ebook img

experimental studies on co2 capture using absorbent in a polypropylene hollow fiber membrane ... PDF

63 Pages·2011·1.53 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview experimental studies on co2 capture using absorbent in a polypropylene hollow fiber membrane ...

Mälardalen University Press Dissertations Mälardalen UniveNrsoi.t y10 P2ress Dissertations No. 102 EXPERIMENTAL STUDIES ON CO2 CAPTURE USING ABSORBENT IENX AP EPROILMYEPNRTOAPLY SLTEUNDEI EHSO OLLNO CWO 2F ICBAEPRT MUERME BURSAINNGE ACBOSNOTARCBTEONRT IN A POLYPROPYLENE HOLLOW FIBER MEMBRANE CONTACTOR Yuexia Lu Yuexia Lu 2011 2011 School of Sustainable Development of Society and Technology School of Sustainable Development of Society and Technology Copyright © Yuexia Lu, 2011 ISBN 978-91-7485-023-9 ISSN 1651-4238 Printed by Mälardalen University, Västerås, Sweden Mälardalen University Press Dissertations No. 102 Mälardalen University Press Dissertations No. 102 EXPERIMENTAL STUDIES ON CO2 CAPTURE USING ABSORBENT IN A POLYPROPYLENE HOLLOW FIBER MEMBRANE CONTACTOR EXPERIMENTAL STUDIES ON CO2 CAPTURE USING ABSORBENT Yuexia Lu IN A POLYPROPYLENE HOLLOW FIBER MEMBRANE CONTACTOR Yuexia Lu Akademisk avhandling som för avläggande av teknologie doktorsexamen i energi- och miljöteknik vid Akademin för hållbar samhälls- och teknikutveckling kommer att offentligen försvaras fredagen den 17 juni A20k1a1d, e1m0.0is0k i aLvahmanbddlai,n Mgälardalens högskola, Västerås. som föFra akvullätgetgsaonpdpeo anve ntet:k Unomlobgerieto d Doketsoidrseerxi,a Umneinv ei resniteyr goif- Poecrhu mgiial j(öItTeAkn)ik vid Akademin för hållbar samhälls- och teknikutveckling kommer att offentligen försvaras fredagen den 17 juni 2011, 10.00 i Lambda, Mälardalens högskola, Västerås. Fakultetsopponent: Umberto Desideri, University of Perugia (ITA) Akademin för hållbar samhälls- och teknikutveckling Akademin för hållbar samhälls- och teknikutveckling Abstract In recent years, membrane gas absorption technology has been considered as one of the promising alternatives to conventional techniques for CO capture due to its favorable mass transfer performance. 2 As a hybrid approach of chemical absorption and membrane separation, it exhibits a number of advantages, such as operational flexibility, compact structure, high surface-area-to-volume ratio, linear scale up, modularity and predictable performance. One of the main challenges of membrane gas absorption technology is the membrane wetting by absorbent over prolonged operating time, which may significantly decrease the mass transfer coefficients of the membrane module. In this thesis, the experimental was set up to investigate the dependency of CO removal efficiency and 2 mass transfer rate on various operating parameters, such as the gas and liquid flow rates, absorbent type and concentration and volume fraction CO at the feed gas inlet. In addition, the simultaneous 2 removal of SO and CO was investigated to evaluate the feasibility of simultaneous desulphurization 2 2 and decarbonization in the same membrane contactor. During 14 days of continuous operation, it was observed that the CO mass transfer rate decreased significantly following the operating time, which 2 was attributed to partial membrane wetting. To better understand the wetting mechanism of membrane pores during their prolonged contact with absorbents, immersion experiments for up to 90 days were carried out. Various membrane characterization methods were used to illustrate the wetting process before and after the membrane fibers were exposed to the absorbents. The characterization results showed that the absorbent molecules diffused into the polypropylene polymer during the contact with the membrane, resulting in the swelling of the membrane. In addition, the effects of operating parameters such as immersion time and absorbent type on the membrane wetting were investigated in detail. Finally, based on the analysis results, methods to smooth the membrane wetting were discussed. It was suggested that improving the hydrophobicity of polypropylene membrane by surface modification may be an effective way to improve the long-term operating performance of membrane contactors. Therefore, the polypropylene hollow fibers were modified by depositing a thin superhydrophobic coating on the membrane surface to improve their hydrophobicity. The mixture of cyclohexanone and methylethyl ketone was considered as the best non-solvent to achieve the fiber surface with good homogeneity and acceptably high hydrophobicity. In the long-period operation, the modified membrane contactor exhibited more stable and efficient performance than the untreated one. Hence, surface treatment provides a feasibility of improving the system stability for CO capture from the view of long-term operation. 2 ISBN 978-91-7485-023-9 ISSN 1651-4238 Abstract In recent years, membrane gas absorption technology has been considered as one of the promising alternatives to conventional techniques for CO capture due to its 2 favorable mass transfer performance. As a hybrid approach of chemical absorption and membrane separation, it exhibits a number of advantages, such as operational flexibility, compact structure, high surface-area-to-volume ratio, linear scale up, modularity and predictable performance. One of the main challenges of membrane gas absorption technology is the membrane wetting by absorbent over prolonged operating time, which may significantly decrease the mass transfer coefficients of the membrane module. In this thesis, the experimental was set up to investigate the dependency of CO 2 removal efficiency and mass transfer rate on various operating parameters, such as the gas and liquid flow rates, absorbent type and concentration and volume fraction CO 2 at the feed gas inlet. In addition, the simultaneous removal of SO and CO was 2 2 investigated to evaluate the feasibility of simultaneous desulphurization and decarbonization in the same membrane contactor. During 14 days of continuous operation, it was observed that the CO mass transfer rate decreased significantly 2 following the operating time, which was attributed to partial membrane wetting. To better understand the wetting mechanism of membrane pores during their prolonged contact with absorbents, immersion experiments for up to 90 days were carried out. Various membrane characterization methods were used to illustrate the wetting process before and after the membrane fibers were exposed to the absorbents. The characterization results showed that the absorbent molecules diffused into the polypropylene polymer during the contact with the membrane, resulting in the swelling of the membrane. In addition, the effects of operating parameters such as immersion time and absorbent type on the membrane wetting were investigated in detail. Finally, based on the analysis results, methods to smooth the membrane wetting were discussed. It was suggested that improving the hydrophobicity of polypropylene membrane by surface modification may be an effective way to improve the long-term operating performance of membrane contactors. Therefore, the polypropylene hollow fibers were modified by depositing a thin superhydrophobic coating on the membrane surface to improve their hydrophobicity. The mixture of cyclohexanone and methylethyl ketone was considered as the best non-solvent to achieve the fiber surface with good homogeneity and acceptably high hydrophobicity. In the long-period operation, the modified membrane contactor exhibited more stable and efficient performance than the untreated one. Hence, surface treatment provides the feasibility of improving the system stability for CO capture from the view of 2 long-term operation. Keywords: CO capture; Simultaneous removal of CO and SO ; Hollow fiber 2 2 2 membrane contactor; Membrane gas absorption; Partial wetting; Surface modification. I II Sammanfattning En av de tekniker som under senare framhållits som ett lovande alternativ till konventionell CO -avskiljning är membran-gas-absorptionstekniken på grund av god 2 prestanda vad gäller masstransport. Det blandade angreppssättet med både kemisk absorption och membranseparation har en rad fördelar, såsom driftflexibilitet, kompakt konstruktion, högt yt-volymsförhållande, linjär uppskalning, modularitet och förutsägbar prestanda. En av de viktigaste utmaningarna för membran-gas-absorptionstekniken är vätningen av membranet med absorbenten under långa drifttider, vilket väsentligt kan minska membranmodulens masstransportkoefficienter. I avhandlingen har en rad olika driftparametrars påverkan på CO -reningsgraden och 2 massöverföringshastigheten undersökts. Driftparametrar inkluderar gas- och vätskeflöden, typ av absorbent och koncentration och volymfraktion av CO vid 2 gasinloppet. Avskiljning av SO och CO har dessutom undersökts för att utvärdera 2 2 möjligheten att samtidigt, i samma membranenhet, avlägsna svavel och kol. Under 14 dagars kontinuerlig drift konstaterades det att massöverföringshastigheten för CO 2 minskade avsevärt med drifttiden, vilket hänfördes till partiell vätning av membranet. För att bättre förstå mekanismerna för vätning av membranporer under långvarig kontakt med absorbenter genomfördes doppningsexperiment i upp till 90 dagar. Olika metoder för karakterisering av membran användes för att illustrera vätningsprocessen före och efter det att membranfibrerna exponerades för absorbenterna. Resultaten av karakteriseringen visade att absorbentmolekylerna spreds in i polypropenpolymeren under kontakten med membranet, vilket ledde till att membranet svällde. Dessutom undersöktes effekterna av driftsparametrar såsom nedsänkningstid och typ av absorbent i detalj. Slutligen, på grundval av analysresultaten, diskuterades metoder för att underlätta vätningen av membran. Att förbättra polypropylenmembranets hydrofobicitet genom modifiering av ytan föreslogs kunna vara ett effektivt sätt att förbättra den långsiktiga driftprestandan för membranenheter. Därför modifierades de ihåliga fibrerna av polyproylen med ett tunt lager av en superhydrofob beläggning på membranets yta för att förbättra hydrofobiciteten. En blandning av cyklohexanon och metyletylketon ansågs vara det bästa icke-lösningsmedlet för att få en fiber yta med god homogenitet och acceptabelt hög hydrofobicitet. Under lång driftperiod, uppvisade den modifierade membranenheten stabilare och effektivare prestanda än den obehandlade. Därför erbjuder ytbehandling en möjlighet till att förbättra systemets stabilitet för CO -avskiljning när det gäller långsiktig drift. 2 Nyckelord: CO -avskiljning, samtidig avskiljning av CO och SO , ihålig fiber, 2 2 2 membran, gas absorption, vätning, ytmodifiering. III IV Acknowledgments I would like to express my deep and sincere gratitude to my supervisor in MDH, Professor Jinyue Yan, for his continued instructive guidance, invaluable suggestions and unlimited encouragement and support during my studies. His wide knowledge and his logical way of thinking have been of great value for me. He has provided an excellent example as a successful scientist and professor. I am deeply grateful to my supervisor in China, Professor Shandong Tu, who introduced me to the field of environmental engineering and provided me a lot of valuable opportunities to broaden my horizons. His understanding, encouragement and personal guidance have provided a good basis for the present thesis. I do appreciate his continuous guidance and support over these years. I owe my sincere gratitude to my co-supervisor in MDH, Professor Erik Dahlquist, whose enthusiasm and valuable advice are contagious and motivational for me, even during tough times in my Ph.D. pursuit. In addition, I wish to express my warm thanks to him and his family for their friendly help in life during my stay in Sweden. I am also grateful to my co-supervisor in China, Dr. Xinhai Yu for his guidance, patience and support. He is always ready to help me for experimental setup, constructive criticism, valuable advice, lots of good ideas and encouragement. I would like to thank Bioenergy Group members: Dr. Eva Thorin, Dr. Hailong Li, Dr. Weilong Wang, Eva Nordlander, Han Song, Lilia Daianova, Ana Paz, Elena Tomas Aparicio and Johan Lindmark for their care and attentions during my stay in Sweden. I wish to thank Dr. Emma Nehrenheim and Dr. Niklas Hedin for their valuable comments. Thank all kind and helpful staffs of HST department. I gratefully acknowledge Swedish Research Links Program, Mälardalen University and School of Mechanical and Power Engineering, East China University of Science and Technology (ECUST) for financial supporting of my research. I do appreciate China Scholarship Council and the Education Section of the Embassy of the People’s Republic of China in Sweden for the guidance and funding support. Finally, I am forever indebted to my beloved parents and husband for their love, moral supporting, understanding, endless patience and encouragement when it was most required. V VI

Description:
Abstract. In recent years, membrane gas absorption technology has been considered as one of the promising alternatives to conventional techniques for CO2 capture due to its favorable mass transfer performance. As a hybrid approach of chemical absorption and membrane separation, it exhibits a
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.