ebook img

Experimental determination of absorbed dose to water in a scanned proton beam using a water ... PDF

96 Pages·2010·8.82 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Experimental determination of absorbed dose to water in a scanned proton beam using a water ...

ETH Library Experimental determination of absorbed dose to water in a scanned proton beam using a water calorimeter and an ionization chamber Doctoral Thesis Author(s): Gagnebin, Solange Estelle Publication date: 2010 Permanent link: https://doi.org/10.3929/ethz-a-006186920 Rights / license: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information, please consult the Terms of use. Diss. ETH No. 19139 Experimental determination of absorbed dose to water in a scanned proton beam using a water calorimeter and an ionization chamber A dissertation submitted to the SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZURICH for the degree of DOCTOR OF SCIENCES presented by Solange Estelle GAGNEBIN MSc Physics University of Neuchâtel born June 24, 1982 citizen of Tramelan (BE), Switzerland accepted on the recommendation of Prof. Dr. G. Dissertori, examiner Prof. Dr. J.-L. Vuilleumier, co-examiner PD Dr. D. Twerenbold, co-examiner Zurich 2010 Abstract In the clinical environment, the dose delivered by the radiotherapy installation is controlled regularly in order to prevent damage to the healthy patient tissues. On the other hand, a correct dose has to be delivered in order to destroy the tumor in an optimal way. The reference physical quantity for the energy absorbed in tissue is the absorbed dose to water. This quantity is routinely measured with ionization chambers. However, ionization chambers have to be cal- ibrated in order to convert the measured electrical charge into ab- sorbed dose to water. The currently used protocols demand that these conversion factors have to be traceable to a primary standard of absorbed dose to water. The preferred primary standard is a wa- ter calorimeter, which determines the dose directly by measuring the temperature increase in water. This thesis presents experimen- tal results of the water calorimeter developed by the Federal Office of Metrology (METAS) exposed to the scanned proton beams at the Paul Scherrer Institute (PSI). Ionization chamber measurements are compared with the direct determination of absorbed dose to water from the water calorimeter. The agreement of 3.2% of the dose values measured by the two techniques are within their respective statistical uncertainties, and confirm the possibility to use a water calorimeter as primary standard for all types of existing proton ther- apy systems. In addition, different types of ionization chambers have been ex- posed to identical proton doses in order to compare their chamber specific correction factors k . The measurements confirm the rec- Q ommended k values as proposed by the protocols. Q Résumé Dans l’environnement hospitalier, la dose délivrée par les installa- tions de radiothérapie est contrôlée régulièrement pour prévenir d’éventuels dommages dans les tissus sains des patients. D’autre part, une dose correcte doit être délivrée pour détruire les tumeurs de façon optimale. La grandeur physique de référence pour l’énergie absorbée dans les tissus est la dose absorbée dans l’eau. Cette grandeur est mesurée systématiquement avec des chambres ion- isantes. Cependant, les chambres ionisantes doivent être calibrées pourconvertirlamesuredechargeélectriqueendoseabsorbéedans l’eau. Les protocoles actuellement utilisés exigent que les facteurs de conversion soient reliés à un étalon primaire pour la dose ab- sorbéedansl’eau. L’étalonprimairedepréférenceestuncalorimètre àeauquidétermineladosedirectementenmesurantl’augmentation de la température dans l’eau. Cette thèse présente les résultats ex- périmentaux obtenus avec le calorimètre à eau, développé à l’Office Fédéral de Métrologie (METAS), exposé au faisceau de protons scan- nés de l’Institut Paul Scherrer (PSI). Les mesures d’une chambre ion- isante sont comparées avec la détermination directe de la dose ab- sorbée dans l’eau provenant du calorimètre à eau. Les valeurs de la dose mesurée par les deux techniques sont en accord dans les 3.2% selon leurs incertitudes respectives, ce qui confirme la possi- bilité d’utiliser le calorimètre à eau comme étalon primaire pour tous les types de systèmes de protonthérapie existants. Deplus,différentstypesdechambresionisantesontétéexposées à une dose identique dans le faisceau de protons pour comparer leur facteur k spécifique à chaque chambre. Les mesures confirment les Q valeurs k recommandées par les protocoles. Q Metaphor Figure 1: Metaphor for the absorbed dose to water in a scanned proton beam using a water calorimeter. "A picture is worth a thousand words". This section presents an analogy with paintings that illustrates the heart of the project. In the upper left corner of the figure, a Pop art painting (Alex Katz- 1970-"Vincent with Open Mouth") shows a large homogeneous col- ored area. In the lower left corner a Pointillism painting (Paul Signac- 1892-"Femmes au puits") is shown with a lot of points of different colors. Lookingatthesquareareaofgrass, theareainthePopartstyleis homogeneously green and in the Pointillism style the grass is a com- binationofblue, yellowandgreenspots. Decreasingthedistancebe- tweenthepaintingandtheeye,theappearanceofthegrasschanges in the Pointillism style, but not in the Pop art style. Thus in the Pop art style, the grass is always a homogeneous green area, but in the Pointillism style the eye can zoom into the grass and sees only blue, yellow or green spots. Zooming out the eye, one sees green grass as in the Pop art style. Important to the painter is that the observer sees green grass in the painting. Now that the figure has been described, the link between the ii paintings and the absorbed dose to water in a scanned proton beam using a water calorimeter can be explained. The Pop art represents the traditional passive scattering method for proton therapy, where the protons are diffused in an homoge- neous way. The Pointillism represents the PSI spot scanning tech- nique with deposition of protons by spots. The grass square is the irradiation area in the water. The colors (homogeneous green, or the blue, yellow or green spots) represent the temperature increase ow- ing to the deposited dose into water. The temperature increase is not the same for all the spots (different colors). The eye, which sees the colors, is the water calorimeter. The water calorimeter is like a thermometer, which detects the temperature increase. In the traditional passive scattering method for proton therapy (Pop Art), the water calorimeter is able to measure correctly the to- tal temperature increase (green grass), in other words the total ab- sorbed dose. Will in the PSI spot scanning technique the water calorimeter also be able to measure the total temperature increase (green grass)? Or will only a part of the temperature increase be measured (the blue, yellow or green spots)? The aim of the thesis is to investigate whether the water calorimeter is able to measure the total absorbed dose to water in a scanned proton beam (green grass). If this is the case, thewatercalorimetercanbeusedasprimarystandardforboth proton deposition methods (passive scattering or spot scanning). Acknowledgments I first express my gratitude towards my Ph.D. supervisor, Prof. Dr. Günther Dissertori for his support and his valuable comments over the years. I wish to thank Prof. Dr. Ralph Eichler, my previous Ph.D. su- pervisor, for having encouraged the proton dosimetry project at the beginning when he was the PSI director and accepted to be my first Ph.D. supervisor. I wish to thank Prof. Dr. Jean-Luc Vuilleumier for having accepted to be my Ph.D. co-supervisor. I’d like to thank in particular Dr. Damian Twerenbold, head of METAS section Thermometry and Ionising Radiation and co-supervi- sor. His engagement, support, attention to detail, hard work, were an example for me during my Ph.D. I’dliketothankthePSIteamengagedinthisproject: ErosPedroni, David Meer, Adolf Coray, Silvan Zenklusen, Christian Bula, Terence Böhringer, Martin Grossmann and Christian Hilbes for beam time, technical support, and explanations during the measurements with the PSI scanned proton delivery system. I’d like to thank the new director of METAS Dr. Christian Bock, division head Dr. Philippe Richard, previous director Dr. Wolfgang Schwitz and previous division head Dr. Bruno Vaucher for having supported the proton dosimetry project over the last five years. I also thank some of my METAS colleagues: Dr. Sandor Vörös, Carel Meyer, Reto Schafer, Dr. Bénédicte Boillat, Dr. Anton Steiner, Johanna Saner, Alexander Tschudin, Gilles Zwahlen, Olivier Brunsch- wig of the section Thermometry and Ionising Radiation who have shared with me their know-how about dosimetry, chemistry and cal- ibration. Dr. Samuel Wunderli for his valuable explanation about the chemistry of the glass surface and Dr. Alain Küng for his advice how to position with precision the tip of the thermistors. The team of the section Electricity, in particular Dr. Frédéric Overney and Dr. Blaise Jeanneret for their know-how in Wheatstone bridge technique. And finally the technical services team for having manufactured quickly all the mechanical pieces I needed, the electronics services team for having fabricated, among others, the electronic boxes for the water calorimeter and the informatics services team for the good job done as helpdesk. Finally, I thank my family for their understanding and for giving me confidence during my Ph.D. Contents 1 Introduction 1 2 Physics of proton therapy 3 2.1 Proton interactions with matter . . . . . . . . . . . . . . . . . 3 2.1.1 Stopping power for electron interactions . . . . . . 5 2.2 Bragg Peak and Spread Out Bragg Peak . . . . . . . . . . . 9 3 Realization of proton therapy 12 3.1 PSI proton beam: proton source and accelerator . . . . . . 12 3.2 Traditional passive scattering method for proton therapy 13 3.3 PSI spot scanning technique . . . . . . . . . . . . . . . . . . . 13 3.3.1 Gantry 1: the first Gantry at PSI . . . . . . . . . . . . 15 3.3.2 Gantry 2: the new generation. . . . . . . . . . . . . . 15 3.4 Dosimetry in proton therapy . . . . . . . . . . . . . . . . . . . 18 4 Ionization Chamber for Dosimetry 19 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.2 Definition of relevant quantities for cavity theory . . . . . 20 4.3 Bragg-Gray theory (cavity theory) . . . . . . . . . . . . . . . 21 4.4 Stochastic and nonstochastic quantities . . . . . . . . . . . 24 4.5 The Charged-Particle Equilibrium (CPE) . . . . . . . . . . . . 25 4.6 The Spencer-Attix theory . . . . . . . . . . . . . . . . . . . . . 26 4.7 The absorbed dose to water with an ionization chamber 28 4.7.1 The dosimeter reading M . . . . . . . . . . . . . . . . 29 Q 4.7.2 The calibration factor N . . . . . . . . . . . . . . 30 D,,Q0 4.7.3 The correction factor for the radiation quality of the beam k . . . . . . . . . . . . . . . . . . . . . . . 31 Q,Q0 4.7.4 Relation between the absorbed dose to air D r and the absorbed dose to water D . . . . . . . . . . 33  4.8 Summary of the ionization chamber theory . . . . . . . . . 36 4.9 Measuring absorbed dose with Ionization Chambers . . . 38 4.9.1 Ionization chambers . . . . . . . . . . . . . . . . . . . . 39 4.9.2 Electrometer . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.9.3 Barometer and thermometer . . . . . . . . . . . . . . 42 4.9.4 Phantoms and sleeves for the chambers. . . . . . . 42 4.10Dose measurements with the Ionometric Dosimeter . . . 43 4.10.1Dosimeter calibration with 60Co . . . . . . . . . . . . 43 4.10.2Proton Measurement Procedure . . . . . . . . . . . . 45 5 Results of Proton irradiation of Ionization Chamber 47 5.1 Dose measurement with the Ionometric Dosimeter . . . . 47 5.2 Experimental verification of the correction factor k Q,Q0 for protons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 References v 6 Water Calorimetry as Primary standard 56 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 6.2 The absorbed dose to water in a water calorimeter . . . . 56 6.3 The METAS Sealed Water Calorimeter . . . . . . . . . . . . . 59 6.3.1 The Water calorimeter and electronics . . . . . . . . 59 6.3.2 Glass vessel . . . . . . . . . . . . . . . . . . . . . . . . . 63 6.3.3 Thermistor . . . . . . . . . . . . . . . . . . . . . . . . . . 64 6.4 Water calorimeter: preparation and measurement pro- cedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.4.1 Water calorimeter preparation . . . . . . . . . . . . . 72 6.4.2 Measurement procedure . . . . . . . . . . . . . . . . . 75 7 Results of Proton irradiation of Water Calorimeter 77 7.1 Determining the absorbed dose from the lock-in ampli- fier voltage change . . . . . . . . . . . . . . . . . . . . . . . . . 77 7.2 Dose deposition of a scanned proton beam . . . . . . . . . 79 7.3 Comparingthedosemeasurementswiththewatercalorime- ter and ionization chamber. . . . . . . . . . . . . . . . . . . . 81 7.4 Uncertainties on the dose measurement . . . . . . . . . . . 82 7.5 Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 8 Conclusion 84 9 References 85 Introduction 1 1 Introduction 35’450newcasesofcancerarerecordedannuallyinSwitzerland(an- nual mean value between 2003 and 2006 [1]). More than half of the patientssufferingfromcanceraretreatedwithradiationtherapydur- ing their illness. Radiation therapy relies on the destructive effects of ionizing radiation on tumors. Different types of ionizing particles (photons, electrons, protons, heavy ions, neutrons) can be used, de- pending on the nature, the localization and size of the tumor. Pro- tons in the energy range between 70 and 230 MeV are increasingly used for radiation therapy of cancer [2], because protons deposit the maximum of the dose inside the tumor and minimize the effect on the surrounding healthy tissue. Compared to the clinical accel- erators for photons and electrons, which are commercially available and more than 6’000 units are installed world wide [3], proton and heavy ion facilities still operate in an often more experimental envi- ronment. Nevertheless, since 1954 more than 70’000 patients have been treated with charged particle beams [4]. All clinical radiation therapy units have to be regularly controlled toensurethecorrectenergyabsorbedinthepatienttissueaccording to the treatment plan. In radiotherapy the reference value for the energy absorbed in a tissue is the absorbed dose to water D ex- W pressed in the SI unit Gy = 1 Jole/kg. How to obtain this reference quantity is described in the protocol of the International Atomic En- ergy Agency (IAEA) Technical Report Serie (TRS) 398 [5]. This proto- col recommends to calibrate the ionization chambers used in proton therapy in a 60Co reference beam (photon energy 1 MeV), together with a calculated ionization chamber specific conversion coefficient k for the specific proton beam quality. However, the Interna- Q,Q0 tional Commission on Radiation Units and Measurements (ICRU) has recommendedintheirReportnr.78of2007[2], that"whenavailable, calorimeters should be used as primary standards or, alternatively, to confirm the proton calibration coefficient of the reference ioniza- tion chamber". Primary standards for absorbed dose to water can be realized using a water calorimeter, which is the most direct method (for a review of other calorimeters see [2]). Water calorimetry is an established primary standard for deter- mining the absorbed dose to water for external high energy photon beams [6, 7] and have already been used in scattering proton beams [8, 9]. In a water calorimeter, the absorbed dose is determined by measuring the temperature increase which is the product of the en- ergy absorbed and the specific heat of water. The aim of this thesis was to measure and compare the absorbed dose with a water calorimeter and different ionization chambers for scanned proton beams. To achieve this goal, the primary standard of the Federal Office of Metrology METAS water calorimeter for ex-

Description:
Figure 1: Metaphor for the absorbed dose to water in a scanned proton beam using a gous to Kerma (K) that represents the energy transferred to directly ionizing . fined). • Its value is equal to the expectation value Ne of a related stochas-.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.