Experimental Performance and Recommendations for Qualification of Post-installed Anchors for Seismic Applications Von der Fakultät Bau- und Umweltingenieurwissenschaften der Universität Stuttgart zur Erlangung der Würde eines Doktor-Ingenieurs (Dr.-Ing.) genehmigte Abhandlung Vorgelegt von Philipp Mahrenholtz aus Braunschweig Hauptberichter: Prof. Rolf Eligehausen Mitberichter: Prof. Tara Hutchinson Prof. Jan Hofmann Tag der mündlichen Prüfung: 1. Juni 2012 Institut für Werkstoffe im Bauwesen der Universität Stuttgart 2012 I Mitteilungen des Instituts für Werkstoffe im Bauwesen; Band 2013/1 Mahrenholtz, P.: Experimental performance and recommendations for qualification of post-installed anchors for seismic applications Herausgeber: Institut für Werkstoffe im Bauwesen der Universität Stuttgart Prof. Dr.-Ing. Harald Garrecht Prof. Dr.-Ing. Jan Hofmann Anschrift: Institut für Werkstoffe im Bauwesen Pfaffenwaldring 4 70569 Stuttgart oder: Universität Stuttgart Institut für Werkstoffe im Bauwesen 70550 Stuttgart Telefon: (0711) 685 63324 Telefax: (0711) 685 63349 Redaktion: Dr.-Ing. Joachim Schwarte Dipl.-Bibl. Monika Werner D93 (cid:211) IWB; Stuttgart 2013 Alle Rechte vorbehalten ISSN 0932-5921 ISBN 978-3-9811682-7-3 II Abstract Ensuring the technical suitability of post-installed concrete anchors by means of pre-qualification has proved of great value over the last decades. A large variety of pre-qualified anchor products are available and designers, authorities and contractors can pick the most suitable and economic anchor product for the targeted use. While this system gained in general a high degree of refinement, the seismic application of anchors is still not well covered. For this reason, increased efforts were recently put on the research of seismic anchor performance. The research presented in this thesis contributed its share. This thesis constitutes a systematic and comprehensive approach to seismic anchor qualification based on extensive investigations. The goal of this work is to close the gap in knowledge relating to seismic anchor behaviour to enable amendments to existing qualification guidelines by meaningful tests allowing the assessment of the seismic performance. The initial scope of this thesis is to provide the foundation necessary to come up with a comprehensive scheme for the seismic qualification of post-installed anchors. After a brief introduction of the motivation, background and objectives of the research on anchors for use in seismic applications (Chapter 1), the state of the art of current qualification guidelines is discussed (Chapter 2). The extensive investigations carried out to overcome identified deficits in knowledge are presented and the key results are discussed (Chapter 3). Points identified as critical for seismic anchor performance supported the development of the seismic amendment of the European qualification guideline which testing protocols were verified by tests (Chapter 4). While the aforementioned tests were conducted under simulated seismic conditions, the tests presented in the second part were conducted under real seismic conditions. Therefore, shake table tests were carried out which enabled the comparison of the anchor behaviour on component and system level. The target was to evaluate whether the concept of future seismic pre-qualification tests sufficiently replicate the characteristic demands of a real earthquake. The test data was compared with the stipulated requirements and assessment criteria of the proposed pre-qualification tests (Chapter 5). Based on all test investigations, recommendations for seismic anchor pre-qualification are given and important aspects of seismic design are highlighted (Chapter 6). To predict the displacement behaviour, which is often critical for seismic qualification, a model to estimate the anchor displacement for a given load and crack demand is proposed (Chapter 7). Finally the findings are summed up and open questions requiring further research are formulated (Chapter 8). III Kurzfassung Der Nachweis der technischen Eignung von nachträglich im Tragwerk installierten Dübeln mit Hilfe von Zulassungsverfahren hat sich in den vergangenen Jahrzehnten etabliert und bewährt. Aus einer großen Auswahl an zugelassenen Dübeln können sich Planer, Behörden und Bausausführende für die jeweilige Anwendung geeignete und wirtschaftliche Produkte auswählen. Während dieses System im Allgemeinen sehr ausgereift ist, werden die besonderen Belastungen, die im Falle von Erdbeben auf Dübeln wirken, bis dato noch nicht ausreichend berücksichtigt. Dies hat in den letzten Jahren zu einer verstärkten Anstrengung in der Erforschung des Verhaltens von Dübeln unter Erdbebeneinwirkungen geführt. Die in dieser Promotionsarbeit vorgestellte Forschung leistet hierzu einen Beitrag. Sie stellt eine systematische und umfassende Behandlung der seismischen Qualifikation von Dübeln dar und basiert auf umfangreiche Untersuchungen. Das Ziel dieser Arbeit ist es, Wissenslücken über das Verhalten von Dübeln unter Erdbebenbelastung so zu schließen, dass bestehende Qualifikationsrichtlinien um sinnvolle Versuche für die Beurteilung der Erdbebentauglichkeit ergänzt werden können. Im Rahmen der Promotionsarbeit werden zunächst die Grundlagen erarbeitet, die für einen fundierten Ansatz zur seismischen Qualifikation notwendig sind. Nach einer kurzen Einleitung über die Motivation, Hintergründe und Ziele der Erforschung von Dübeln unter Erdbebenbelastungen (Kapitel 1), wird der gegenwärtige Stand der Qualifikationsrichtlinien erörtert (Kapitel 2). Die zur Beseitigung der daraus abgeleiteten Kenntnisdefizite durchgeführten Untersuchungen werden anschließend präsentiert und diskutiert (Kapitel 3). Jeder Aspekt, der als maßgeblich zur Charakterisierung des Verhaltens von Dübeln unter Erdbebeneinwirkung erkannt wurde, unterstützte die Erarbeitung einer entsprechenden Ergänzung der europäischen Qualifikationsrichtlinie, deren Prüfprotokolle anhand weiterer Versuche verifiziert wurden (Kapitel 4). Während die vorgenannten Versuche unter simulierten Erdbebenbedingungen durchgeführt wurden, wurden die Dübel bei den im zweiten Teil der Promotionsarbeit beschriebenen Versuchen unter realen Erdbebenbedingungen untersucht. Hierfür wurden Rütteltischversuche durchgeführt, die einen Vergleich des Verhaltens eines im Tragwerk eingebauten Dübels mit dem eines im Versuchskörper eingebauten Dübels ermöglichen. So konnte geklärt werden, ob das Konzept der zukünftigen Qualifikationsrichtlinien die charakteristischen Anforderungen eines echten Erdbebens widerspiegeln. Die Versuchsergebnisse wurden den vorgeschlagenen Anforderungen und Bewertungskriterien gegenübergestellt (Kapitel 5). Basierend auf den gewonnenen Erkenntnissen werden Empfehlungen für die seismische Qualifikation von Dübeln abgeleitet und wichtige Bemessungsaspekte aufgezeigt IV (Kapitel 6). Um das für die seismische Qualifikation oftmals maßgebende Verschiebeverhalten besser vorhersagen zu können, wird ein Modell zur Abschätzung der sich aus zyklischen Lasten und sich zyklisch öffnenden und schließenden Rissen ergebenen Dübelverschiebung vorgeschlagen (Kapitel 7). Abschließend werden die wesentlichen Erkenntnisse zusammengefasst und offene Fragen formuliert, die weitere Untersuchungen erfordern (Kapitel 8). V Acknowledgement First of all I would like to thank my PhD advisor Professor Rolf Eligehausen for his strong commitment to my doctoral work which continued steadily beyond his retirement. As my work at the Institut für Werkstoffe im Bauwesen, Universität Stuttgart (IWB) covered a broad range of anchor technology, I benefited from Professor Rolf Eligehausen’s remarkable expertise in this field of engineering. His support of my ideas for investigational approaches was very encouraging and resulted ultimately in a very challenging, but in many aspects rewarding stay at the University of California, San Diego (UCSD), a lighthouse of eathquake engineering. Professor Tara Hutchinson (UCSD) was not only a wonderful host on a professional and private level; she also served as a reputable source of knowledge in seismic engineering during my research career. Her apparently inexhaustible drive was always an inspiration to me and I am thankful for her enthusiastic acceptance to be a co-reviewer of my PhD thesis. I appreciate the instant support I experienced by co-reviewer Professor Jan Hofmann (IWB) when proposing the visiting stay at the UCSD and for giving me the opportunity to wrap up the research I conducted along five years of laboratory work, graduate teaching, computer administration and other obligations. I thank him to be member of the reviewing committee. Sincere thanks are given to Professor Manfred Bischoff for taking the chair of the examination board. I also would like to express my thanks to Professor Hans-Wolf Reinhardt (IWB) for his fortunate support in applying for governmental research funding. My thanks also go to Dr. Jörg Asmus (IEA Engineering Office) and Dr. Werner Fuchs (IWB) for the advice on friction tests, Professor Rob Dowell (San Diego State University) for the exchange on ductility, and Dr. Dieter Lotze (MPA Governmental Material Testing Institute) for his consultancy on group testing. Dr. Thilo Pregartner (formerly at IWB) is thanked for the fruitful discussions on many specific topics. Administrative staff of both universities had worked in the background to get things organised. The support of Heidi Bauer, Gisela Baur, Silvia Choynacki and Regina Jäger from the IWB, Simone Stumpp from the MPA, as well as Lynda Tran and Lindsay Walton from the UCSD is gratefully acknowledged. The dedicated and persistent support by IWB librarian Monika Werner is also highly appreciated. Laboratory staff of both universities was a pleasure to work with in a team. Eugen Lindenmeier and Peter Scherf are thanked for helping me with my always extraordinary servo control systems and test setups in the Anchor Lab, and Paul Greco is thanked for his outstanding commitment and diligent work style which was an important factor for the successful accomplishment of the shake table tests in the Powell Lab. Both laboratory managers, Bernd Schlottke and Andrew Gunthardt, are thanked for making their lab an enjoyable place to work. VI To a great extent, the research incorporated in this dissertation was funded by the company Hilti. For the financial support, but also for the mutual trust, I would like to thank Dr. Ulrich Bourgund, John Silva, and particularly Dr. Matthew Hoehler. Opinions, conclusions, and recommendations expressed in this thesis, however, are those of the author, and do not necessarily reflect those of the sponsor. The stay at the UCSD was also co-funded by the German Academic Exchange Service (DAAD) which is greatly appreciated. I also owe my thanks to my colleagues at the IWB and fellow students at the UCSD for whatever they taught me or for backing me on the long run to the end – this holds in particular for the sandwich generation who helped me to endure when I had to chew more than I bit off: Walter Berger, Ronald Blochwitz, Josipa Bošnjak, Barbara Chang, Stefan Fichtner, Yangyang Gao, Cenk Köse, Michael Potthoff, Saurabh Prasad, Dénes Sándor, Marina Stipetic, Wentao Zhu. Particular thanks go to Dr. Derrick Watkins (formerly at UCSD) and Dr. Richard Wood (formerly at UCSD), as well as to Dr. Christoph Mahrenholtz (formerly at IWB) and Akanshu Sharma (Bhaba Atomic Research Centre (BARC) and IWB) for sharing their professional experience and friendship over the years, and for proofreading my thesis. Finally, I would like to thank my wonderful wife and daughter for their many years’ patience when their husband and father left home in the crack of dawn and returned late-night. VII VIII Table of Contents Table of Contents Abstract III Kurzfassung IV Acknowledgement VI Table of Contents IX Notation XVII 1 Introduction 1 1.1 Motivation for Research on Anchors for Use in Seismic Regions 1 1.2 Context of Research on Post-installed Anchors for Seismic Applications 5 1.3 Objective of Research on Seismic Anchor Performance and Qualification 10 2 State of the Art of Qualification Guidelines 13 2.1 General 13 2.1.1 Design, Technical Approval, and Qualification of Anchors 13 2.1.2 European and German Anchor Qualification Guidelines 15 2.1.3 US Anchor Qualification Guidelines 16 2.1.4 Suitability and Serviceability Tests 17 2.1.5 Concrete strength classes 18 2.1.6 Mean and Characteristic Strength 19 2.1.7 Residual capacity, a -factors, and reduction 19 2.2 Loading Rate 20 2.2.1 European and German Anchor Qualification Guidelines 20 2.2.2 US Anchor Qualification Guidelines 21 2.2.3 Conclusions 21 2.3 Anchor Ductility 21 2.3.1 European and German Anchor Qualification Guidelines 22 2.3.2 US Anchor Qualification Guidelines 23 2.3.3 Conclusions 23 2.4 Anchor Groups 24 2.4.1 European and German Anchor Qualification Guidelines 24 2.4.2 US Anchor Qualification Guidelines 26 2.4.3 Conclusions 26 2.5 Cyclic Loads 27 2.5.1 European and German Anchor Qualification Guidelines 27 2.5.2 US Anchor Qualification Guidelines 28 2.5.3 Conclusions 29 IX Table of Contents 2.6 Cyclic Cracks 31 2.6.1 European and German Anchor Qualification Guidelines 31 2.6.2 US Anchor Qualification Guidelines 33 2.6.3 Conclusions 33 2.7 Simultaneous Load and Crack Cycling 35 2.8 Summary 36 3 Studies at Component Level: Simulated Seismic Tests 38 3.1 General 38 3.1.1 Anchor types 38 3.1.2 Failure modes and ultimate capacity 40 3.1.3 Concrete strength 42 3.1.4 Drill bit diameter 42 3.1.5 Seismic crack width 43 3.2 Loading Rate 43 3.2.1 State of knowledge 43 3.2.2 Pullout tests with various loading rates 45 3.2.2.1 Definition of loading rates 46 3.2.2.2 Definition of failure modes 47 3.2.2.3 Test setup and testing procedure 49 3.2.2.4 Experimental results and discussion 50 3.2.3 Additional testing on anchor friction mechanisms 52 3.2.3.1 Modified FEP II tests 53 3.2.3.2 Indentation tests 58 3.2.4 Conclusions 62 3.3 Anchor Ductility 63 3.3.1 State of knowledge 63 3.3.2 Background 65 3.3.2.1 Ductility in material sciences 65 3.3.2.2 Ductility in seismic engineering 67 3.3.2.3 Ductility in anchor technology 67 3.3.3 Development of anchor ductility parameters 69 3.3.3.1 Behavioural objectives and deformation parameters 69 3.3.3.2 Characteristic points and potential ductility parameters 71 3.3.4 Evaluation of data base 75 3.3.4.1 Characteristics of load-displacement curves and anchor types 75 3.3.4.2 Tension deformation capacities and percentage elongation criteria 77 X
Description: