermore, we consider the nested sum ∞ yn n xk , x,y ∈ [−1,1), m,p ∈ N. nm kp ! n=1 k=1 X X By takingthesumover complementary pairsofsummationindices, weobtain asimplereflection formula ∞ yn n xk ∞ xn n yk nm kp + np km = Lip(x)Lim(y)+Lip+m(xy). ! ! n=1 k=1 n=1 k=1 X X X X Therefore, we can deduce that ∞ ζ¯ (2) 13 n n−1 (−1) = ζ(4), n2 16 n=1 X 3 ∞ ζ (3) 19 3 n n−1 (−1) = ζ(4)− ζ(3)ln2, n 16 4 n=1 X ∞ ζ¯ (2) 85 1 1 7 n 2 4 n2 = 16ζ(4)−4Li4 2 +ζ(2)ln 2− 6ln 2− 2ζ(3)ln2, n=1 (cid:18) (cid:19) X ∞ ζ¯ (3) 1 3 1 1 1 n n−1 4 2 (−1) =2Li4 + ζ(3)ln2+ ln 2− ζ(4)− ζ(2)ln 2. n 2 4 12 2 2 n=1 (cid:18) (cid:19) X Some results for sums of harmonic numbers or alternating harmonic numbers may be seen in the works of [2,3,7,13-18] and references therein. The main result of this paper is the following theorems. Theorem 1.1 If a ,b = o(n−p),ℜ(p) > 1 and x ∈ [−1,1], then k k n (1−x)F (A,B;x) = (1−x) (A−A )(B −B )xk n k k k=1 X n n = ABx−(A−A )(B −B )xn+1− a xk (B −B )− b xk (A−A ) n n k n k n ! ! k=1 k=1 X X n k n k n − a xi b − b xi a + a b xk. (1.1) i k i k k k ! ! k=1 i=1 k=1 i=1 k=1 X X X X X Theorem 1.2 If a ,b = o(n−p),ℜ(p) > 1 and r ∈ N/{1}, then k k ∞ F (A,B,ζ(r))= (A−A )(B −B )(ζ(r)−ζ (r)) k k k k=1 X ∞ n ∞ n ∞ =ζ(r) ka b + kb a − na b −AB k n k n n n ( ! ! ) n=1 k=1 n=1 k=1 n=1 X X X X X ∞ n ∞ n − a (kζ (r)−ζ (r−1)) b − b (kζ (r)−ζ (r−1)) a k k k n k k k n ! ! n=1 k=1 n=1 k=1 X X X X ∞ + a b (nζ (r)−ζ (r−1)). (1.2) n n n n n=1 X In section 2, we will use Abels summation formula to prove Theorem 1.1 and 1.2. The Abels summationbypartsformulastatesthatif(an)n≥1 and(bn)n≥1 aretwosequencesofrealnumbers n n n and An = ak, then akbk = Anbn+1+ Ak(bk −bk+1). k=1 k=1 k=1 X X X 2 Proof of Theorem 1.1 and Theorem 1.2 We now prove our Theorems. Firstly, we are ready to prove Theorem 1.1. Proof. From the definition F (A,B;x), we have n n F (A,B;x) = (A−A )(B−B )xk n k k k=1 X 4 n−1 = (A−a1)(B −b1)x+ (A−Ak+1)(B −Bk+1)xk+1 k=1 X n−1 = (A−a1)(B −b1)x+ (A−Ak −ak+1)(B −Bk −bk+1)xk+1 k=1 X n−1 = (A−a1)(B −b1)x+ (A−Ak)(B −Bk)xk+1 k=1 X n−1 n−1 − {ak+1(B−Bk)+bk+1(A−Ak)}xk+1+ ak+1bk+1xk+1 k=1 k=1 X X n = (A−a1)(B −b1)x+ (A−Ak)(B −Bk)xk+1−(A−An)(B−Bn)xn+1 k=1 X n n + akbkxk −a1b1x− {ak(B−Bk +bk)+bk(A−Ak +ak)}xk +a1B +b1A k=1 k=1 X X = xF (A,B;x)+ABx−(A−A )(B −B )xn+1 n n n n n − {a (B −B )+b (A−A )}xk − a b xk. (2.1) k k k k k k k=1 k=1 X X By Abel’s summation formula, we can deduce that n n n k n {a (B −B )}xk = a xk (B−B )+ a xi b − a b xk, (2.2) k k k n i k k k ! ! k=1 k=1 k=1 i=1 k=1 X X X X X n n n k n {b (A−A )}xk = b xk (A−A )+ b xi a − a b xk. (2.3) k k k n i k k k ! ! k=1 k=1 k=1 i=1 k=1 X X X X X Substituting (2.2) (2.3) into (2.1) respectively, we can obtain (1.1). We have completed the lnr−1x proof of Theorem 1.1. Now, we are ready to prove Theorem 1.2. Multiplying (1.2) by 2 (1−x) and integrating over the interval (0,1), and using the following elementary integral identities 1 xklnr−1x dx = (−1)r−1(r−1)!(ζ(r)−ζ (r)), r ∈ N/{1}, k 1−x Z0 1 xklnr−1x dx = (−1)r−1(r−1)!(ζ(r−1)−ζ (r−1)−kζ(r)+kζ (r)),r ∈ N/{1,2}, 2 k k (1−x) Z0 by a direct calculation, we obtain F (A,B,ζ(r))=AB(ζ(r−1)−ζ(r)) ∞ + a b (ζ(r−1)−ζ (r−1)−kζ(r)+kζ (r)) k k k k k=1 X 5 ∞ n − a (ζ(r−1)−ζ (r−1)−kζ(r)+kζ (r)) b k k k n ! n=1 k=1 X X ∞ n − b (ζ(r−1)−ζ (r−1)−kζ(r)+kζ (r)) a . (2.4) k k k n ! n=1 k=1 X X Taking x = 1 in (1.1), we get n n n A b + B a = a b +A B . (2.5) k k k k k k n n k=1 k=1 k=1 X X X Letting n → ∞, then have ∞ ∞ ∞ A b + B a = a b +AB. (2.6) k k k k k k k=1 k=1 k=1 X X X Substituting (2.6) into (2.4), we know that when r ∈ N/{1,2}, the equality (1.2) is holds. lnx Similarly, multiplying (1.2) by and integrating over the interval (0,t), then letting 2 (1−x) t → 1, we can prove that if r = 2, the formula (1.2) is also true. The proof of Theorem 1.2 is finished. 3 Some results In this section, we will give some closed form of sums of sequences tails. Firstly, multiplying (1−x)−1 in both sides of (1.1), then letting x → 1 and using L. Hopital’s rule, we deduce that n (1−x)F (A,B;x) n (A−A )(B −B )= F (A,B;1) = lim k k n x→1 1−x k=1 X n k n k n n = ia b + ib a + ka (B −B )+ kb (A−A ) i k i k k n k n ! ! ! ! k=1 i=1 k=1 i=1 k=1 k=1 X X X X X X n +(n+1)(A−A )(B −B )− ka b −AB. (3.1) n n k k ! k=1 X Letting n → ∞ in (3.1), we have ∞ ∞ n ∞ n ∞ (A−A )(B −B )= ka b + kb a − na b −AB. (3.2) n n k n k n n n ! ! n=1 n=1 k=1 n=1 k=1 n=1 X X X X X X n−1 n−1 n−1 1 1 (−1) (−1) 1 (−1) Putting (a ,b ) = , , , , , in (3.2), we can obtain n n nm np nm np nm np ! ! (cid:18) (cid:19) the following identities ∞ (ζ(m)−ζ (m))(ζ(p)−ζ (p)) n n n=1 X 6 = ζ⋆(p,m−1)+ζ⋆(m,p−1)−ζ(m+p−1)−ζ(m)ζ(p), (3.3) ∞ ζ¯(m)−ζ¯ (m) ζ¯(p)−ζ¯ (p) n n n=1 X(cid:0) (cid:1)(cid:0) (cid:1) ∞ ζ¯ (p−1) ∞ ζ¯ (m−1) = n (−1)n−1+ n (−1)n−1−ζ(m+p−1)−ζ¯(m)ζ¯(p), (3.4) nm np n=1 n=1 X X ∞ (ζ(m)−ζ (m)) ζ¯(p)−ζ¯ (p) n n n=1 X (cid:0) (cid:1) ∞ ζ (m−1) ζ¯ (p−1) = n (−1)n−1+ n −ζ(m)ζ¯(p)−ζ¯(m+p−1). (3.5) np nm n=1(cid:26) (cid:27) X 1 1 Similarly, taking (a ,b ) = , in (1.2), we arrive at the conclusion that n n nm np (cid:18) (cid:19) ∞ F (ζ(m),ζ(p),ζ(r)) = (ζ(m)−ζ (m))(ζ(p)−ζ (p))(ζ(r)−ζ (r)) n n n n=1 X =ζ(r){ζ⋆(p,m−1)+ζ⋆(m,p−1)−ζ(m+p−1)−ζ(m)ζ(p)} +{ζ⋆(m+p−1,r)−ζ⋆(m+p,r−1)} −{ζ⋆(p,m−1,r)−ζ⋆(p,m,r−1)} −{ζ⋆(m,p−1,r)−ζ⋆(m,p,r−1)}. (3.6) lnr−1x In (1.1), letting n → ∞, then multiplying it by and integrating over the interval (0,1), x(1−x) we conclude that ∞ ∞ n ∞ n (A−A )(B −B ) n n nr = akζk−1(r) bn+ bkζk−1(r) an ! ! n=1 n=1 k=1 n=1 k=1 X X X X X ∞ − anbnζn−1(r), r ∈ N/{1}. (3.7) n=1 X In fact, it is easily shown that the formula (3.7) is also true when r = 1. 1 1 Taking (a ,b )= , in (3.7), we get n n nm np (cid:18) (cid:19) ∞ (ζ(m)−ζ (m))(ζ(p)−ζ (p)) n n nr n=1 X = ζ(m+p+r)+ζ⋆(m,p,r)+ζ⋆(p,m,r) −ζ⋆(m+p,r)−ζ⋆(m,p+r)−ζ⋆(p,m+r),m,p,r ∈ N. (3.8) We define the multiple harmonic star number ζn⋆(s1,s2,...,sm) by 1 ζn⋆(s1,s2,...,sm) := ks1···ksm,si ∈ N, (i= 1,2,...,m). 1≤km≤X···≤k1≤n 1 m 7 From the definition multiple harmonic star number, we can deduce the following relation ∞ ζ (p)ζ (r) ζ⋆(p,m,r)+ n n = ζ⋆(p+m,r)+ζ(p)ζ⋆(m,r), p,m ∈ N/{1},r ∈ N. (3.9) nm n=1 X Substituting (3.9) into (3.8) respectively, we obtain the symmetry identity ∞ ζ (m)ζ (p) ζ (p)ζ (r) ζ (m)ζ (r) n n n n n n + + nr nm np n=1(cid:26) (cid:27) X = ζ⋆(p+m,r)+ζ⋆(p+r,m)+ζ⋆(m+r,p) +ζ(p)ζ(m)ζ(r)−ζ(p+m+r), p,m,r ∈ N/{1}. (3.10) ∞ ζ (m)ζ (p) n n From [7,17], we know that the quadratic sums can be evaluated in terms of nr n=1 zeta values and double zeta star values ζ⋆(s1,s2)Xin the following cases: m = p =r or m+p+r even (m,p,r ∈N/{1}) and m = 1,p+r ≤ 8. From example ∞ H ζ (3) 83 1 11 n n = ζ(7)+ ζ(3)ζ(4)− ζ(2)ζ(5), n3 8 4 2 n=1 X ∞ H ζ (2) 343 5 3 n n = − ζ(8)+12ζ(3)ζ(5)− ζ(2)ζ2(3)− ζ⋆(6,2), n5 48 2 4 n=1 X ∞ ζ2(2) 457 n = 11ζ⋆(6,2)+ ζ(8)+6ζ(2)ζ2(3)−40ζ(3)ζ(5). n4 18 n=1 X ∞ ζ (2) where ζ⋆(6,2) = n . n6 n=1 X Similarly, from (1.1), we have the following results ∞ n−1 (ζ(m)−ζ (m))(ζ(p)−ζ (p))(−1) n n n=1 X 1 ∞ ζ¯ (p) ∞ ζ¯ (m) = ζ(m)ζ(p)+ζ¯(m+p)− n − n , (3.11) 2 nm np ( ) n=1 n=1 X X ∞ (ζ⋆(p+1,p)−ζ⋆(p+1,p))(ζ⋆(q+1,q)−ζ⋆(q+1,q)) n n n=1 X 1 ∞ ζ2(p)ζ (q)+ζ (2p)ζ (q) ζ2(q)ζ (p)+ζ (2q)ζ (p) = n n n n + n n n n 2 nq+1 np+1 n=1(cid:26) (cid:27) X ∞ ∞ ∞ ζ (p)ζ (q) ζ (p) ζ (q) n n n n − − , (3.12) np+q+1 np+1 nq+1 ! ! n=1 n=1 n=1 X X X ∞ (ζ⋆(p+1,p)−ζ⋆(p+1,p))(ζ⋆(p+2,p)−ζ⋆(p+2,p)) n n n=1 X 2 1 ∞ ζ3(p)+ζ (p)ζ (2p) ζ2(p) 1 ∞ ζ (p) = n n n − n + n 2 np+2 n2p+2 2 np+1 ! n=1(cid:26) (cid:27) n=1 X X 8 ∞ ∞ ζ (p) ζ (p) n n − . (3.13) np+1 np+2 ! ! n=1 n=1 X X Next, we give a Theorem. Theorem 3.1 Let m,p ≥ 2 be integers, then have ∞ ∞ ∞ ζ(m)ζ (p)−ζ(p)ζ (m) H H n n n n = ζ(p) −ζ(m) +ζ(m)ζ(p+1)−ζ(p)ζ(m+1). n nm np n=1 n=1 n=1 X X X (3.14) Proof. First, we construct the following power function ∞ y = {H ζ (m)−ζ (m+1)}xn−1, x ∈(−1,1). n n n n=1 X By the definition of harmonic numbers, we can deduce that ∞ 1 1 1 y = H + ζ (m)+ − ζ (m+1)+ xn n n+1 n (n+1)m n (n+1)m+1 n=1(cid:26)(cid:18) (cid:19)(cid:18) (cid:19) (cid:18) (cid:19)(cid:27) X ∞ H ζ (m) = H ζ (m)−ζ (m+1)+ n + n xn. (3.15) n n n m (n+1) n+1 n=1(cid:26) (cid:27) X Therefore, from (3.15), we obtain the following relation ∞ ∞ H ζ (m) xn {H ζ (m)−ζ (m+1)}xn−1 = n + n . (3.16) n n n m (n+1) n+1 1−x n=1 n=1(cid:26) (cid:27) X X Then multiplying (3.16) by lnp−1x and integrating over (0,1), we have ∞ ∞ H ζ (m)−ζ (m+1) H ζ (m) n n n n n = + {ζ(p)−ζ (p)}. (3.17) np (n+1)m n+1 n n=1 n=1(cid:26) (cid:27) X X By a direct calculation, we obtain that ∞ ∞ ∞ ∞ H ζ (m) H ζ (p) H H ζ (m) n n n n n n n + = ζ(p) + + np nm nm np+m np+1 n=1(cid:26) (cid:27) n=1 n=1 n=1 X X X X ∞ ∞ ζ (m+1) ζ (m) n n − + {ζ(p)−ζ (p)}. (3.18) np n n n=1 n=1 X X Change m,p to p,m, we get ∞ ∞ ∞ ∞ H ζ (p) H ζ (m) H H ζ (p) n n n n n n n + = ζ(m) + + nm np np nm+p nm+1 n=1(cid:26) (cid:27) n=1 n=1 n=1 X X X X ∞ ∞ ζ (p+1) ζ (p) n n − + {ζ(m)−ζ (m)}. (3.19) nm n n n=1 n=1 X X 9 Combining (3.18) and (3.19), we can obtain (3.14). (cid:3) We note that ∞ ζ(m)ζ(p)−ζ (m)ζ (p) n n n n=1 X ∞ ∞ ζ(m)−ζ (m) ζ (m)(ζ(p)−ζ (p)) = ζ(p) n + n n , m,p ∈ N/{1}. (3.20) n n n=1 n=1 X X In [10], O. Furdui and C. Valean gave the following formula ∞ ζ(m)−ζ (m) n = ζ⋆(m,1)−ζ(m+1). (3.21) n n=1 X Hence, combining (3.18), (3.20) and (3.21), we have the following corollary. Corollary 3.2 For positive integers m > 1,p > 1, then we have ∞ ζ(m)ζ(p)−ζ (m)ζ (p) n n n n=1 X ∞ H ζ (m) H ζ (p) = n n + n n +ζ⋆(p,m+1) np nm n=1(cid:26) (cid:27) X −ζ(p)ζ(m+1)−ζ⋆(p+m,1)−ζ⋆(p+1,m). (3.22) Similarly, noting that ∞ ζ (m)ζ(p)ζ(q)−ζ(m)ζ (p)ζ (q) n n n n n=1 X ∞ ∞ ζ(m)ζ(p)−ζ (m)ζ (p) ζ(m)−ζ (m) = ζ(m) n n −ζ(p)ζ(q) n , m,p,q ∈ N/{1}. n n n=1 n=1 X X Therefore, we also obtain the following corollary. Corollary 3.3 For positive integers m,p,q > 1, then we have ∞ ζ (m)ζ(p)ζ(q)−ζ(m)ζ (p)ζ (q) n n n n n=1 X ∞ H ζ (q) H ζ (p) n n + n n +ζ⋆(p,q+1) = ζ(m) np nq n=1(cid:18) (cid:19)  −Xζ⋆(p+q,1)−ζ⋆(p+1,q)−ζ(p)ζ(q+1) −ζ(p)ζ(q){ζ⋆(m,1)−ζ(m+1)}. (3.23)     Furthermore, we consider the following power series function ∞ y = {H ζ (p)ζ (q)−ζ (p+q+1)}xn−1, x ∈ (−1,1), n n n n n=1 X proceeding in a similar fashion to evaluation of the Theorem 3.1, we can give the following Theorem. 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.