JournalofCatalysis354(2017)287–298 ContentslistsavailableatScienceDirect Journal of Catalysis journal homepage: www.elsevier.com/locate/jcat Experimental and theoretical assessment of the mechanism of hydrogen transfer in alkane-alkene coupling on solid acids ⇑ Michele L. Sarazen, Enrique Iglesia DepartmentofChemicalandBiomolecularEngineering,UniversityofCalifornia,Berkeley,Berkeley,CA94720,UnitedStates a r t i c l e i n f o a b s t r a c t Articlehistory: ExperimentalandtheoreticalmethodsareusedtoprobethemechanismandsiterequirementsforC–C Received14April2017 bondformationandhydridetransfer(HT)reactionsofalkane-alkenemixturesonsolidacidswithdiverse Revised2August2017 acidstrengthandconfiningvoids.Suchmethodsprovidequantitativedescriptorsofreactivityintermsof Accepted6August2017 thepropertiesofmoleculesandsolidsforchemistriesthatenablethepracticeofalkylationandoligomer- Availableonline19September2017 izationcatalysis.Intheseprocesses,chaingrowthiscontrolledbyHTfromalkanestoalkene-derived boundalkoxidesformedviaoligomerizationorb-scission.Transitionstate(TS)treatmentsoftheelemen- Keywords: tarystepsthatmediatethesereactionsshowthatHTratesdependontheenergiesrequiredtodesorb Alkeneoligomerization alkoxidesascarbeniumionsandtocleavetheweakestC–Hbondingaseousalkanes.Theseenergiesserve Hydridetransfer asaccuratemoleculardescriptorsofhydridetransferreactivityand,takentogetherwiththeacidstrength Alkylation Zeolites andvanderWaalsstabilizationpropertiesofcatalyticsolids,providethekineticdetailsrequiredtopre- Confinement dicttherelativeratesatwhichalkoxidesreactwithalkenes(toformC–Cbondsandlargeralkenes)or Acidstrength alkanes(toacceptH-atomsanddesorbasalkanes)forchainswithabroadrangeofsizeandskeletal Heteropolyacids structure.ConfinementeffectsreflectthesizeoftheTSanditsprecursorsforC–CcouplingandHTrela- tivetothedimensionsoftheconfiningvoids,whichdeterminehowguestspeciesformvanderWaals contactswiththehostwithoutsignificantdistortions.Smallervoidspreferentiallystabilizethesmaller C–C bond formation TS over the larger structures that mediate HT. Acid strength, in turn, influences thestabilityofconjugateanionsattheion-pairTS:strongeracidsleadtohigherturnoverratesforC–C coupling and HT, but to similar extents, because their TS structures contain fully-formed framework anionsthatbenefitsimilarlyfromtheirmorestablecharacterinstrongeracids. PublishedbyElsevierInc. 1.Introduction stable, larger alkanes as products [3,5,6,12–15]. Hydride transfer can also lead to the formation of dienes and trienes from H- The practice of catalytic alkylation upgrades small alkanes by donors; such species can act as precursors to cyclic and unsatu- incorporating them into alkene oligomerization cycles through ratedmoleculesthatultimatelyformunreactiveresidues,thusren- thetransferofhydrogentogrowingchains,typicallyusingsulfuric deringacidsitesinaccessibleinsolidacidcatalysts. or hydrofluoric liquid acids [1,2]. Solid Brønsted acids contain TheseoligomerizationandH-transferreactions,aswellasmost much lower densities of protons and exhibit faster deactivation other reactions catalyzed by protons, involve full ion-pair transi- than these liquid acids [3–8], but avoid the environmental risks tion states, which vary in size among the different routes. These of materials corrosion and toxicity upon release, characteristics size differences allow some control of reactivity and selectivity that are ubiquitous in the case of liquid acids. The conversion of basedonthesizeofconfiningvoids,asaresultofthepreferential alkenes to larger chains, useful as chemicals and fuels, involves van der Waals stabilization of transition states of a certain size concurrent oligomerization, isomerization, b-scission, hydride [16–18]. Turnover rates for each given reaction also depend on transfer and cyclization reactions [9–11]. Hydride transfer from thechemical stabilityof theanion and thecation in the relevant alkanesto alkoxideintermediatesprovides strategies for regulat- ion-pairtransitionstate.Thestabilityoftheconjugateanionisdic- ingchaingrowthviacontrolledterminationaslessreactivealka- tatedbythestrengthofthesolidacid,whichisgiven,inturn,by nes, while consuming typically unreactive alkanes and forming thedeprotonationenergyoftheacid[19,20].Theorganiccationic moiety at the transition state becomes more stable as its proton affinityincreasesand,inthecaseofbimolecularhydridetransfer, ⇑ Correspondingauthor. astheenergyrequiredtoabstractahydridefromthedonorspecies E-mailaddress:[email protected](E.Iglesia). http://dx.doi.org/10.1016/j.jcat.2017.08.002 0021-9517/PublishedbyElsevierInc. 288 M.L.Sarazen,E.Iglesia/JournalofCatalysis354(2017)287–298 (dehydridation energy) decreases. The identity, structure, and and from 2,6-di-tert-butylpyridine titration uptakes for meso- energy of such cationic moieties are specific to the reactants porousacidsthatallowedthediffusionofsuchlargetitrants,which involved; their properties become the molecular descriptors of selectively interact with protons without binding on Lewis acid reactivityandselectivity,asthisstudyshowsthroughacombina- sites. Samples (15–50mg) were placed within a tubular reactor tionoftheoryandexperimentforalkane-alkenereactionsonsolids with plug-flow hydrodynamics (316 stainless steel; 12mm I.D.) thatdifferinacidstrengthandinthesizeandshapeoftheconfin- heldwithinathree-zoneresistively-heated furnace(AppliedTest ingvoidstructure. SystemsSeries3210;Watlowcontrollers;96Series).Thetemper- Alkene oligomerization turnover rates are limited by the ature was measured with a K-type thermocouple held within an kinetically-relevantformationofaC–Cbondbetweenanalkoxide internalconcentricthermowellplacedinthemiddleofthecatalyst andanunboundalkene[16].Thisstudyshowsthatthetransferofa bed.KegginPOMclusters(H-form)weretreatedinflowingHe(50 H-atomfromthealkanetoanalkoxidelimitsalkaneincorporation cm3g(cid:1)1s(cid:1)1;99.999%,Praxair)byheatingto503K(at0.083Ks(cid:1)1) intoalkeneoligomerizationcycles,leadingtoratesproportionalto toremoveadsorbedspeciesbeforereactionmeasurements.Alumi- thepressureoftheH-donoralkaneandtotheconcentrationofa nosilicatesweretreatedbeforecatalyticratemeasurementsina5% given alkoxide. The formation rates of C alkanes, through H- O inHestream(83.3cm3g(cid:1)1s(cid:1)1,Praxair)byheatingto818K(at 6 2 transfer from alkanes to bound hexoxides formed via propene 0.025Ks(cid:1)1)andholdingfor3htoconverttheNH+toH+,andthen 4 dimerization,dependonthesizeandshapeoftheconfiningvoids. cooledto503K.n-Butane(99.9%,Praxair),isobutane(99.9%,Prax- H-transfer transition state structures are significantly larger than air) or 2-methylbutane (99.5% HPLC grade, Sigma-Aldrich) were thosefordimerization,leadingtoratiosofH-transfertodimeriza- mixedintoastreamofpropene(99.9%,Praxair,Praxair)inHe.Liq- tionrateconstants(i.e.,selectivity)thatalsodependsensitivelyon uid2-methylbutanewasevaporatedintoaflowingHestream(UHP thevoidsizeoftheporousaluminosilicates.Bothtransitionstate Praxair)usingahigh-pressuresyringepump(TeledyneIscoSeries structures are, however, fully formed ion-pairs. Asa result, they D). The effluent was transferred through heated lines held above benefittothesameextentfromstrongeracids;consequently,acid 373Kintoagaschromatograph(Agilent6890),whereconcentra- strength does not influence the relative rates of oligomerization tionsweremeasuredusingflameionizationdetectionafter chro- andH-transferforprotonsresidingeitherwithinvoidslargerthan matographic separation with a methyl silicone capillary column thetransitionstatestructures(e.g.,Kegginpolyoxometalates dis- (AgilentHP-1column,50m(cid:3)0.32mm(cid:3)1.05lm film).Reactant persedonSiO andmesoporousaluminosilicates)orwithinvoids pressureswerevariedbydilutionwithHe(99.999%,Praxair)ata 2 ofsimilarsize,whichprovideweakorsimilarvanderWaalscon- systempressureheldconstantbyadome-loadedregulator(Tem- tacts,respectively. presco).Molecularspeciationwasconfirmedbytheuseofknown MoleculardescriptorsofH-transferreactivitymustconsiderthe compounds and by mass spectrometry after chromatographic stabilityofboththehydrideacceptors(alkoxides)andthehydride separation. donors(alkanes)astheyrearrangethecationicchargeatthetran- Alkene conversion turnover rates (per proton)were measured sitionstate;descriptorsmustalsoconsidertherelativesizeofthis intheabsenceco-fedalkanestodeterminealkeneoligomerization transitionstateanditsrelevantprecursors.Thus,measuredkinetic rates[16].Hydridetransferturnoverratesweredeterminedfrom rates for hydride transfer, which reflect energy differences the rate of formation of alkanes and reported either as the total between the transition state and its alkoxide precursor, decrease hydridetransferrate(thecombinedformationratesforallisomers asthealkoxidebecomessmaller.Theskeletalstructuresofbound withagivennumberofC-atoms)orastherateofformationofa alkoxidesalsoinfluencetheirpropertiesasH-acceptors,asshown givenskeletalisomer,whichreflectstheH-acceptorpropertiesof by the different rate constants for the formation of each skeletal the bound alkoxide with that specific skeleton. Selectivities are hexaneisomerfromtheirrespectiveboundandequilibratedhex- defined as the ratio of H-transfer and oligomerization rate con- oxideisomers.Similarly,theextentofsubstitutionatthehydride stantsandextractedfromkineticdatafordifferentacceptoralkox- donorincreaseshydridetransferratesforagivenalkoxide,because idesandH-donoralkanes. they lead to more stable cations at the bimolecular transition states that mediate such reactions. The results, calculations, and 2.2.Densityfunctionaltheorymethods concepts gleaned here through the use and benchmarking of experiment and theory have allowed the first accurate, quantita- Periodic density functional theory, as implemented in the tiveassessmentoftherelativereactivityoftherelevantmolecules Viennaabinitio simulation package (VASP)[24–27], was used to inalkane-alkenereactions.Theseassessmentshaveledtomolecu- optimizestructuresandenergiesforstableintermediateandtran- lar and catalyst descriptors, which taken together with previous sitionstatesinvolvedintheelementarystepsfordimerizationand studies [9,16], allow their reliable extrapolation to related reac- hydride transfer. A periodic plane-wave basis-set expansion to a tions and processes catalyzed by solid acids and relevant to the cutoffenergyof396eVwasusedtorepresentthewavefunctions practical upgrading and conversion of fuels, energy carriers, and forvalenceelectronsandprojector-augmentedwave(PAW)pseu- chemicalfeedstocks. dopotentials were used to account for electron-core interactions [28,29]. Exchange and correlation energies were calculated using the generalized gradient approximation and the revised Perdew– 2.Experimentalmethods Wang (PW91) functional [30]. A 1(cid:3)1(cid:3)1 Monkhorst–Pack k- pointmeshwasusedtosamplethefirstBrilliounzone[31]. 2.1.Materialsandratemeasurements Keggin POM clusters were described by placing full clusters (1.1nm diameter) at the center of cubic unit cells (3nm edge The properties and protocols used in the synthesis of the H+- length) in order to prevent electronic interactions among neigh- form of BEA, MFI, MOR, TON, and FAU zeolites, mesoporous boringcells[19,32].Minimumenergypathswerecalculatedusing silica-aluminaandKegginPOMclustersdispersedonmesoporous nudgedelasticband(NEB)methods[33]withstructuresconverged colloidal silica [21] have been reported elsewhere [9,16] and in to1(cid:3)10(cid:1)4eVforenergiesand0.3eVÅ(cid:1)1forforces.NEB-derived Table1;thesesampleswerepelleted,crushed,andsievedtoretain transition state structures were then refined using the Dimer l 180–250 maggregatesbeforeuse.Thenumberofprotonsineach method [34] with more stringent convergence for energies and samplewasdeterminedfromNH evolutionfromNH+-exchanged forces on each atom (10(cid:1)6 eV and 0.05eV Å(cid:1)1). The bridging 3 4 samplesforzeoliticacids(SupplementalInformation(SI);Fig.S1) O-atomsintheHPWPOMclusters(H PW O )wereusedasthe 3 12 40 M.L.Sarazen,E.Iglesia/JournalofCatalysis354(2017)287–298 289 Table1 Source,Si/Alratios,andprotoncountsforsolidacidsused. Sample Source Si/Alratio1 H+/T*ratio a BEA Zeolyst 11.8 0.392 BEA Zeolyst 43 1.02 MOR Zeolyst 10 0.862 MFI Zeolyst 43.8 1.02 TON [22,23] 24 0.402 LZ-210 Engelhard 7.5 0.372 Silica-Alumina Sigma-Aldrich 5.5 0.253 b Sample POMcontentonSilica(%wt.) POMsurfacedensity(POMnm(cid:1)2) Protons(H+/POM)3 H3PW12O40/SiO2 5 0.04 0.72 1 Elementalanalysis(ICP-OES). 2 NH3evolutionfromNH4+-exchangedsamples. 3 2,6-di-tert-Butylpyridinetitration. initialprotonlocationforoptimizationofboundintermediatesand agesinequilibriumwiththecorrespondinggaseousalkeneviaan transitionstates.Thechargeateachatominoptimizedstructures adsorptionconstantK.Mixturesofisomerswithdistinctpointsof i was determined by transforming converged wavefunctions into attachment at the surface give hKi values averaged over all such i localizedquasi-atomicorbitals(QUAMBO)[35–38]. bindingconfigurations(j)or,inthecaseofoligomer-derivedalkox- ides,overallskeletalisomers,becauseoftheirformationasequili- bratedmixtures[9,16]. 3.Resultsanddiscussion Thealkoxidescandesorbviadeprotonationtoformallskeletal anddoublebondalkeneisomers.Thesealkoxidescanalsodesorb 3.1.Hydridetransferratesfromalkanestoalkoxidesduring as the corresponding alkanes after hydride transfer (HT) when oligomerizationturnovers alkane co-reactants are present. This sequence of steps is illus- trated for isobutane-propene reactant mixtures in Scheme 1. HT Oligomerization turnovers on Brønsted acids involve the events introduce chain termination routes that can be exploited kinetically-relevantadditionofgaseousalkenestoboundalkoxides tocontrolthenumberofoligomerizationeventsthatoccur,which (Scheme 1) that are present at near saturation coverages during woulddependotherwiseonlyontheintrinsicdimerizationreactiv- catalysis,asshownbykinetic,spectroscopic,andtheoreticalstud- ity and adsorption-desorption thermodynamics of each alkoxide ies[16,39].Oligomerizationratesforanalkenewithicarbonatoms structure.TheseHTprocessesalsoallowtheincorporationofunre- aregivenby: activealkanesintooligomerizationcyclesatmodesttemperatures roligoi ¼kolighoK;i½Ci½iC(cid:4)½C(cid:4)ailk(cid:4)¼kolhigKo;iiK½Ci½C(cid:4)i(cid:4)2¼kohliKgo;iiKi½Ci(cid:4) ð1Þ (a4lk0o0x–i5d0e0,fKor).mHeTdfrreopmlactheseaallkkaennee-vdiaeriiovne-dpaailrkotrxaindseistiownitshtaatensotthheart i i i i i mediatethetransferofaH-atom.Theprimaryandtertiaryisobu- where k is the rate constant for the elementary reaction of a toxidesformed(inthecaseofisobutane)candesorbasisobutene, oligo,i gaseous alkene (Ci) with a bound alkoxide (Cialk) present at cover- but also react with propene to form C7 alkoxides that can either Scheme1. Isobutane-propenereactionpathwaysonsolidBrønstedacids.Equilibratedskeletalandregioisomersareindicatedby[...]. 290 M.L.Sarazen,E.Iglesia/JournalofCatalysis354(2017)287–298 deprotonatetoformgaseousC7alkenesoracceptahydridefrom keff ¼kHT;nijKij¼exp(cid:2)(cid:1)DG =RT(cid:3) ð4Þ isobutane to form C alkanes with the skeletal structure of the HT;nij hK i nij 7 3 boundalkoxides. Theturnoverrates(perH+)fortheformationofC6alkanesfrom DG ¼Gz (cid:1)GðgÞ(cid:1)GðgÞ(cid:1)ðhGalki(cid:1)GðgÞÞ ð5Þ isobutane-propene mixtures are proportional to isobutane pres- nij HT;nij n ij 3 3 sureonallmicroporousandmesoporousacids(Fig.1;0–250kPa TheformationofC alkenesandalkanesandtheincreaseinthe 7 isobutane; 9kPa propene; 503K). Such rates are consistent with C /C productratioswithincreasingisobutanepressure(Fig.S2,SI) 7 6 a kinetically-relevant bimolecular step in which the isobutane indicatethatisobutane-derivedalkoxidescanalsoreactwithpro- donortransfersaH-atomtothealkoxideacceptors(e.g.,C6alkox- pene in subsequent oligomerization steps. HT from isobutane to idesformedbypropenedimerization)onsurfacesnearlysaturated the predominant bound propoxide species also occurs, albeit at withpropene-derived alkoxidesas in the case of propenedimer- rateslowerthanthoseforlargeralkoxides;suchratesarealsopro- ization reactions in the absence of H-donor alkanes [16]. The portionaltotheprevalentisobutanepressure(Fig.2;BEA(a)and resultingrateequationforhydrogentransferis: HPW(b)). r ¼kij½Con(cid:4)½Caijlk(cid:4)¼kijKij½Con(cid:4)½Cij(cid:4)¼kijKij ½Cij(cid:4)½Co(cid:4) ð2Þ bonCd–Cfobrmonadtiocnlea(vvaiageit(sb-mscicisrsoisocno)poicccruervsercsoen)cutorrefonrtmly walkitohxiCd–eCs HTnij hK i½C (cid:4) hK i½C (cid:4) hK i ½C (cid:4) n 3 3 3 3 3 3 andalkeneswithintermediatecarbonnumbers(i.e.,notmultiples wherek istherateconstantfortheelementaryHTreactionfrom of i, the number of carbons in the monomer) [9]; these smaller ij analkane(Co)withnC-atomstoanalkoxideisomerj(Calk)withi alkoxidescanalsoundergoHTtoformthecorrespondingalkanes. n ij C-atoms,occurringonprotonssaturatedwithalkene-derivedalkox- The linear dependence of the rates of formation of these alkanes ides[16,39]thatareequilibratedwiththegas-phase(C )viaK .The (e.g. pentanes, Fig. 2; BEA (a) and HPW (b)) is also proportional ij ij totalrateofHTforapoolofalkoxideswithiC-atoms(r )is: toisobutanepressure,indicativeofacommonHTmechanismfor X HTni alkoxide acceptors of different size. HT turnover rates, however, rHTni ¼ rHTnij ð3Þ depend on the identity of both the alkoxide acceptor and the j alkanedonorandalsoontheacidstrengthandconfinementprop- ertiesofthesolidacids,asdiscussedinthesectionsthatfollow. Themeasuredrateconstant(keff )representsacombinationof HT;nij the intrinsic HT rate constant and the thermodynamic constants foralkoxideformationandreflects,inturn,afreeenergydifference 3.2.Effectsofconfinementandacidstrengthonhydridetransferrates (DGn;ij)thatisgivenbythedifferencebetweenthetransitionstate andrateconstants energy (Gz ) and those for the gaseous alkane (GðgÞ) and the HT;n;ij n TheslopeoftheratedatainFig.1reflectsthecombinationof alkoxideacceptor(GðgÞÞpresentonsurfacespredominantlycovered ij kineticandthermodynamicconstantsandofthe[Ci]and[C3]con- withpropene-derivedC3alkoxides: centrations, as they appear in Eq. (2). These slopes vary among solidacids,evenamongaluminosilicateswithdifferentvoidstruc- tures,butcontainingacidsitesofsimilarstrength[40].Theselinear relations indicate that the concentrations of hexenes and their equilibrated isomeric hexoxides are unaffected by the presence or pressure of isobutane, which does not perturb the alkene- alkoxide equilibrium or the dimerization rates. Also, C alkanes 6 represent a small fraction of the total C products formed, even 6 atthehighestisobutanepressure,becausehexoxidedepletionvia HTismuchslowerthantheformationanddesorptionofhexenes via dimerization events. Thus, the concentrations of hexenes and propene remain unaffected by the isobutane pressure and repre- sentthekineticdrivingforcesintheslopesextractedfromtherate datain Fig. 1becausetheydetermine,in turn,thesurface cover- ages of the corresponding alkoxides. The resulting kinetic con- stants,afteraccountingforthealkenepressures,solelyreflectthe kineticandthermodynamicconstantspresentinEq.(4). These effectiveHT rate constantsfor isobutane reactionswith the lumped hexoxide or propoxide isomer pools are shown in Fig. 3 for hexoxides ðkeff Þ (Fig.3a) and propoxides ðkeff Þ HT;4;6 HT;4;3 (Fig.3b) as a function of the void diameter in the microporous and mesoporous aluminosilicate hosts. Such diameters, as used in Fig. 3, have been defined using a purely geometric descriptor consisting of the largest diameter sphere that either (i) can be inscribed within the void space or (ii) can traverse throughout the void structure unimpeded by smaller apertures [41,42]. The HT rate constants for both hexoxide and propoxide acceptors increasedasthevoidsizedecreasedandthenreachedamaximum value. The initial increase in reactivity with decreasing void size reflectsthepreferentialstabilizationofthelargerbimoleculartran- sition state involved in these reactions over the smaller alkoxide Fig.1. C6alkaneformationratesduringreactionsofisobutane-propenemixturesas precursorviavanderWaalsinteractionswiththelatticeoxygens afunctionofisobutanepressureonaluminosilicateswithdifferentvoiddimensions butsimilaracidstrengths(BEA(N),FAU(r),SiAl(4),MOR(d),MFI(}),TON(j)) inthealuminosilicateframeworks,asgivenbythechemicaliden- [9kPapropene,503K,<5%alkeneandalkaneconversions]. tityoftherateandequilibriumconstantscontainedinEq.(4). M.L.Sarazen,E.Iglesia/JournalofCatalysis354(2017)287–298 291 Fig.2. C6,C5,andC3alkaneformationratesfromhexoxides(N),pentoxides(d),andpropoxides(r),respectively,presentasamixtureofequilibratedisomersmeasured duringreactionsofisobutane-propenemixturesasafunctionofisobutanepressureon(a)BEAand(b)HPW[9kPapropene,503K,<5%alkeneandalkaneconversion]. Fig.3. First-orderrateconstantforreactionofisobutanewith(a)hexoxidepooland(b)propoxidepoolasafunctionofvoiddiameter[503K,<5%alkeneandalkane conversion]. The void size corresponding to the largest HT rate constants, isobutanetohexoxidescontainstenC-atoms;itsdiameterforthe however, is slightly larger for hexoxides (BEA; Fig.3a) than for specific case of the tertiary-2-methylpentoxide on HPW clusters propoxides(MOR;Fig.3b).Thisdifferencereflectsthesizeoftheir (Fig. 4; right) is 0.73nm. In contrast, there are seven C-atoms in respectivetransitionstatestructuresandtheirconsequentlydiffer- thetransitionstateforHTtosec-propoxides,leadingtoasmaller entabilitytoformvanderWaalscontactswiththevoidwalls.The mean diameter (0.66nm) for this transition state than for that size of the DFT-derived structures for these transition states is involved in isobutane HT to hexoxide acceptors. Consequently, defined here as the diameter of the sphere of equivalent volume thetransitionstateforHTtopropoxidesbecomesmoststableon determined from a Connolly surface of the organic moiety opti- MORchannels(0.64nm);thesechannelsareslightlysmallerthan mizedonHPWPOMclusters.Therelativesizesoftransitionstates the BEA channels (0.67nm) that exhibit the largest HT rate con- donotvarysignificantlywhenoptimizedonsuchKegginclusters stantsforisobutanereactionswithhexoxides. or in zeolites, as previously shown for propene dimerization on The matching of voids with transition state structures in size HPWandTON[16].Thetransitionstateforhydridetransferfrom andshapeleadstooptimalvanderWaalscontacts,whileavoiding 292 M.L.Sarazen,E.Iglesia/JournalofCatalysis354(2017)287–298 Fig. 4. DFT-derived transition state structures for oligomerization (C–C bond formationbetweensecondarypropoxideandpropene)andhydridetransferfrom isobutanetotertiary2-methylpentoxideonHPW[PW91;PAW].Axesforaandb areshown,withcintothepage.Thedimensionsforoligomerizationare[0.63,0.26, 0.43] and are [0.78, 0.53, 0.81] for hydride transfer. Charges from QUAMBO (Section 2.2) and diameters of spheres with equivalent volume hdi are also included. stericeffectsthatcancauseanincreaseinenergybyrequiringsig- nificantgeometricdistortionsoftheorganicguestortheinorganic host.Theheuristicgeometricdescriptorsbasedon sphericalcon- structs(andusedinFigs.3and4)leadtomeandiameters<d>that cannot capture the most effective ‘‘fit” because neither host nor guest structures are spherical in shape. For instance,alkyl chains Fig.5. Rateconstantratioofhydridetransferbetweenisobutaneandequilibrated hexoxidepooltooligomerizationofpropeneasafunctionofvoiddiameter[503K, inalkoxidesbenefitfromcylindricalvoids,butmayrequiresignif- <5%alkeneandalkaneconversion]. icantdisruptionsfromtheirmoststableconfigurationstobenefit from van der Waals contacts with cage-like hosts. Here, mean diametersareusedasapproximatedescriptorsofsizefortransition donotsenseanypropertyofthehost.Asaconsequence,thetrends states and bound species. They are appropriate and sufficient for evidentinFig.5mustreflecteither(i)anincreaseinGz through HT;46 thecomparisonsintended,whichinvolvestructuresthatdiffersig- stericdestabilizationoftheHTtransitionstateor(ii)adecreasein nificantlyinsizeforthechemicaltransformationsofinterest.The Gz asaresultofthemoreeffectivevanderWaalscontactsofthe refinementofsuchananalysis,whensorequiredforspecificpre- oligo;3 dimerizationtransitionstatewiththesmallervoids. dictive purposes, can be carried out using the averaging of van Measured rate constants for hydrogen transfer (and for derWaalsinteractionenergiesforagivenorganicmoietythrough oligomerization[16])alsodependonacidstrength,becauseofits eachspecificvoidstructureusingmethodsdevelopedandapplied inherent role in determining the stability of the conjugate anion inpreviousstudiesofalkenecoupling[16],alkoxidestability[39], ation-pairtransitionstates.Indeed,HTrateconstantsonHPW,a andacetonecondensation[43]withinconfiningenvironments. strongacidwithadeprotonationenergy(DPE;[32,40])of1085kJ ThetransitionstateforisobutaneHTtotert-2-methylpentoxide mol(cid:1)1,areabout100-foldlargerthanonweakermesoporousSiAl (0.73nm) is significantly larger than that for the dimerization of acids (1220kJ mol(cid:1)1 DPE [40]) for isobutane reactions with both propenewithsec-propoxide(0.62nm)(Fig.4).Theratiooftherate hexoxides (Fig.3a) and propoxides (Fig.3b). Stronger acids, with constants for isobutane HT to C alkoxides (Eq. (2)) to those for 6 morestableconjugateanions,leadtoion-pairtransitionstatesof propenedimerization(Eq.(1))isgivenby: lowerenergy,becausethechargeintheorganicandinorganicmoi- c¼kkoHliTg;o4;63KK63¼expð(cid:1)DGc=RTÞ ð6Þ ebtoiuesnda)realmkouxcihdelaprgreecrutrhsaonrsin(Etqh.e(4e)s)s.eTnhtieaslelyDnFeTu-tdrearliv(ceodvaclheanrtgleys- are ±0.96 for the isobutane-tert-2-methylpentoxide HT transition a measure of the probability of terminating chains before further statesand±0.90forisobutane-sec-propoxideHTtransitionstates, growth. This ratio is not affected by void size for larger voids but only ±0.30 for the sec-propoxide precursor in the latter (BEA,FAU,SiAl),butdecreasessharplyforprotonsresidingwithin reaction. smaller voids (TON, MFI, MOR) (Fig. 5), as a result of a larger HT Similarly, the isobutane tert-2-methylpentoxide HT transition transitionstatethatbecomes lessstablecomparedwithasmaller stateandthepropene-sec-propoxidedimerizationtransitionstate dimerization transition state as the size of voids approaches that are ion-pairs of similar charge (±0.96 and ±0.94, respectively; oftheHTtransitionstate.TheeffectsofvanderWaalsinteractions Fig.4).Asaresult,mesoporousHPW(onSiO )andSiAl,twosolid c 2 onthisratioofrateconstants( ),usingthevoiddiameterasaproxy acidsofverydifferentacidstrengthandcontainingvoidsmuchlar- ofsizeandvanderWaalscontacts,dependssolelyonthedifference gerthaneitherofthesetransitionstates,givesimilarratiosofHT infreeenergybetweenthetworelevanttransitionstates: c anddimerizationrateconstants( ;Eq.(5)),becausethestability DGc¼GzHT;46(cid:1)Gzoligo;3(cid:1)G4ðgÞ(cid:1)Gð6gÞþ2Gð3gÞ ð7Þ of the conjugate anions influence the GzHT;ni and Gzoligo;3 terms in Eq.(7)tosimilarextents.WeconcludethatHTandoligomerization where GzHT;46 and Gzoligo;3 are the respective free energies of the HT rateconstantsdependsimilarlyonacidstrengthwhenprotonsare and C–C bond formation transition states. The other terms in Eq. located either within large mesoporous voids or within voids of (7)representpropertiesofthegaseousalkanesandalkenes,which similardimensionandshape,thusrenderingacidstrengthincon- donotdependonstabilizationbybindingorconfinementandthus sequential in the control of chain length via systematic changes M.L.Sarazen,E.Iglesia/JournalofCatalysis354(2017)287–298 293 intherelativeratesofHTandoligomerizationinisobutane-alkene hydride transfer from isobutane to each isomer j ðkeff Þ are HT;4ij alkylationprocesses. groupedinFig.7accordingtothenumberofcarbonatomsinthe bound alkoxide acceptor, which acts here as the initial surrogate 3.3.Effectsofchainlengthandsubstitutioninalkoxideacceptorson for their relative size. Such kinetic constants combine the effects hydridetransferrates ofchainlengthandextentofsubstitutiononalkoxidereactivity. Therateconstantsforeachofthealkoxideacceptorsarelarger In the kinetic treatments and discussion above, HT rates are onHPWthanonSiAl(Fig.7),consistentwithHTtransitionstates reportedforalumpedpoolofboundalkoxides(hexoxides,propox- thatbenefitfromamorestableconjugateaniontoagreaterextent ides)consistingofisomersdifferentinskeletonandsurfaceattach- than the bound alkoxide precursors. Isobutane HT rate constants mentpoint.Suchtreatmentsexploittheequilibratednatureofall foreachalkoxidearelargeronBEAthanonSiAl(Fig.7),indicative regioisomers and skeletal isomers of alkoxides and alkenes of a ofthemoreeffectivevanderWaalscontactsbetweentheHTtran- givenchainlength[9].Thislumpingofboundalkoxideacceptors sitionstateandthesmallerchannelsinBEA,inspiteofthesimilar based on chain length is undone here as a strategy to determine acidstrengthpreviouslydemonstratedforaluminosilicatesofdif- thereactivityofeachskeletalisomerwithinthisequilibratedpool ferentframeworkstructureandcrystallinity[16,39].Thediversity with isobutane (and with n-butane and 2-methylbutane in Sec- ofactivityand selectivityofzeolitecatalysts haspreviouslybeen tion 3.5). Such speciation is made possible because the specific inaccuratelyattributedtodifferencesin acidstrength amongdif- skeletal alkane isomers formed from each alkoxide skeleton via ferentframeworks,aconsequenceoftheinappropriateuseofthe HTcanbedetectedinthegaseousproducts. adsorption energy or evolution temperature of bound titrants. Approachtoequilibriumvaluesforallhexeneisomersformed Suchpropertiesarenotdirectdescriptorsofacidstrengthbecause from propene dimerization with respect to a given isomer (2- theyalsoreflectthestabilizationofboundspeciesbyelectrostatic methyl-2-pentene; 2M2P) on TON, MFI, BEA, SiAl, and HPW are andvanderWaalsinteractionsthatareunrelatedtoacidstrength. near unity [9] even at very low propene conversions (<0.1%; Alkoxideswithdifferentbackbonestructuresdifferinreactivity Table2;approachtoequilibriumforC5inFig.S3).Theseisomers becauseoftheeffectsofsubstitutioninthestabilityoftheproto- are grouped in Table 2 according to their skeletal backbone: 2- natedorganicmoietythatformsattheHTtransitionstate.These methylpentenes(2-MP),3-methylpentenes(3-MP),linearhexenes reactivity trends with alkoxide structure remain mostly (n-H),and2,3-dimethylbutenes(23-DMB).Eachskeletallumpcon- unchanged, however, with changes in acid strength or confining tainsalldoublebondandstereoisomers.Only23-DMBisomersin voids (Fig. S4), apparently because the differences in charge and TON are slightly below equilibrium values, a consequence of the size between the HT transition state and its alkoxide precursor slow diffusion of the bulkiest C6 skeleton through the smallest dependonlyslightlyontheskeletalstructureoftheboundalkox- channels,butapproachunitywithincreasingconversion.Theequi- ide acceptors, a concept that we examinein more detailthrough libration of 23-DMB isomers within zeolite crystals was demon- DFTtreatmentsbelow. strated by the fast intramolecular scrambling of all products formedfromsingly-labeledpropene[9].The2,2-dimethylbutenes (22-DMB) were not detected either because of the difficulty in 3.4.Densityfunctionaltheorytreatmentsofhydridetransfertransition formingquaternaryCatomsviaskeletalisomerizationorbecause statesonHPWPOMclusters of its diffusion-enhanced secondary interconversion via subse- quentisomerizationorb-scission. The elementary steps of hydride transfer between isobutane Bound alkoxides with different skeletal structures undergo and various alkoxides were investigated on HPW POM clusters hydride transfer from isobutane (Scheme 2) to form 2- (describedinSection2.2)asanillustrativeexampleofanuncon- methylpentane (2MP), 3-methylpentane (3MP), 2,3- strainedsolidacid.Fig.8showstheHTreactioncoordinate,defined dimethylbutane(23DMB),andn-hexane(nH)atratesproportional intermsoftheC–HbondlengthinthedonorthattransferstheH- totheprevalentisobutanepressure(Fig.6;BEA)butwithratesand atom to the bound alkoxide, for isobutane reactions with sec- rate constants that differ among these backbones. Equilibrated ondary n-hexoxides or tertiary 2-methyl-pentoxides. The opti- pentoxides, formed via b-scission of larger oligomers, lead to the mizedstructuresofthetransitionstatesindicatethatthehighest formation of 2-methylbutane (2MB) and n-pentane (nP) at rates energysaddlepointoccursatdifferentC–Hbondlengthsforthese also proportionalto the H-donorpressure. The rate constants for two alkoxide acceptors (Fig. 8). In forming 2MP from 2-methyl Table2 Approachtoequilibriumfortheformationofhexeneisomerswithrespectto2-methyl-2-penteneonthesamplestestedwiththeirfractionalconversionsgiven:TON(0.005),MFI (0.009),BEA(0.004),SiAl(0.005),andHPW(0.003)usingcalculatedequilibriumconstantsforSiAlatafractionalconversionof0.14.[503K,60kPa].Isomersareseparated accordingtotheirbackbonestructures:2-methylpentene(2-MP),3-methylpentene(3-MP),linearhexenes(n-H),and2,3-dimethylbutene(2,3-DMB). Backbone Approachtoequilibrium(w.r.t.2M2P) TON MFI BEA SiAl HPW 2-MP 2M2P 1 1 1 1 1 4M1P 0.96 0.93 0.93 1.09 0.82 c-4M2P 1.00 1.21 1.33 1.00 1.05 t-4M2P 0.96 0.96 0.97 1.05 0.87 2M1P/1-H 0.93 0.91 0.91 0.96 0.90 3-MP 3M1P 0.79 0.76 0.76 1.09 0.67 2E1B 0.87 0.75 0.65 0.92 0.63 c-3M2P 0.92 0.82 0.67 0.97 0.67 t-3M2P 0.93 0.84 0.68 1.00 0.68 n-H c/t-3-H 1.06 0.87 0.87 0.97 1.00 c-2-H 1.03 0.86 0.86 0.98 1.00 t-2-H 1.04 0.85 0.85 0.99 1.01 2,3-DMB 2,3-DM1B 0.35 1.40 1.14 1.00 0.92 2,3-DM2B 0.35 1.13 1.13 1.01 0.92 294 M.L.Sarazen,E.Iglesia/JournalofCatalysis354(2017)287–298 Scheme2. Alkaneincorporationintoequilibratedalkoxideisomerpools.Illustratedhereisthehexoxidepoolthatforms2-methylpentane(2MP),3-methylpentane(3MP),n- hexane(nH),or2,3-dimethylbutane(2,3DMB)afterhydridetransferfromisobutane. Fig.6. Formationratesof2-methylpentane(2MP;j),3-methylpentane(3MP;N), 2,3-dimethylbutane(23DMB;r),andn-hexane(nH;d)measuredduringreactions Fig.7. First-orderrateconstantforalkaneformationviahydridetransferbetween ofisobutane-propenemixturesasafunctionofisobutanepressureonBEA[9kPa isobutaneandpropoxide,pentoxide,orhexoxideisomerpoolsonBEA(N),HPW propene,503K,<5%alkeneandalkaneconversion]. (j),andSiAl(r)[9kPapropene,503K,<5%alkeneandalkaneconversion]. pentoxides,theH-atomhasalreadyfullytransferredatthetransi- viaBorn-Haberthermochemicalcycles(Scheme3).Insuchcycles, tion state, while the transition state structure is formed before alkoxidesfirstdesorbastheirrespectiveprotonatedgaseousana- hydride transfer for n-hexoxide acceptors. The energy barrier for logs at an energy cost given by the carbenium-ion detachment HTtothetertiary2-methyl-pentoxideis16kJmol(cid:1)1smallerthan energy(CDE).Agaseousisobutane(thedonorn) thentransfersa for HT to the secondary n-hexoxide, consistent with the more hydridetothesespeciestoformatert-butylgaseouscationanda stablenatureoftertiarycarbeniumionsrelativetothosesecondary gaseous alkene, with a reaction energy given by the gaseous carbeniumionsandwiththelocationofthetransitionstatealong hydridetransferenergy(HTE).Thegaseoustert-butylcationisthen thehydridetransferreactioncoordinate. broughtclosertotheconjugateanioninordertorecoveraninter- TheactivationenergyðDEHT;nij)forHTtransferfromdonornto action energy (IE) with electrostatic and charge reorganization acceptori,jcanbedissectedintoindividualcomponentsforhypo- components [44]. The transition state structure for nH formation theticalconnectingpathsbetweenprecursorsandtransitionstates fromsec-hexoxide(Fig.8)showsthattheH-atomtobetransferred M.L.Sarazen,E.Iglesia/JournalofCatalysis354(2017)287–298 295 Fig.8. DFT-derivedelectronicenergiesforhydridetransferfromisobutanetosecondaryhexoxide(--)ortertiary2-methylpentoxide(—)relativetoalkoxideandgasphase isobutaneasafunctionofC–Hbondlengthinthedonor(isobutane)[PW91,PAW]. statesrelativetotheirdifferentrespectiveprecursors.Thesetran- sition states differ in their size and numbers of C-atoms (Sec- tion 3.2). Their van der Waals volumes, surface areas, and equivalent sphere diameters (Section 3.2) are shown in Table 3 forHTreactionsonHPWusingisobutaneastheH-donorandeach oftheC ,C ,andC skeletally-distinctalkoxideswiththeattach- 6 5 3 ment locations listed (optimized structures in Fig. S5). The mea- sured HT rate constants on HPW, BEA, and SiAl increased as the DFT-derived size of the respective transition state structures (on HPW)increased(Fig.9),eventhoughTSstructureswiththesame number of C-atoms differ only slightly in size. On mesoporous acids (HPW and SiAl), such an increase predominately reflects the greater stability of the cationic moiety as the electron- donatingalkylchainsbecomelonger,sincevanderWaalsinterac- tionschangelesssensitivelywithtransitionstatesizeoverflatand concave unconfined surfaces than over the smaller concave domainsprevalentwithinzeotypes. Transition states of similar size by the metrics used here can exhibit different rate constants when the degree of substitution at the center of charge in the organic moiety varies (e.g. nP vs. Scheme3. Thermochemicalcycleforhydridetransferbetweenanalkanedonor(i) andanalkoxideacceptor(ij)(here,isobutaneandtertiary2-methylpentoxide),in 2MB formation; hdi=0.712 and 0.714nm and keHfTf;45j=33.9 and termsofcarbenium-iondetachmentenergy(CDE),hydridetransferenergy(HTE), 61.3lmol(H+-s-kPa)(cid:1)1,respectively),becauseofthedifferentsta- andinteractionenergy(IE). bility of their respective alkoxide-derived carbenium ions at the transitionstate.Foreachtypeofbackbone(e.g.,linearalkoxides; Fig.9,opensymbols),HTrateconstantsfortheformationofpro- remains with the isobutane donor, indicating that the barrier to pane,n-pentaneandn-hexaneincreasedmonotonicallywithchain form this transition state predominantly reflects that required to lengthonbothHPWandSiAl.Incontrast,suchchainlengtheffects form the secondary carbenium-ion from the sec-hexoxide (CDE). became weaker for larger chains on BEA, as steric effects require Thehydridehasbeentransferredtotheacceptorinforming2MP distortions in theframeworkand theorganicmoietyand impose from 2-methyl pentoxide bound through its tertiary C-atom energetic penalties that ultimately offset the more effective van (Fig.8).Theseresultsindicatethatsubstitutionathydrideaccep- derWaalscontactsbetweenvoids andlargertransitionstates,as torsaffectsthetransitionstateenergy,leadingtotheobserveddif- discussedearlier(Section3.2). ferences in measured rates for HT to alkoxides with different skeletonsfromisobutane(Fig.7).Theextenttowhichtheforma- tion of the carbenium ion (CDE) from the alkoxide acceptor or 3.5.Effectsofhydridedonorchainlengthandsubstitutiononhydride thedetachmentandreattachmentoftheH-atombeingtransferred transferrates (HTE)contributetothistransitionstateenergyreflectstheirrela- tivemagnitudes,withtheformationofthecarbeniumionbecom- Hydridetransferratesalsodependonthesizeandsubstitution ing the sole determinant of transition state stability as the inthedonoralkanes.TherateofformationofC alkanesfromall 6 carbeniumionsderivedfromtheboundalkoxidesbecomeincreas- combined isomers of bound hexoxides on BEA are proportional inglyunstable. to the pressure of 2-methylbutane, isobutane, and n-butane Measuredrateconstantsforhydridetransferfromisobutaneto (Fig. 10). The first-order rate constants for the formation of each differentalkoxideacceptorsreflecttheenergiesoftheirtransition C ,C ,C ,andC alkaneisomersfromHTwithn-butane,isobutane, 3 4 5 6 296 M.L.Sarazen,E.Iglesia/JournalofCatalysis354(2017)287–298 Table3 DFT-derivedvanderWaalsvolumes(VvdW),surfaceareas(SAvdW),anddiameters(hdi)ofhydridetransfertransitionstatestructuresforthegivendonorandacceptoronHPW.The diametersarecalculatedassumingasphereofequivalentvolume. H-donor(n) H-acceptorC-atoms(i) H-acceptorisomer(j) attachment VvdW[nm3] SAvdW[nm2] hdi[nm] n-Butane 6 2MP tertiary 0.211 2.18 0.739 Isobutane 6 2MP tertiary 0.203 2.06 0.730 23DMB tertiary 0.202 1.95 0.727 3MP tertiary 0.202 1.95 0.728 nH secondary 0.208 2.18 0.736 5 2MB tertiary 0.191 1.85 0.714 nP secondary 0.189 1.97 0.712 3 prop secondary 0.151 1.68 0.661 2-Methylbutane 6 2MP tertiary 0.222 2.13 0.751 3 prop secondary 0.169 1.85 0.686 and2-methylbutaneonBEAareshowninFig.11.Measuredrates tertiary 2-methylpentoxides on HPW (Fig. 12) indicate that the andrateconstantsallincreasedasthelengthandsubstitutionof C–Hbondlengthissimilarforthetwodonorsandthatthehydride the H-donors increased for all alkoxide acceptors. These trends has been nearly fully transferred at the transition state. Their l are consistent with the different dehydridation energies of these different measured rate constants on BEA (2.6 versus 6.9 mol alkanes (Eq. (8); Fig. S6), which is calculated here as the energy (H+-s-kPa)(cid:1)1forn-butaneandisobutane,respectively)thusreflect requiredtoremovethesecondaryH-atomfromn-butaneandthe the different stabilities of the donor alkane as a cationic moiety, tertiaryH-atomfromisobutaneand2-methylbutaneasagaseous given that the alkoxide acceptor and the extent to which the hydrideion: H-atomshavebeentransferredarethesameinHTreactionswith thesetwoH-donoralkanes. DehydridationEnergy¼En(cid:1)ðEn(cid:1)HþþEH(cid:1)Þ ð8Þ Thepresenceofanadditionalmethylgroupwhenisobutaneis Here,En istheenergyofthegaseousalkane,En(cid:1)Hþ istheenergyof replaced with 2-methylbutane as the H-donor leads to an addi- thecationformeduponhydrideremoval,andEH(cid:1) istheenergyof tionalincreaseinhydridetransferrateconstantsonBEA(6.9and thehydrideanioninitsgaseousform.Eq.(8)illustratestheeffects 62lmol (H+-s-kPa)(cid:1)1 for isobutane and 2-methylbutane, respec- of the stability of the alkane-derived cation on hydride transfer tively; Fig. 11). Such an increase with chain length is larger than energies (HTE) and on the energy of the HT transition state. Such thatobserveduponchangingtheskeletonofC4alkanes(n-butane effects become stronger for more stable alkoxide acceptors, for vs. isobutane). These differences reflect the combined effects of which the hydride has already been transferred at the transition cation stability and of the larger size of the 2-methylpentane HT state,asshownintheprecedingsection.Optimizedtransitionstate transition state, which can more effectively interact with BEA structures for hydride transfer from n-butane or isobutane to channels. Indeed, the transition state for 2-methylbutane HT to Fig. 9. First-order rate constant for alkane formation via hydride transfer from isobutaneandtopropoxide,pentoxideorhexoxideisomerpoolsonBEA(N,4), Fig.10. C6alkaneformationratesfromhydridetransferbetweenhexoxidepool HPW(j,h),andSiAl(r,})asafunctionofestimatedtransitionstatediameter and2-methylbutane(N),isobutane(r),orn-butane(d)measuredwhenfedwith (<d>)from Table3.Open symbolsindicate hydride transfer tolinear alkoxides, propeneasafunctionofalkanepressureonBEA[9kPapropene,503K,<5%alkene whileclosedsymbolsindicatehydridetransfertobranchedalkoxides. andalkaneconversion].
Description: