Instructor’s Solutions Manual to accompany Experimental Methods for Engineers Eighth Edition J. P. Holman Professor of Mechanical Engineering Southern Methodist University Boston Burr Ridge, IL Dubuque, IA Madison, WI New York San Francisco St. Louis Bangkok Bogotá Caracas Lisbon London Madrid Mexico City Milan New Delhi Seoul Singapore Sydney Taipei Toronto PROPRIETARY MATERIAL. © 2012 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced, or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. A student using this manual is using it without permission. TABLE OF CONTENTS Chapter 2 ............................................................................................................................................... 1 Chapter 3 ............................................................................................................................................. 12 Chapter 4 ............................................................................................................................................. 62 Chapter 5 ............................................................................................................................................. 75 Chapter 6 ............................................................................................................................................. 82 Chapter 7 ............................................................................................................................................. 96 Chapter 8 ........................................................................................................................................... 114 Chapter 9 ........................................................................................................................................... 131 Chapter 10 ......................................................................................................................................... 141 Chapter 11 ......................................................................................................................................... 152 Chapter 12 ......................................................................................................................................... 167 Chapter 13 ......................................................................................................................................... 171 Chapter 14 ......................................................................................................................................... 176 Chapter 2 2-3 x 1 Amplituderatio = 0 = Fk0 ìïïïíéê1-(w1 )2ùú + éê2( a )( w1 )ùúüïïïý ïïïîêêë wn úúû êë cc wn úûïïïþ 1 = {[1-(0.4)2]2 +[2(0.7)(0.4)]2}12 amplitude ratio = 0.99 (Use Figure. 2-5) F(t) = F sinwt; x(t) = x sin(wt −φ) 0 1 0 1 timelag = t −t x F max max F(t) = F = max(when sinwt = 1) ∴wt = sin−11= π;t = 1 π 0 1 1 F 2 max w 2 1 ⎛ ⎞⎛ ⎞⎛ ⎞ tFmax = ⎜⎜⎜⎝410⎟⎟⎟⎟⎠⎜⎜⎜⎝π2⎟⎟⎟⎟⎠⎜⎜⎜⎝21π⎟⎟⎟⎟⎠ = 0.00625sec x(t) = x = max(whensin(wt −φ) = 1 ∴ (wt −φ) = sin−11= π 0 1 1 2 ⎛ ⎞ txmax = w1 ⎜⎜⎜⎝π2 +φ⎟⎟⎟⎟⎠ 1 ( )( ) 2 c w1 φ= tan−1 cc wn = tan−12(0.7)(0.4) 1−( w1 )2 1−(0.4)2 w n φ= 33.7° (UseFigure 2-6) txmax = 410⎢⎣⎡⎢π2 +33.7⎜⎜⎝⎛⎜1π80⎟⎟⎟⎠⎞⎟⎥⎦⎤⎥ = 0.054sec ∴ timelag = 0.54−0.000625 timelag = 0.0478sec 2-4 1 x = 0 ìïïïïíéê1-(w1 )2ùú2 + éê2( c )(w1 )2ùúüïïïïý12 Fk0 ïê w ú ê c w úï ïêë n úû êë c n úûï ïïî ïïþ For xF00 = 1.00 + 0.01= 1.01wehaveæççççèww1nö÷÷÷÷÷ø4 -0.04æççççèww1nö÷÷÷÷÷ø2 +1-æçççè1.101ö÷÷÷÷ø2 = 0and k w imaginary. 1 For xF00 = 1.00-0.01 = 0.99wehaveæççççèww1nö÷÷÷÷÷ø4 -0.04æççççèww1nö÷÷÷÷÷ø2 +1-æçççè0.199ö÷÷÷÷ø2 = 0 k w whichgives 1 = 0.306. w n w = (100)(2π) = 628rad/sec n w = (0.306)(628) 1 w = 192.1rad/sec = 30.6Hz 1 1 Chapter 2 SM: Experimental Methods for Engineers 2-5 T -T¥ = e-(R1C)t T -T 0 ¥ Att = 3sec,T = 200°F T −T∞ = 0.435.Att = 5sec,T = 270°F T0 −T∞ T −T∞ = 0.1304 T0 −T∞ 1−0.632 = 0.328 RC ≈ 3.4sec 2-6 E2 P = AB R EAB = EççççèæR +R R ö÷÷÷÷÷ø i æ R ö2 P = R1R çççççççè RRR+i1÷÷÷÷÷÷÷÷ø i i 2 SM: Experimental Methods for Engineers Chapter 2 2-7 1 Readability → inch 64 1 Leastcount → inch 32 2-8 t = RC = timeconstant t = (106ohms)(10-5f) = 10sec t = 10sec 2-9 é(R + R)- Rù %error = ê i ú´100 ê ú êë (R + Ri) úû 5000 = ´100 25,000 %error = 20% 2-10 E2 R P = AB;E = E R AB R + R i E = 100v R = 20,000ohms R = 5000ohms i P = ER2⎜⎝⎜⎜⎜⎛R +R Ri⎟⎟⎠⎟⎟⎞2 = 21(1004)4 ⎢⎣⎢⎢⎡22.5××110044⎥⎦⎥⎥⎤ = 0.32Watts dP Maximumpower occurs when = 0 → R = R ∴R = 5000ohms i dR Pmax = ER2⎛⎜⎜⎜⎝2PR⎞⎟⎟⎟⎟⎠2 = 2.01×04104 = 5000Watts When R = 1000ohmsand R = 5000ohms: i ⎡ ⎤2 104 ⎢ 103 ⎥ 10 volts2 P = ⎢ ⎥ = = 0.278Watts 103 ⎢⎣6×103⎥⎦ 36 ohm 2-11 mx+ kx = 0 k k k x+ x = 0wherew2 = → w = n n m m m From the static deflection: kΔ = mg where Δ = deflection= 0.5cm 980 cm k = g → w = g = sec2 m Δ n Δ 0.5cm w = 44.3 rad/sec n 3 Chapter 2 SM: Experimental Methods for Engineers 2-12 Δ = 0.25 inch; g = 386 in/sec2 986 in. w = g = sec2 = 39.4 rad/sec n Δ 0.25in. 2-14 w = 39.4 rad/sec = 6.27 Hz n w x c w 0 for = 0 wn F0 cc k 20 3.19 0.108 40 6.38 0.025 60 9.57 0.011 2-15 dV = −cV V = e−cτ dτ V 0 dV Atτ= 0, V = 10 liters, = −6 dτ c = 0.6hr−1 2-16 (1 lbf/in2)(4.448N/lbf)(144in2/ft2)(3.282 ft2/m2) = 6890N/m2 1 kgf = 9.806 N 1 lbf/in2 = (6890)(9.806) = 67570kgf/m2 = 6.757kp/cm2 2-17 ⎛ ⎞ (mi/gal)(5280 ft/mi)⎜⎜⎜⎝2131 gal/in3⎟⎟⎟⎟⎠(1728 in3/ft3) ⎛ ⎞ ×(35.313 ft3/m3)⎜⎜⎜⎝10100 m3/l⎟⎟⎟⎟⎠×(3.2808×10−3km/ft) = 4.576 km/l 2-18 (lbf-s/ft2)ççççèæ32.17llbbmf sf2t ö÷÷÷÷ø = 32.17 lbm/s·ft ´(0.454 kg/lbm)(3.2808 ft/m) = 47.92kg/m·s 2-19 ⎛ ⎞ ⎛ ⎞ (kJ/kg·°C)⎜⎜⎝⎜1.0155 BktJu⎟⎟⎟⎠⎟(0.454 kg/lbm) × ⎜⎜⎝⎜95°C/°F⎠⎟⎟⎟⎟ = 0.2391 Btu/lbm·°F ⎛ ⎞⎛ ⎞ (kJ/kg·°C)⎜⎜⎜⎝4.1182 kkcJal⎟⎟⎟⎟⎠⎜⎜⎜⎜⎝10100 kgg⎟⎟⎟⎟⎠ = 2.391×10−4 kcal/g-°C 2-20 ⎛ ⎞ ⎛ ⎞ (g/m3)(0.02832m3/ft3)⎜⎜⎜⎝4154 lbm/g⎟⎟⎟⎟⎠×⎜⎜⎜⎝321.17 slug/lbm⎟⎟⎟⎟⎠ = 1.939×10−6 slug/ft3 4 SM: Experimental Methods for Engineers Chapter 2 2-21 ⎛ ⎞ ⎛ ⎞ (Btu/h-ft-°F)(1055 J/Btu)⎜⎜⎜⎝36100 sec/h⎟⎟⎟⎟⎠×(107erg/J)⎝⎜⎜⎜95°F/°C⎟⎟⎟⎟⎠ ⎛ ⎞ = 5.275×106 erg/s·ft·°C×⎜⎜⎜⎝12×12.54 ft/cm⎟⎟⎟⎟⎠ = 1.731×105 erg/s·cm·°C 2-22 ⎛ ⎞2 (cm2/s)⎜⎜⎜⎝2.541×12 cfmt ⎟⎟⎟⎟⎠ = 1.076 ft2/s 2-23 ⎛ ⎞⎛ ⎞3 (W/m3)⎜⎜⎜⎜⎝3.413WBt·uh⎟⎟⎟⎟⎠⎜⎜⎜⎝3.21808 mft ⎟⎟⎟⎟⎠ = 0.09664 Btu/h·ft3 2-24 ⎛ ⎞ (dyn(cid:8836)s/cm2)(10−5N/dyn)(0.2248 lbf/N)×(2.54×12 cm/ft)2⎜⎜⎜⎝32.17llbbmf sf2t ⎟⎟⎟⎟⎠ = 0.0672 lbm/s(cid:8836)ft×3600 s/h lhm = 241.8 h(cid:8836)ft 2-25 W 3.413 Btu/W(cid:8836)h × cm3 ( 1 )2 in2 × 1 ft2 2.54 cm2 144 in2 W ×3170 = Btu/hr-ft2 cm2 2-26 ft-lbf 0.3048 m ´4.448 N J R = 1545 ´ ft lbf = 8305 lbm(cid:8836)mol(cid:8836)°R 0.454 kg ´ 5 °Κ kg mol (cid:8836)(cid:8720)°K lbm 9 °R 2-27 cms3 ×⎛⎜⎜⎜⎝2.154⎞⎠⎟⎟⎟⎟3cimn33 × 2131gina2l cm3 ×0.01585 = gal/min s 2-28 9 °R = °K 5 5