ebook img

Experimental Glycoscience: Glycochemistry PDF

254 Pages·2008·2.519 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Experimental Glycoscience: Glycochemistry

Experimental Glycoscience Glycochemistry N. Taniguchi, A. Suzuki, Y. Ito, H. Narimatsu, T. Kawasaki, S. Hase (Eds.) Experimental Glycoscience Glycochemistry Naoyuki Taniguchi, M.D., Ph.D. Professor, Department of Disease Glycomics, Research Institute for Microbial Diseases, Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Systems Glycobiology Group, Advanced Science Institute, RIKEN, Wako, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan Akemi Suzuki, M.D., Ph.D. Professor, Institute of Glycotechnology, Future Science and Technology Joint Research Center, Tokai University, Hiratsuka, Kanagawa 259-1292, Japan Yukishige Ito, Ph.D. Chief Researcher, RIKEN Discovery Research Institute, Synthetic Cellular Chemistry Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan Hisashi Narimatsu, M.D., Ph.D. Research Center for Medical Glycoscience, Advanced Industrial Science and Technology, AIST Tsukuba, Central 2, Tsukuba, Ibaraki 305-8568, Japan Toshisuke Kawasaki, Ph.D. Professor, Research Center for Glycobiotechnology, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga 525-8577, Japan Sumihiro Hase, Ph.D. Professor, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan ISBN: 978-4-431-77923-0 Tokyo Berlin Heidelberg New York eISBN: 978-4-431-77924-7 Library of Congress Control Number: 2008930134 Cover: A ribbon diagram of a legume lectin (Lathyrus ochrus isolectin II) complexed with a biantennary glycan (stick model). Image created by Dr. Yoshiki Yamaguchi © Springer 2008 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfi lms or in other ways, and storage in data banks. The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a specifi c statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Product liability: The publisher can give no guarantee for information about drug dosage and application thereof contained in this book. In every individual case the respective user must check its accuracy by consulting other pharmaceutical literature. Springer is a part of Springer Science+Business Media springer.com Printed in Japan Typesetting: SNP Best-set Typesetter Ltd., Hong Kong Printing and binding: Nikkei Printing, Japan Printed on acid-free paper Preface There is growing interest in glycoscience, which is known to be one of the most important research areas in the medical and life sciences. It is now clear that glycans are impli- cated in various diseases such as cancer, immune diseases, infectious diseases, muscle- degenerative diseases, neurodegenerative diseases, and diabetes. Glycans also play a pivotal role in fertilization, growth and development, regeneration, and the aging process. Moreover, glycans are likely targets for the discovery of biomarkers, vaccines, and drugs for cancer and infl ammatory diseases. For these reasons, scientists in every fi eld of research have realized that the application of glycoscience contributes to the development of their research projects. They also have a feeling, however, that glycoscience is technically diffi cult because of the heterogeneity and complexity of glycans. It is evident that many researchers from different disciplines who are not familiar with the specialized techniques used in glycoscience require detailed advice. Newly developed analytical techniques—namely, the development of mass spectrom- etry, capillary electrophoresis, and high-performance liquid chromatography—and the accumulated resources of cloned glycosyltransferase genes, lectins, chemically and/or enzymatically synthesized compounds, bioinformatics, and KO mice or gene-targeting animals have opened new avenues for glycoscience. The Japan Consortium for Glycobiology and Glycotechnology (JCGG) published the Japanese monograph entitled Glycoscience: A Door to Open the Future in 2006 written by more than 150 glycoscientists to summarize recent advances in this fi eld in Japan and to offer readers a broad introduction to glycoscience. This present book is the English version but is largely modifi ed and updated. Many of the contributors are experts in their respective fi elds and have made an effort to present their material in a manner that is understandable to those with general knowledge but with a different background in the biological sciences. The book is presented in three ways: 1) as a “cookbook” with which researchers will be able to prepare the solutions described and follow “recipes” to com- plete their experiments without needing to consult original research papers; 2) by “concept,” which will allow researchers to search out the discipline, research equipment, research device, or methodology required; and 3) as a “table” providing an overview of the research data, among other information. For those who wish to delve into these topics, we included several references at the end of each chapter for further reading. This book will therefore be of interest to many scientists both in glycoscience and in the broader fi elds of biology, chemistry, and medicine, as well as to postdoctoral fellows, students, and young scientists. I would like to take this opportunity to introduce the JCGG which was launched 5 years ago (Yoshitaka Nagai, JCGG president, professor emeritus, The University of Tokyo). The organization of this consortium is slightly different from that of the Con- sortium for Functional Glycomics (CFG) in the United States. Instead of receiving offi - cial support from the Japanese government for its operation, scientists took the initiative for creating and supporting the consortium by using their existing government research grants. Scientists who have been funded by different ministries of the Japanese govern- ment, such as the Ministry of Education, Culture, Sports, Science and Technology V VI Preface (MEXT); the Japan Society for the Promotion of Science (JSPS); the Japan Science and Technology Agency (JST); the Ministry of Economy, Trade and Industry (METI); the New Energy and Industrial Technology Development Organization (NEDO); and the Ministry of Health, Labour and Welfare, are involved in this effort. They have joined together to form this consortium and to provide support through their individual research grants. The JCGG aims to facilitate the exchange of scientifi c information; the sharing of resources, equipment, and facilities; the fostering of young scientists; and the construc- tion of a database and infrastructures, among other goals. It also aims to launch national research centers in Japan, such as a Systems Glycobiology Center, where glycobiology can merge with such areas as nanotechnology, bioinformatics, and chemical biology to pursue the goals mentioned above, including medical applications. The JCGG holds an annual symposium in which more than 600 people usually participate. On behalf of the editors, I gratefully acknowledge all those who contributed to this volume despite their busy schedules. Special thanks are due to Mr. Keiichi Yoshida, the secretary general of JCGG, for his skillful assistance in editing. I also thank Kinpodo, Kyoto, who published the original Japanese version, for agreeing to publication of the English version. Thanks also go to the editorial staff members at Springer Japan, for their constant support, patience regarding the deadline for the manuscript, and skill in directing the production of this book. I hope this publication will provide an impetus for future research. On behalf of the editors, Naoyuki Taniguchi, MD, PhD February 10, 2008 Editorial Board Editors: Naoyuki Taniguchi, M.D., Ph.D. Department of Disease Glycomics, Research Institute for Microbial Diseases, Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Systems Glycobiology Group, Advanced Science Institute, RIKEN, Wako, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan Akemi Suzuki, M.D., Ph.D. Institute of Glycotechnology, Future Science and Technology Joint Research Center, Tokai University, Hiratsuka, Kanagawa 259-1292, Japan Yukishige Ito, Ph.D. RIKEN Discovery Research Institute, Synthetic Cellular Chemistry Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan Hisashi Narimatsu, M.D., Ph.D. Research Center for Medical Glycoscience, Advanced Industrial Science and Technol- ogy, AIST Tsukuba, Central 2, Tsukuba, Ibaraki 305-8568, Japan Toshisuke Kawasaki, Ph.D. Research Center for Glycobiotechnology, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga 525-8577, Japan Sumihiro Hase, Ph.D. Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan Co-editors: Koichi Furukawa, M.D., Ph.D., School of Medicine, Nagoya University, Japan Makoto Kiso, Ph.D., Faculty of Applied Biological Sciences, Gifu University, Japan Tomoya Ogawa, Ph.D., RIKEN Yokohama Institute, Japan Shoichi Kusumoto, Ph.D., Suntory Institute For Bioorganic Research, Japan VII Contents Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V Editorial Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VII Contents of Experimental Glycoscince: Glycobiology. . . . . . . . . . . . . . . . . . . . . . XII List of Contributors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XIII Part 1 Structural Analysis of Sugar Chains Section I Release of Sugar Chains and Labeling Chemical Liberation of N-linked Oligosaccharides from Glycoproteins S. Nakakita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Release of N-glycans by Enzymatic Methods N. Takahashi, H. Yagi, K. Kato . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Release of O-glycans by Chemical Methods S. Natsuka . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Release of O-glycans by Enzymatic Methods H. Iwase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Ceramidase and Related Enzymes M. Ito . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Labeling of Oligosaccharides S. Nakakita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Chemical Labeling of Sialyloligo/polymer C. Sato . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Separation of Oligosaccharides by 2D HPLC S. Natsuka . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Analysis of Oligosaccharides by Capillary Electrophoresis M. Kinoshita, K. Kakehi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Section II Sequence Analysis Energy-Resolved Mass Spectrometry (ERMS) of Oligosaccharide A. Kurimoto, S. Daikoku, O. Kanie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 LC/MS of N-Linked Oligosaccharides N. Kawasaki, S. Itoh, T. Yamaguchi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 VIII Contents IX Convenient Structural Characterization of Intact Glycosphingolipids by MALDI-TOF Mass Spectrometry with Increased Laser Power and Cooling Gas Flow M. Suzuki . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Structural Analyses of Glycoconjugates by NMR K. Kato, Y. Yamaguchi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Sugar Chain Analysis by Enzymatic Digestion and 2D Mapping by HPLC M. Maeda, Y. Kimura . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Analysis of Binding Sites of Sugar Chains by Methylation Analysis S. Hase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Glycan Profi ling J. Hirabayashi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Monoclonal Antibody as a Clue to Structural Analysis of Bioactive Functional Glycoconjugates R. Kannagi, N. Kimura . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Microsequencing of Functional Chondroitin Sulfate Oligosaccharides K. Sugahara, S. Yamada . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Structural Characterization of PA-oligosaccharide Isomers Derived from Glycosphingolipids by MALDI-TOF Mass Spectrometry M. Suzuki . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Structural Analysis of Phospho-Glycosphingolipids in Lower Animals S. Itonori, M. Sugita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Structural Analysis of Polysialic Acid C. Sato, K. Kitajima . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Milk Oligosaccharides: Structural Characterization and Future Aspects T. Urashima . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Section III Sugar Chain Analysis by Mass Spectrometry An XML Description of Carbohydrate Structures N. Kikuchi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Construction of a Diagnostic Library for Glycans Using Multistage Tandem Mass Spectrometry (MSn) A. Kameyama . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 A Method for Large-Scale Analysis for N-linked Glycoproteins by the Glycosylation Site-Specifi c Stable Isotope-Labeling and LC/MS Shotgun Technology H. Kaji, T. Isobe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Mass Spectrometry of Glycopeptides Y. Wada . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 X Contents Development of MS Method for the Analysis of Sugar Peptide K. Takahashi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Calculations for Saccharides by the Use of MS Data K. Fukui . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Section IV Analysis of the Three-dimensional Structure of Sugar Chains Molecular Modeling of Oligosugar Structures M. Ishiguro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Prediction of Sugar-Binding Sites on Proteins T. Shirai . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 Section V Analysis of Sugar–Protein Interactions Frontal Affi nity Chromatography: An Effective Analytical Tool for Protein–Sugar Interaction K. Kasai . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 Analyses of Sugar–Protein Interactions by NMR Y. Yamaguchi, K. Kato . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 Surface Plasmon Resonance and Sugar Chip Analysis for Sugar Chain– Protein Interactions Y. Suda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 Analysis of Interactions Between Carbohydrates and Proteins Using Capillary Affi nity Electrophoresis M. Kinoshita, K. Kakehi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 Equilibrium Dialysis S. Natsuka . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 Interaction Assay of Oligosaccharide with Protein Using Fluorescence Polarization (FP) and Fluorescence Correlation Spectroscopy (FCS) T. Inazu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 Development of Neoglycoconjugate Probes and Detection of Lectins H. Ogawa, K. Nakagawa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 Part 2 Chemical Synthesis of Sugar Chains Section VI Chemical Synthesis of Sugar Chains Synthesis of Glycolipid and Its Application H. Ishida, M. Kiso . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 Chemo-Enzymatic Synthesis of Glycoconjugates T. Inazu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 Contents XI Construction of O-Linked Glycopeptide Library Using Human Glycosyltransferases H. Ito . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 Alteration of N-Linked Oligosaccharides Y. Kajihara . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 Stationary Solid-Phase Reaction (SSPR) for Oligosaccharide Synthesis T. Ako, O. Kanie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 Sugar Chain Synthesis by the Use of Cell Functions T. Sato . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 Glyco-Chemistry Cycle System Based on Glycosidases S. Shoda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 Endoglycosidases (Glycosaminoglycans) I. Kakizaki, K. Takagaki . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 Oligosaccharide Synthesis Based on Combinatorial Chemistry and Labo Automation H. Tanaka, T. Takahashi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 Endoglycosidases (Glycoproteins) K. Takegawa, K. Yamamoto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 Glycosaminoglycans J. Tamura . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 Recent Advances in the Production of Mammalian-Type Sugar Chains in Yeast Y. Chiba, Y. Jigami . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 Solid-Phase Synthesis of Glycopeptides Y. Nakahara, H. Hojo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 Effi cient Synthesis of Oligosaccharides and Synthesis of Pathogen- Associated Molecular Patterns for Their Biofunctional Studies K. Fukase, Y. Fujimoto, K. Tanaka . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 Sugar Polymers (Dendrimers and Pendant-Type Linear Polymers) K. Matsuoka . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 Rapid Synthesis of Oligosaccharides: Resin Capture–Release Strategy Y. Ito, S. Hanashima . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 Glossary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.