Expanded Natural Product Diversity Revealed by Analysis of Lanthipeptide-Like Gene Clusters in Actinobacteria QiZhang,a*JamesR.Doroghazi,bXilingZhao,aMarkC.Walker,a WilfredA.vanderDonka,b DepartmentofChemistryandHowardHughesMedicalInstitute,UniversityofIllinoisatUrbana-Champaign,Urbana,Illinois,USAa;InstituteforGenomicBiology, UniversityofIllinoisatUrbana-Champaign,Urbana,Illinois,USAb Lanthionine-containingpeptides(lanthipeptides)arearapidlygrowingfamilyofpolycyclicpeptidenaturalproductsbelonging tothelargeclassofribosomallysynthesizedandposttranslationallymodifiedpeptides(RiPPs).Lanthipeptidesarewidelydis- tributedintaxonomicallydistantspecies,andtheircurrentlyknownbiosyntheticsystemsandbiologicalactivitiesarediverse. D Buildingontherecentnaturalproductgeneclusterfamily(GCF)project,wereportherelarge-scaleanalysisoflanthipeptide- o w likebiosyntheticgeneclustersfromActinobacteria.Ouranalysissuggeststhatlanthipeptidebiosyntheticpathways,andbyex- n trapolationthenaturalproductsthemselves,aremuchmorediversethancurrentlyappreciatedandcontainmanydifferentpost- lo a translationalmodifications.Furthermore,lanthioninesynthetasesaremuchmorediverseinsequenceanddomaintopology d thancurrentlycharacterizedsystems,andtheyareusedbythebiosyntheticmachineriesfornaturalproductsotherthanlanthip- e d eptides.Thegeneclusterfamiliesdescribedheresignificantlyexpandthechemicaldiversityandbiosyntheticrepertoireoflan- f r thionine-relatednaturalproducts.Biosynthesisofthesenovelnaturalproductslikelyinvolvesunusualandunprecedentedbio- o m chemistries,asillustratedbyseveralexamplesdiscussedinthisstudy.Inaddition,classIVlanthipeptidegeneclustersareshown h nottobesilent,settingthestagetoinvestigatetheirbiologicalactivities. t t p : / / a Lanthipeptidesarearapidlygrowingfamilyofpolycyclicpep- functionalimportanceoflanthioninescaffoldsandaconvergent e m tides characterized by the presence of the thioether cross- evolutionprocesstoproducethem(12).Notably,productsgen- . linked amino acids lanthionine and methyllanthionine (1–5). eratedbythesefourclassesoflanthioninesynthetasesarenotlim- a s Thesecompoundsarewidelydistributedintaxonomicallydistant itedtolanthipeptides.Forexample,manylanthipeptide-likebio- m speciesanddisplayverydiversebiologicalactivities,rangingfrom syntheticgeneclustersencodeprecursorpeptidesthathavenoCys .o antimicrobialtoantiallodynic(5–7).Antibacteriallanthipeptides, residues,andtheirproductsarethereforenotlanthipeptides(19). rg suchasthecommerciallyusedfoodpreservativenisin,aretermed Overthepast5years,severalstudieshavereportedbioinfor- / o lantibiotics(8).Lanthipeptidesaregeneratedfromaribosomally matic genome mining efforts based on the then-available ge- n synthesized linear precursor peptide (generically termed LanA) nomes.Thesestudieshavetypicallyfocusedonanenzyme-spe- N o andthereforebelongtothelargeclassofnaturalproductsthatare cificquery,suchasclassILanBandLanCenzymes(20),classII v ribosomally synthesized and posttranslationally modified pep- LanM proteins (21), or the bifunctional LanT proteins, which e m tides(RiPPs)(9).TheprecursorpeptideLanAconsistsofaC-ter- transportlanthipeptidesandremovetheirleadersequences(22). b minalcorepeptidewhereallposttranslationalmodificationstake Buildingontherecentnaturalproductgeneclusterfamily(GCF) e r placeandanN-terminalleaderpeptidethatisimportantforpost- project(23),herewereportlarge-scaleanalysisoflanthipeptide- 1 translationalmodificationsandthatissubsequentlyremovedby likebiosyntheticgeneclustersthatisdrivenbysimilaritiesinen- 7 , proteolysis(10,11).Theinstallationofthe(methyl)lanthionine tireclustersratherthanspecificenzymes.Wefocusedtheanalysis 2 0 thioetherbridgesisachievedbytheinitialdehydrationofSerand onlanthipeptidesfromActinobacteria,whicharerelativelyunder- 1 Thrresiduesintheprecursorpeptides,followedbystereoselective studiedcomparedtofamilymembersfromFirmicutes.Actinobac- 8 b intramolecularMichael-typeadditionofCysthiolstothenewly y formeddehydroaminoacids(Fig.1A). g u Four classes of biosynthetic enzymes are known to catalyze Received24February2015 Accepted14April2015 e lanthionineformation(2,12)(Fig.1B).ClassIlanthioninesyn- Acceptedmanuscriptpostedonline17April2015 s t thetasesconsistofadehydrataseandacyclasethataregenerically CitationZhangQ,DoroghaziJR,ZhaoX,WalkerMC,vanderDonkWA.2015. termedLanBandLanC,respectively(8).ClassIIenzymesarege- Expandednaturalproductdiversityrevealedbyanalysisoflanthipeptide-like geneclustersinActinobacteria.ApplEnvironMicrobiol81:4339–4350. nericallynamedLanMs,whicharesinglepolypeptidescontaining doi:10.1128/AEM.00635-15. anN-terminaldehydratasedomainthatbearsnohomologytoany Editor:M.A.Elliot functionallyknownenzymesandaC-terminalLanC-likecyclase AddresscorrespondencetoWilfredA.vanderDonk,[email protected]. domain (13, 14). Class III and class IV synthetases are trifunc- *Presentaddress:QiZhang,DepartmentofChemistry,FudanUniversity, tionalenzymestermedLanKC(15)andLanL(16),respectively. Shanghai,China. TheseenzymescontainanN-terminallyasedomainandacentral Q.Z.andJ.R.D.sharethepositionoffirstauthor. kinasedomainbutdifferintheirCtermini.LanCandtheC-ter- Supplementalmaterialforthisarticlemaybefoundathttp://dx.doi.org/10.1128 minaldomainsofLanMandLanLcontainaconservedzinc-bind- /AEM.00635-15. ingmotif(Cys-Cys-His/Cys)(17,18),whereastheC-terminalcy- Copyright©2015,AmericanSocietyforMicrobiology.AllRightsReserved. clasedomainsofLanKClacktheseconservedresidues(Fig.1B). doi:10.1128/AEM.00635-15 The four distinct classes of biosynthetic machinery reflect the July2015 Volume81 Number13 AppliedandEnvironmentalMicrobiology aem.asm.org 4339 Zhangetal. D o w n lo a d e d f r o m h t t p : / / a FIG1Biosynthesisoflanthipeptides.(A)Themechanismof(methyl)lanthionineformation.(B)Thefourcurrentlyknownclassesoflanthipeptidesynthetases. e m Xnrepresentsapeptidelinker.Theconservedzinc-bindingmotifsarehighlightedbythepurplelinesinthecyclasedomains.SpaB_Cisaneliminationdomain . presentasastand-aloneproteininthiopeptidebiosynthesisandastheC-terminaldomainofLanBenzymesinlanthipeptidebiosynthesis. a s m . teriacarryawealthofnaturalproductbiosyntheticgeneclusters mationcanbefoundathttp://www.igb.illinois.edu/labs/metcalf/gcf/lant o r whose products encompass highly diverse chemical structures. .html. Use of these pages requires a JavaScript-enabled web browser. g / This phylum has been the source and/or inspiration for the Mouseoverofageneprovidesaroughannotationandshouldbecon- o majorityofpharmaceuticallyusefulnaturalproducts(24,25). firmedwithadditionalmethodsbeforefurtheruse.Mouseoveralsohigh- n N Although Actinobacteria constitute only a small proportion of lightsothergenesonthepagethatareinthesamehomologygroup.On o knownlanthipeptideproducers,theyencodeadiversesetofpost- click,eachgenewillopenanewtabcontainingtheaminoacidsequence v andalinktoBLASTanalysisofthesequence.Straindesignationssuchas e translationalmodificationsthathavenotbeenobservedforlan- m Streptomyces species B-3253 refer to strains in the Culture Collection thipeptidesfromotherphyla(2)(e.g.,lysinoalanineformationin b (NRRL)oftheAgriculturalResearchService(ARS).Thegenomicinfor- e cinnamycin [26], tryptophan chlorination and proline dihy- r mationcanbefoundbyenteringB-3253intotheNCBIsearchfieldand droxylationinmicrobisporicin[27,28,alsocalledNAI-107[29], 1 then searching in the Assembly or BioSample databases. Designations 7 andglycosylationinNAI-112[30]).Theuniquemodificationsin , suchasStreptomycesspeciesB-3253_23refertocluster23inthisstrain. 2 actinobacteriallanthipeptidebiosynthesissuggestgreatpotential Network analysis was performed by BLASTP searches, comparing 0 forexploringunknownlanthipeptidechemicalspaceinthisphy- eachsequenceagainsteachothersequence.AVBAscriptwaswrittento 18 lum. Our analysis suggests that lanthipeptides are likely much removeallduplicatecomparisons,andtheresultwasimportedintothe b more diverse than is currently appreciated and contain many Cytoscapesoftwarepackage(31).Thenodeswerearrangedbyusingthe y novel posttranslational modifications. More intriguingly, our yFiles organic layout provided with Cytoscape version 2.8.3. Sequence g u analysissuggeststhatinsomecaseslanthipeptidesynthetaseshave logosweregeneratedonlineusingWeblogo(32). e beenrepurposedforproducingnaturalproductsotherthanlan- Cellcultures,samplepreparation,andMSanalysis.Dimethylsul- st thipeptides,expandingnaturalproductdiversity. foxide(DMSO)stocksofStreptomyceskatraeISP5550werepreparedby mixing600(cid:2)lofanS.katrae ISP5550liquidculturewithanequalvolume MATERIALSANDMETHODS ofsterilized20%dimethylsulfoxide(DMSO).Theresultingsolutionwas Chemicals,media,andgeneralmethods.Unlessotherwisenoted,reagents mixed,flashfrozen,andstoredat(cid:3)80°C.S.katraeISP5550wasinocu- werepurchasedfromFisherScientific.YeastextractwaspurchasedfromBec- lated from DMSO stocks onto solid ATCC172 medium (20 g soluble tonDickinsonandN-ZaminetypeAfromSigma-Aldrich.Acetonitrilefor starch,5gyeastextract,5gN-ZaminetypeA,1gcalciumcarbonate,15g matrix-assistedlaserdesorptionionizationmassspectrometry(MALDIMS) agar,and1literofMilli-Qwater;afterautoclavingthemedium,sterilized analysiswaspurchasedfromAvantorPerformanceMaterials.MALDI–time glucosewasaddedtoa1%finalconcentration)andincubatedat30°Cfor offlight(MALDI-TOF)MSwascarriedoutonaBrukerUltrafleXtremeTOF/ 4to5days. TOF.Reversed-phaseliquidchromatographyelectrosprayionization(ESI) ThepresenceofvenezuelinswasdetectedusingcolonyMALDI-TOF tandemMSwascarriedoutandprocessedusingaSynaptESIquadrupole MS.Asmallportion(approximately1by1mm)ofcolonywastransferred TOFmassspectrometrysystem(Waters). ontoaBrukerMTP384polishedsteeltargetplate.Ontopofthecolony,2 Bioinformatics. GCF analysis, BLAST searches, and phylogenetic (cid:2)lofsinapicacidmatrixwasoverlaidandallowedtoairdry.Sinapicacid analysiswereallperformedasdescribedpreviously(23).AllGCFinfor- matrixwaspreparedbysaturatinganacetonitrile(MeCN)–Milli-Qwater 4340 aem.asm.org AppliedandEnvironmentalMicrobiology July2015 Volume81 Number13 Lanthipeptide-LikeGeneClustersinActinobacteria (80:20) solution with sinapic acid (Sigma-Aldrich). MALDI-TOF MS 12h.Thereactionmixturewasdriedandmixedwithasolutionofacetyl analysis of the sample was performed using a Bruker UltrafleXtreme chloride(Sigma-Aldrich)andmethanol.Followingrefluxat110°Cfor45 MALDI-TOFTOF-MSmaintainedbytheUIUCSchoolofChemicalSci- min,thereactionmixturewasdriedand3mlofdichloromethane(Sigma- ences Mass Spectrometry Laboratory. Data acquisition was completed Aldrich)wasadded.Aftercoolingthesolutionto0°C,1mlofpentafluo- usingBruker’sFlexControlprogram,whileFlexAnalysiswasusedfordata ropropionicanhydride(Sigma-Aldrich)wasadded,andthereactionmix- analysis.Priortodataacquisition,theinstrumentwascalibratedusing turewasrefluxedfor15minat110°C.Thereactionmixturewasdriedand peptidecalibrationstandardII(BrukerDaltonics,Billerica,MA)andthe storedat(cid:3)80°C,andpriortoGC-MSanalysis,thesamplewasredissolved matrixsuppressionmodesettodeflectionmode.Thedatawerenotsub- in100(cid:2)lofmethanol.Particulateswereremovedbycentrifugationat jectedtoprocessing. 23,700(cid:4)gfor4min.AnAgilentHewlett-Packard5973massspectrom- UpondetectionofvenezuelinsbycolonyMALDI-TOFMSfromsolid eterequippedwithaCP-Chirasil-LVal0.12-(cid:2)m,25-mby0.25-mmcol- culturesofS.katraeISP5550,liquidcultureswereanalyzedforthepro- umn(7-in.cage;AgilentTechnologies)wasusedtoperformtheGC-MS ductionofvenezuelins.Asinglecolonywastransferredinto50to100ml analysis.Thesamplewasintroducedtotheinstrumentviaasplit(1:5) ofliquidATCC172medium,preparedinthesamewayasthesolidme- injectionof2to5(cid:2)lwitha2.0-ml/minheliumgasflowrate.Theinitial diumwiththeomissionofagar.Theliquidculturewasincubatedwith inlettemperaturewas190°C,andagradientof20°C/minfrom160°Cfor shakingat30°Cfor12days.Supernatantfromtheliquidcultureswas 5minto180°Cfor10minwasused.Thefollowingmassspectrometer D o obtainedbycentrifugingat4,650(cid:4)gfor15min.Thehydrophobiccom- settingswereused:185°CfortheMSDtransferlineheater,150°Cforthe w ponents of the supernatant were desalted by ZipTip (EMD Millipore) MS Quad analyzer, and 230°C for the ion source. Data were acquired n accordingtothemanufacturer’sinstructions.TheZipTipcontentswere usingscanandselectedionmonitoringat365and379Da.Theidentityof lo directlyelutedontoaBrukerMTP384polishedsteeltargetplateonaspot (methyl)lanthionineresidueswasconfirmedbyaddingauthenticmeth- ad containing1(cid:2)lofsinapicacidmatrix.AnalysisbyMALDI-TOFMSwas yl(lanthionine)standardstothesampleandanalyzingtheresultingmix- e performedasdescribedabove. turebyGC-MS.Themixturesofsampleandstandardwerepreparedsuch d InpreparationforESI-MS,peptidecomponentsofthesupernatant thattherewasanapproximatelyequalcontributionofsignalarisingfrom fro wereprecipitatedusingammoniumsulfate.A60%finalconcentrationof thesampleandstandard. m ammoniumsulfatewasachievedwiththeadditionof30gofammonium h sulfateto50mlofsupernatant.Thesolutionwasallowedtoincubateat RESULTS tt p roomtemperaturefor30min.Theresultingprecipitatewaspelletedby PhylogeneticanalysisofLanC-likeenzymes.Miningof830acti- : / centrifugation at 22,789 (cid:4) g for 10 min, and the supernatant was de- nobacterial genomes, including 344 newly sequenced genomes /a canted. The pellet was redissolved in Milli-Q water and subjected to obtainedfortheGCFproject(23),revealed1,163lanthipeptide- e m ESI-MSanalysisusinganAcquityultraperformanceliquidchromatogra- likegeneclusters,whichweregroupedintomorethan100differ- . a phy(UPLC)systemcoupledtoaWatersSynaptESI-QTOF.TheUPLC entfamiliesaccordingtotheirsequenceandorganizationalsimi- s wasequippedwithanAcquityUPLCBEHC81.7-(cid:2)m,1.0-by100-mm larities(seeFig.S1inthesupplementalmaterial)(23).Strikingly, m column.SamplewasintroducedintothecolumnviaanAcquityautoin- the GCFs that produce the known lanthipeptides produced by .o jectorandsubjectedtoagradientof2%Bfrom0to2min,2%to98%B r Actinobacteriamakeupaverysmallfraction,illustratingthetre- g from2to12min,and98%Bfrom12to15min(Awas0.1%formicacid / mendousdiversityofyet-to-be-investigatedGCFs.Tofirstinves- o inwaterandBwas0.1%formicacidinMeCN).TheWatersMassLynx n tigate the phylogenetic relationship of LanC-like enzymes from V4.1programwasusedtotune,calibrate,andacquiredata.[Glu1]-Fibri- N nopeptideBhuman(Sigma-Aldrich)wasusedasanexternalcalibrant, different gene clusters, we constructed a maximum-likelihood o andthemassofvenezuelinwasverifiedtobewithin5ppmofitscalculated (ML) tree using enzymes from 29 large families that each are v e mass.Collision-induceddissociationwasachievedusingaseriesofenergy foundinatleastfivedifferentspecies(oroperationaltaxonomic m rampsrangingfrom30to60eV. units with a clustering threshold of 99% identity in ribosomal b e Isolationofvenezuelins.S.katraeISP5550liquidculturesupernatant proteins [23]). This analysis makes it possible to infer a gene’s r wassubjectedtopressure-basedsampleconcentrationratherthanammo- involvementinaGCFbasedonconservationoverevolutionary 1 niumsulfateprecipitation.Aftercentrifugation,40mlofculturesuper- time(34).GeneconservationwithinaGCFreliesontheinclusion 7, natantwasfurtherclarifiedbyfiltrationthrougha0.22-(cid:2)mnylonmem- ofmultiplespeciesintheanalysis,asgenomediversitywithina 2 0 braneandthenloadedintoanAmiconstirredcellequippedwitha1-kDa singleStreptomycesspeciesismuchreducedandsyntenyextends 1 nominal-molecular-mass limit regenerated cellulose disc (EMD Milli- 8 nearlytheentirelengthofthechromosome(35).Thetreeshows pore).Theclarifiedsupernatantwasconcentratedatroomtemperature b distinct phylogenetic distributions of enzymes from different y fromavolumeof40to2mloverapproximately4h.Theconcentrated supernatantwasflashfrozenandstoredat(cid:3)20°Cpriortofractionation classes,asLanCandtheC-terminaldomainsofLanM,LanL,and gu by analytical reversed-phase high-performance liquid chromatography LanKCfallintofourdifferentclades(Fig.2).Thisobservationis e (HPLC)usinganAgilent1260InfinityinstrumentequippedwithaPhe- consistent with our previous proposal that the four classes of st nomenexLuna10-(cid:2)m,C (2)100-Å,250-by4.6-mmcolumn.Thein- lanthipeptide synthetases have evolved from different ancestors 18 strumentwasmanagedusingAgilentInstrument1(online)software.The (12,36).Interestingly,threecasesofnovelGCFsemergewithin mobilephaseconsistedofA(0.1%trifluoroaceticacid[TFA][AcrosOr- an existing GCF: GCF100 branches within the LanM clade of ganics])inwaterandB(0.1%TFAin80%MeCN–20%water),witha GCF146 (this GCF also contains a LanKC-encoding gene and gradientof2%Bfrom0to5min,2to100%Bfrom5to50min,and100% henceappearstwiceinFig.2),GCF1andGCF29branchwithin Bfrom50to60min.A0.5-(cid:2)laliquotofeachfractionelutingafter20min GCF20,andGCF133andGCF140branchwithinGCF31.Below wasspottedwithanequalvolumeofsinapicacidmatrixandanalyzedby we highlight several families of lanthipeptide-like gene clusters MALDI-TOFMSforthepresenceofvenezuelin.Venezuelin-containing thataremostinterestinginthattheydeviatefromthecurrently fractions(typicallyelutingat35to38min)wereflashfrozenanddriedin knownlanthipeptidebiosyntheticsystemsandlikelyencodenovel vacuo.Three1-mlinjectionsofconcentratedS.katraeISP5550superna- tantyielded100(cid:2)gofHPLC-purified,drymaterial. andunusualbiochemistryinthebiosynthesisoflanthionine-re- Detectionoflanthionine.HPLC-purifiedvenezuelinwasanalyzedby latednaturalproducts. gaschromatography(GC)-MSaspreviouslydescribed(33).Inbrief,the Novelmulticomponentlanthipeptidesystems.Two-compo- samplewasredissolvedin3mlof6MHClandheatedat110°Cfor10to nentlanthipeptidesarenormallypotentantimicrobialagentsin July2015 Volume81 Number13 AppliedandEnvironmentalMicrobiology aem.asm.org 4341 Zhangetal. D o w n lo a d e d f r o m h t t p : / / a e m . a s m . o r g / o n FIG2 AnMLtreeofLanCsandLanC-likedomains.Intheouterring,thefourdifferentclassesofenzymesaredepictedbythecolordefinedinthelegend, N whereasthedifferentGCFsareshownintheinnerringwithrandomcolors.TheGCFnumbersaredefinedinreference23andcanbefoundathttp://www.igb o v .illinois.edu/labs/metcalf/gcf/lant.html.PKS,polyketidesynthetase;NRPS,nonribosomalpeptidesynthetase;TOMM,thiazole/oxazole-modifiedmicrocins. e m b e whichthetwoposttranslationallymodifiedpeptidesexertstrong recently characterized NpnAs (19). Like in the Npn cluster, an r synergisticbiologicalactivity(37).Todate,isolatedtwo-compo- oxidoreductasecontainingthecharacteristicNAD-bindingRoss- 1 7 nent lantibiotics have been confined to Firmicutes, but several mannfoldisalsoencodedinthegenecluster.Apossiblerolefor , familiesoflanthipeptidegeneclustersintheActinobacterialikely thisoxidoreductaseistoproduceD-aminoacidsbystereoselective 20 encodetwo-componentlanthipeptides.Averyrecentstudyalso reductionofthedehydroaminoacidsresultingfromLanMcatal- 1 8 suggestedthepresenceoftwo-componentlanthipeptidesinthree ysis(45–47).Thesefindingssetthestageforinvestigationwhether b Streptomyces strains (22). Among the most interesting class is thematureproductsoftheLanMandLanKCsubstratesindeedform y GCF146(70members),whichiscurrentlythesecond-largestlan- a novel functional two-component lanthipeptide system in which g u thipeptideGCF(seeFig.S1inthesupplementalmaterial).Each onepeptidedoesnotcontainlanthionine/labioninstructures. e memberencodesaLanMandaLanKC,andthecorepeptidesof GCF30 (12 members) consists of gene clusters appearing in s t the putative LanKC substrates have a strictly conserved CxSxxS two different types of organization, both of which encode two motif(Fig.3A).PreviousstudieshaveshownthatLanKCproteins LanMs and two LanA substrates (Fig. 3B). Both LanAs have a canturnSxxSxxxCmotifsintoalabioninscaffoldbyinitialMi- Gly-Gly/Alamotifcharacteristicforleaderpeptideremovaland chaeladditionoftheC-terminalCystoacentraldehydroalanine multipleCysandSer/Thrresidues(seeFig.S2inthesupplemental (formedfromSer)andsubsequentadditionoftheresultingeno- material).Therefore,theproductsofthesegeneclustersarelikely late onto the N-terminal dehydroalanine of the motif (38–42). similartowell-knowntwo-componentlantibioticssuchashalo- TheCxSxxSmotifinGCF146couldbeavariationofthelabionin- duracinandlichenicidinproducedbybacilli(20,37,48–51).One forming sequence. Another interesting finding is that a radical GCF30 member from Streptomyces viridochromogenes was also SAM protein containing a canonic CxxxCxxC motif (43, 44) is notedinarecentgenomeminingstudyfocusingonLanTanalogs strictly conserved in these gene clusters, which may catalyze an (22). unprecedented posttranslational modification in lanthipeptide GCF46 (6 members) consists of gene clusters encoding two maturation.TheputativeLanMsubstratesinGCF146,however, LanAsandtwoLanKCenzymes(Fig.3C).ThetwoLanKCsshare donotcontaincysteineresidues(Fig.3A)andaresimilartothe highsequencesimilarities(about40%identity)witheachother, 4342 aem.asm.org AppliedandEnvironmentalMicrobiology July2015 Volume81 Number13 Lanthipeptide-LikeGeneClustersinActinobacteria D o w n lo a d e d f r o m h t t p : / / a e m . a s m . o r g / o n N o v e m FIG3GCFsthatlikelyproducetwo-componentlanthipeptides.(A)ArepresentativegeneclusterofGCF146andthesequencelogosoftheprecursorpeptide b substrates.ThepredictedLanKCsubstrate/enzymepairisshowninblue,andthepredictedLanMsubstrate/enzymepairisshowninred.Thestrictlyconserved e CxSxxSmotifoftheputativeLanKCsubstrateandtheGG/AleaderpeptidecleavagesiteoftheputativeLanMsubstratearehighlightedbyredboxes.(B)A r 1 representativegeneclusterofGCF30thatlikelyencodesahaloduracin-likesystem.Thegeneclustersappearintwodifferenttypes,andhomologousenzymesare 7 linkedbybluedashedlines.(C)ArepresentativegeneclusterofGCF46thatmayencodeclassIIItwo-componentlanthipeptides.(D)Arepresentativegenecluster , ofGCF140thatmayencodethreeprecursorpeptidesandaLanKC.Theputativefunctionsofthegeneproductsareshownbycolors.Thelogosoftheprecursor 2 0 peptidesinGCF30,GCF46,andGCF140areshowninFig.S2toS4,respectively,inthesupplementalmaterial.Theboundariesofeachgeneclusterarepredicted 1 basedontheconservedgeneswithineachGCFandarenotclearlydefined.RS,radicalSAM;OR,oxidoreductase. 8 b y g u andthetwoLanAsaresimilarbutnotidentical(seeFig.S3inthe Cysresidueinthecorepeptideregion,whereasonepeptidehasa e supplementalmaterial).BothLanAshavehighlyconservedCxx- Cysresidueintheleaderpeptide(seeFig.S4inthesupplemental s t SxxSmotifs,suggestingapotentialfirstclassIIItwo-component material).Itremainstobedeterminedwhethertheseputativepre- lanthipeptide.AradicalSAMproteinisalsoencodedinthegene cursor peptides are substrates of the corresponding LanKC en- cluster,whosefunctionremainstobedetermined.Notably,the zyme. two LanAs in the gene clusters from GCF46 are significantly Lanthionine synthetases associated with polyketide and shorterthanotherLanAsandspanonlyabout30aminoacids(see nonribosomalpeptidebiosynthesis.Thethird-largestlanthipep- Fig.S3inthesupplementalmaterial).Theseshortprecursorpep- tidefamilyintheinvestigatedgenomecollectionisGCF133(48 tides are possibly truncated LanAs, which have recently been members)(seeFig.S1inthesupplementalmaterial),whichrep- found in several lanthipeptide biosynthetic systems and were resentsaveryunusualbiosyntheticcluster.Eachmemberofthis showntobegenuinesubstrates(19). family encodes a LanKC and a series of polyketide synthetase Another intriguing lanthipeptide biosynthetic system was (PKS)-likeenzymes,includinganacylcarrierprotein(ACP),two foundinGCF140(29members),whosegeneclusterseachencode 3-oxoacyl-ACP synthases (KS), a malonyltransferase (MT), a threeputativeprecursorpeptides,aLanKC,andasetofhypothet- short-chaindehydrogenase/reductase(SDR)likelytobeaketore- icalenzymes(Fig.3D).Notably,allthreeprecursorpeptideslacka ductase(KR),andaputativeenoylcoenzymeA(enoyl-CoA)hy- July2015 Volume81 Number13 AppliedandEnvironmentalMicrobiology aem.asm.org 4343 Zhangetal. D o w n lo FIG4AssociationofgenesencodinglanthipeptidesynthetaseswithPKSandNRPSgenes.(A)ArepresentativegeneclusterofGCF133thatlikelyencodes a lanthipeptidesynthetase-PKShybridsystems.(B)ArepresentativegeneclusterofGCF26thatlikelyencodeslanthipeptidesynthetase-NRPShybridsystems,and d alogodepictingtheprecursorpeptidesequences.Theemptysitesintheleaderpeptideregionareaconsequenceofhighsequencedivergence(i.e.,noconserved e d residues).ThesequencealignmentofGCF26precursorpeptidesisshowninFig.S5inthesupplementalmaterial.TheGGleaderpeptidecleavagesiteandthe f conservedCysresidueintheputativecoreregionarehighlightedbyaredboxandaredasterisk,respectively.Theputativefunctionsofgeneproductsareshown r o bycolors.MT,malonyltransferase;ACP,acylcarrierprotein;KS,ketosynthase;KR,ketoreductase;DH,dehydratase/enoyl-CoAhydratase;AL,ATP-dependent m ligase;RNR,ribonucleotidereductase-like(theseRNR-likeproteinsappeartocontaintheligandsforadinuclearmetalclusterbutnotatyrosineforradical h formation);sLanB,smallLanB.TheboundariesofeachgeneclusterarepredictedbasedontheconservedgeneswithineachGCFandarenotclearlydefined. t t p : / / a e dratase(Fig.4A).TheseenzymesarereminiscentofatypeIIPKS suggestthepossibilityofcrosstalkbetweenribosomalandnonri- m system,which,unlikemodularPKSs,arecomplexesofmonofunc- bosomalpeptidenaturalproducts,whichhasrecentlyalsobeen . a tionalenzymes(52).Alanthipeptideprecursorpeptidecouldnot reportedinanothercontextforpheganomycinbiosynthesis(55). s m befoundinthecluster,buttheLanKCislikelytobeinvolvedin Interestingly,theLanMenzymesencodedinGCF26alllackthe . thebiosynthesisoftheproductofGCF133,asitsencodinggeneis normallyhighlyconservedzincligandsthatareimportantforcy- o r embeddedinthemiddleofthecluster(Fig.4A).AP450enzymeis clization(seeFig.S6andTableS1inthesupplementalmaterial). g / alsoencodedinthegenecluster,whichsharessignificantsimilar- Ofthe211LanMenzymesencodedinthegenomesinvestigated o n ity(37%identityand53%similarity)withEryF,whichisinvolved here, 196 have the canonical conserved CC(H/C) zinc-binding N inerythromycinbiosynthesis(53).Inaddition,theGCFencodes ligandset.Ofthe15thatdonot,12areencodedinclusterswith o anenzymesharingsignificantsimilaritiestononhemedinuclear NRPSgenes(GCF26andGCF98)(seeTableS1inthesupplemen- v e FeorFe/Mnenzymesrelatedtothesmallsubunitofribonucle- talmaterial).ThesefindingssuggestthattheseLanMenzymesare m otidereductase(RNR).Itiscurrentlytooearlytoproposepoten- usedonlyfordehydrationprocessesandnotforcyclization. b e tialproductsofGCF133.Regardless,thebiosynthesisalmostcer- ClusterscontainingLanCbutnotLanBenzymes.Dehydra- r tainlyinvolvesunprecedentedandintriguingbiochemistry. tionofSer/ThrresiduescatalyzedbyLanBsisaprerequisitefor 1 7 WehaverecentlyshownthatthenisindehydrataseNisBcon- LanC-catalyzed cyclizations (Fig. 1A). However, LanC-like en- , sistsofanN-terminaldomainthatutilizesglutamyl-tRNAtoglu- zymesarewidespreadineukaryotes,whereasthecorresponding 2 0 tamylatethesidechainsofSerandThrresiduesthataretargeted LanBhomologsarenotpresent(12,36).Themoleculardetailsof 1 8 for dehydration and a small C-terminal domain (SpaB_C do- thefunctionsofeukaryoticLanC-likeenzymesremainlargelyelu- b main)thatisrequiredforglutamateeliminationtoformthede- sive (56–61). In prokaryotes, orphan LanCs have also been ob- y hydroamino acids (54). Notably, a set of small LanBs (sLanBs) servedsporadically,whichcouldpossiblybeevolutionaryvestiges g u lacking the elimination domain are apparently associated with (12,21).Inouranalysis,wenotedthatGCF125,thefourth-largest e nonribosomal peptide synthetases (NRPSs), possibly adding lanthipeptide family in the investigated Actinobacteria genome s t aminoacidstothegrowingpeptideinatRNA-dependentmanner collection,with36members(seeFig.S1inthesupplementalma- (54).WhilethemajorityofthesesLanBsresideontheirownpoly- terial), encodes LanCs but not LanBs (Fig. 5A). Putative LanA peptide chain, the NRPS GCF348 (23) contains a gene cluster substratesarealsoencodedinthegenecluster,whicharehighly whereinthesLanBresidesinamoduleofanNRPSalongwithan conservedinsequenceandcontainmultipleCysandSer/Thrres- adenylationdomainandapeptidylcarrierprotein,providingfur- idues(Fig.5A).Anenzymefromthecupinfamily,alargefamilyof ther support for integration of sLanB into the assembly line of enzymeswithhighlydiversefunctions(62),isalsopresentinthese certainNRPSbiosyntheticpathways. geneclusters.Interestingly,ahypotheticalproteinsharingweak Wealsonotedauniquefamily,GCF26(8members),thaten- similaritywithLanMenzymes(BLASTEvalueof(cid:5)10(cid:3)6withthe codesansLanB,aLanM,andanNRPS(Fig.4B).AputativeLanA TIGR03897familyconsistingofLanMs)isalsoencoded(Fig.5A), substrateisalsoencodedintheseclusters,whichhasaconserved suggestinganovellanthipeptidebiosyntheticsystem.ThisLanM- Gly-GlyproteolyticleaderpeptideremovalsiteandmultipleSer/ likestand-aloneenzymeislikelyadehydrataseandpossiblyasur- ThrresiduesbutonlyoneCysinthepredictedcorepeptide(Fig. rogateforthecanonicalLanBenzymesusuallyfoundinconjunc- 4B;seeFig.S5inthesupplementalmaterial).Theseobservations tion with LanC proteins. A stand-alone dehydratase domain 4344 aem.asm.org AppliedandEnvironmentalMicrobiology July2015 Volume81 Number13 Lanthipeptide-LikeGeneClustersinActinobacteria D o w n lo a d e d f r o m h t FIG5PutativeLanC-containinglanthipeptidesystemswithoutLanBenzymes.(A)Arepresentativegeneclusterandtheprecursorpeptidesequencelogoof tp GCF125.(B)ArepresentativegeneclusterandtheprecursorpeptidesequencelogoofGCF114.Theputativefunctionsofgeneproductsareshownbycolors.The :/ / boundariesofeachgeneclusterarepredictedbasedontheconservedgeneswithineachGCFandarenotclearlydefined. a e m . a relatedtoLanMproteinsisalsofoundinPoyE,whichisinvolved dehydrogenaseisflavinmononucleotidedependent,andrelated s m in polytheonamide biosynthesis (63), although the LanM-like enzymescatalyzetheconversionofazolinestoazoles(64,72).The . proteins in GCF125 are more divergent from canonical LanM twoTOMMenzymesandLanMinGCF127areencodedtogether o r proteins than PoyE. The very high density of Ser, Cys, and Gly with a P450 enzyme, a putative precursor substrate, and three g / residuesinthesubstratepeptides(Fig.5A)isreminiscentofthia- transporterproteins. o n zole/oxazole-modified microcins (TOMMs) (64), but no other PossibleO-methylationinclassIlanthipeptidebiosynthesis. N RiPPbiosyntheticgeneswerefoundinthegeneclusters. Areoccurringobservationinouranalysis,onethatwasalsomade o AnothernotablefamilywhosemembersencodeLanCswith- previously with a smaller genome set (21), is that many class I v e outthecorrespondingLanBsisGCF114(9members)(Fig.5B). lanthipeptidebiosyntheticgeneclustershaveaproteinhomolo- m Nootherlanthipeptidesynthetase-likeenzymesarefoundinthis gous to L-isoaspartate O-methyltransferase. These gene cluster b e family.Onceagain,theputativeLanAsencodedinthesegeneclus- families include GCF1, GCF20, GCF27, GCF29, GCF44, and r terscontainmultipleGly,Ser,andCysresidues(Fig.5B),present- GCF124(Fig.7A;seeFig.S7inthesupplementalmaterial).The 1 7 ingapotentiallyveryinterestingnaturalproductbiosynthesissys- LanAprecursorpeptidesfromeachfamilyaredistinctfromoth- , temforfutureinvestigations. ers,buttheyallcontainatleastoneAspresidueinthecoreregion 2 0 Orchestration of lanthipeptide and TOMM biosynthesis. that is conserved in each GCF (see Fig. S7 in the supplemental 1 8 ThiopeptidesareaclassofRiPPscharacterizedbyasix-member material).WhethertheseAspresiduesarerelatedtomethyltrans- b nitrogen-containing heterocycle that is believed to be formed ferremainstobeinvestigated.Althoughmethyltransferasesindif- y fromcycloadditionofdehydroalanineresidues(65).Inaddition, ferent gene cluster families share significant similarities, they g u thiopeptidestypicallycontainazoleheterocycles.Thedehydroala- mostly separate into different clusters (Fig. 7B), suggesting that e ninesinthiopeptidesareformedbyaLanB-likeenzymeandthe eachfamilyofenzymesmayhaveevolvedseparately.Interestingly, s t azoles by a cyclodehydratase/dehydrogenase pair (66, 67). thephylogenyofLanCisdifferentfromtheclusteringofthemeth- GCF127 (8 members; currently limited to Kitasatospora ) is a yltransferases.Forexample,theLanCsfromGCF1,GCF29,and uniquefamilythatalsocombineslanthipeptideandTOMMbio- GCF124aremorecloselyrelatedtoeachotherandareonasepa- syntheticmachinerybutinamannerdifferentfromthatforthe ratebranchfromGCF27(Fig.2),butthemethyltransferasesfrom thiopeptides.ThisfamilyencodesaLanMandapairofTOMM GCF27andGCF124areverycloselyrelatedandseparateonlywith biosyntheticenzymes,includingacyclodehydrataseandadehy- verystringentcutoff(Fig.7B),suggestingthattheLanCandmeth- drogenase.Notably,basedonsequence,theLanMhasafunctional yltransferaseenzymesmaynothavecoevolved.Thisfindingisin dehydratasedomainbuttheC-terminaldomainisnothomolo- contrasttotheobservationthat,exceptforrarecases,LanCand goustothecanonicalLanC-likecyclizationdomain.Theputative LanBenzymesappeartohavecoevolved(12).Anotablefinding cyclodehydratase is a fusion protein containing an N-terminal forGCF20andGCF29isthatastand-aloneSpaB_Cprotein,sim- dockingdomainandaC-terminalYcaOdomain(68),anorgani- ilartotheeliminationproteininthiopeptidebiosynthesis(54),is zationsimilartothatofthecyclodehydratasesinvolvedinthio- encodedinthegenecluster(Fig.7A);thisSpaB_Cproteinlikely peptide and cyanobactin biosynthesis (Fig. 6 ) (64, 66–71). The involvesnovelchemistry. July2015 Volume81 Number13 AppliedandEnvironmentalMicrobiology aem.asm.org 4345 Zhangetal. FIG6 ArepresentativegeneclusterofGCF127thatlikelyencodeslanthipeptide-TOMMhybridsystems.Theputativefunctionsofgeneproductsareshownby D colors.TheboundariesofeachgeneclusterarepredictedbasedontheconservedgeneswithineachGCFandarenotclearlydefined.CD,cyclodehydratase;DHG, o w dehydrogenase. n lo a d Venezuelins produced by Actinobacteria. Although they TOFMS).ThreeStreptomycesstrains(S.katraeISP5550,S.laven- e share similar enzyme structure and organization, class IV LanL dulaesubsp.lavendulaeNRRLB-2508,andStreptomycessp.strain d enzymesaresignificantlyoutnumberedbytheclassIIILanKCsin NRRLB-2375)producedvenezuelinsindetectableamounts(Fig. fr o Actinobacteria(Fig.2).Venezuelin,previouslyobtainedonlyviain 8C;seeFig.S8inthesupplementalmaterial).Venezuelinsofdif- m vitro modification of the precursor peptide VenA by VenL fol- ferentlengthsweredetected,similartotheobservationswithclass h lowedbyproteolyticremovaloftheleaderpeptide(16),represents IIIlanthipeptides(38,39,42,73).Thevariationinlengthsofthe tt p theonlyclassIVlanthipeptidecharacterizedsofar.However,pro- observedvenezuelinscorrespondedtothepresenceorabsenceof : / / ductionofvenezuelinwasdetectedneitherinthewild-typestrain Phe28andAla29(numberingbasedonVenAsequence)(Fig.8B; a e Streptomycesvenezuelaenorafterattemptedexpressionofthegene seeFig.S8inthesupplementalmaterial),presumablyarisingfrom m clusterinStreptomyceslividans,raisingthequestionwhetherven- stepwiseremovalof(partof)theleaderpeptides.Thevenezuelin . a ezuelinisagenuinenaturallanthipeptide.Inourcurrentanalysis, fromS.katraeISP5550,whichcontainedAla29,wasfurtherana- s m wenotedthatGCF147(33members)(seeFig.S1inthesupple- lyzedbyelectrosprayionization(ESI)-MS-MSanalysis(Fig.8D). . mentalmaterial)consistsmostlyofvenezuelin-likegeneclusters Thelackofanyfragmentationshowedthatthepeptidelikelycon- o r (Fig.8A),andtheputativeprecursorpeptidesequencesarehighly sistsofoverlapping(methyl)lanthioninerings,consistentwiththe g / conserved (Fig. 8B), suggesting the wide occurrence of venezu- previouslyproposedringtopologyofvenezuelinsbasedonexten- o n elin-likelanthipeptidegeneclusters(althoughitwasfirstdiscov- sivemutagenesisstudies(16).Additionalverificationthatvenezu- N ered in S. venezuelae, here we collectively designate all these elinfromS.katraeISP5550isindeedalanthipeptidewasprovided o similar putative lanthipeptides venezuelins). The conserved byhydrolysisofthepeptideandderivatizationoftheconstituent v e genesinGCF147includeaLanAgene,aLanLgene,andtwoABC aminoacidsasmethylestersandpentafluoropropionamides.Chi- m transportergenes(Fig.8A),indicatingthat(methyl)lanthionine ralgaschromatography(GC)-MSanalysisofthederivatizedven- b e formation is likely the only posttranslational modification on ezuelin residues revealed the presence of (methyl)lanthionine, r LanA core peptides in this family. We screened for venezuelin supportingthedesignationofvenezuelinasalanthipeptide(Fig. 1 7 production in strains from GCF147 using matrix-assisted laser 8E).The(methyl)lanthioninederivativesallhadtheDLconfigu- , 2 desorptionionization–timeofflightmassspectrometry(MALDI- ration.Ouranalysisvalidatesthatvenezuelinsaregenuinenatural 0 1 8 b y g u e s t FIG7O-MethyltransferasesinclassIlanthipeptidebiosynthesis.(A)RepresentativegeneclustersofGCFsthatencodeclassIlanthipeptidesystemswitha putativeO-methyltransferase.(B)SequencesimilaritynetworkanalysisoftheputativeO-methyltransferasesinpanelA. 4346 aem.asm.org AppliedandEnvironmentalMicrobiology July2015 Volume81 Number13 Lanthipeptide-LikeGeneClustersinActinobacteria D o w n lo a d e d f r o m h t t p : / / a e m . a s m . o r g / o n N o v e m b e FIG8ProductionofvenezuelinsinActinobacteria.(A)RepresentativegeneclustersofGCF147.(B)AlogodepictingtheGCF147precursorpeptidesequences. r (C)MALDI-TOFMSanalysisofvenezuelinproducedbyStreptomyceskatraeISP5550.MALDI-TOFMSanalysisofvenezuelinsproducedbyStreptomyces 1 lavendulaesubsp.lavendulaeNRRLB-2508andStreptomycessp.NRRLB-2375areshowninFig.S8inthesupplementalmaterial.(D)ESI-MS-MSanalysisof 7 , venezuelinproducedbyS.katraeISP5550.Thelackoffragmentationisconsistentwithaglobular,overlappingringtopology.(E)ChiralGC-MSanalysisof 2 hydrolyzedandderivatizedvenezuelinresidues,whichrevealedthepresenceofDL-lanthionineandDL-methyllanthionine.Tracei,sampleshowingthepresence 0 ofDL-lanthionine;traceii,samplespikedwithDL-lanthioninestandard;traceiii,sampleshowingthepresenceofDL-methyllanthionine;traceiv,samplespiked 1 8 withDL-methyllanthioninestandard. b y g u products,andbasedonthefrequencyoftheirbiosyntheticgenes thusfar.Analysisofjust17selectedGCFsthatareamongthemost e (seeFig.S1inthesupplementalmaterial),theymaybeproduced abundantGCFsalreadyrevealednovelposttranslationalmodify- s t by many Actinobacteria. This observation also further supports ingenzymesthatappeartohavebeenrecruitedforlanthipeptide theprevioussuggestionthatidentificationoftheproductsofsilent biosynthesis, as well as several intriguing systems that illustrate clusters may be accomplished by screening several strains that evenmorecrosstalkbetweendifferentRiPPsystemsthanrecog- containtheGCF(23). nizedatpresent(9).Theanalysisalsoshowsthattheclassification systemcurrentlyinusemayneedtobeupdated,sinceseveralof DISCUSSION theGCFsdonotfallclearlyinthefourclassesastheyarecurrently Lanthipeptidesareanintriguingclassofnaturalproductsnotonly defined.Forinstance,GCF146appearstobeahybridofclassII because of their potential medicinal values but also because of andIIIlanthipeptidegeneclusters,andGCFs26and125contain theirwideoccurrenceandsuitabilityforgenomeminingandhet- genesencodingenzymesthatwouldcurrentlydefinethemasclass erologousexpressionstudies.AnextensiveanalysisofActinobac- IorII.Inaddition,theanalysessuggestcrosstalkbetweenlanthi- teriagenomesbuildingontherecentgeneclusterfamilyproject peptidebiosyntheticenzymesandPKSandNRPSsystems. shows that the chemical space of lanthipeptide-related natural WeemphasizethatinadditiontotheseinterestingGCFsthat productsisfarbeyondwhattheresearchcommunityhastapped containatleast5members,averylargenumberofsmallerGCFsas July2015 Volume81 Number13 AppliedandEnvironmentalMicrobiology aem.asm.org 4347 Zhangetal. wellassingletonclusterswereidentifiedinActinobacteria(seeFig. DJ,DawsonM,DittmannE,DonadioS,DorresteinPC,EntianK-D, S1 in the supplemental material) (23), which suggests an even Fischbach MA, Garavelli JS, Göransson U, Gruber CW, Haft DH, HemscheidtTK,HertweckC,HillC,HorswillAR,JasparsM,KellyWL, largerdiversitythanthatdiscussedhere.Infact,withtheexcep- KlinmanJP,KuipersOP,LinkAJ,LiuW,MarahielMA,MitchellDA, tionoftheclassIIIlanthipeptidessuchasthemorphogenSapB MollGN,MooreBS,MüllerR,NairSK,NesIF,NorrisGE,OliveraBM, and various peptins (both encoded within GCF31, the largest Onaka H, Patchett ML, Piel J, Reaney MJT, Rebuffat S, et al. 2013. GCF),theknownlanthipeptidesfromActinobacteria,suchasmi- Ribosomallysynthesizedandpost-translationallymodifiedpeptidenatu- crobisporicinandactagardine,arefoundinsuchsmallGCFsor ralproducts:overviewandrecommendationsforauniversalnomencla- ture.NatProdRep30:108–160.http://dx.doi.org/10.1039/C2NP20085F. singletonclusters(seeFig.S1inthesupplementalmaterial),fur- 10. OmanTJ,vanderDonkWA.2010.Followtheleader:theuseofleader therhighlightingthatalargeamountofstructuralandfunctional peptidestoguidenaturalproductbiosynthesis.NatChemBiol6:9–18. diversityremainstobediscovered.Basedonprecedentwiththe http://dx.doi.org/10.1038/nchembio.286. smallnumberofpreviouslycharacterizedlanthipeptidesfromAc- 11. Plat A, Kuipers A, Rink R, Moll GN. 2013. Mechanistic aspects of lanthipeptideleaders.CurrProteinPeptSci14:85–96.http://dx.doi.org tinobacteria,weanticipatethatalargesubsetofthelanthipeptide- /10.2174/1389203711314020001. relatednaturalproductsuncoveredinthisworkarelikelyantibi- 12. ZhangQ,YuY,VelásquezJE,vanderDonkWA.2012.Evolutionof D otics,especiallythosemadebymachinerythatishomologousto lanthipeptidesynthetases.ProcNatlAcadSciUSA109:18361–18366. o classIandIIbiosyntheticenzymes.Conversely,manyothersmay http://dx.doi.org/10.1073/pnas.1210393109. w haveotherbiologicalactivitiesthatremaintoberevealedbyfuture 13. Siezen RJ, Kuipers OP, de Vos WM. 1996. Comparison of lantibiotic n geneclustersandencodedproteins.AntonieVanLeeuwenhoek69:171– lo studies.Indeed,mostoftheclassIIIlanthipeptidesreportedthus a 184.http://dx.doi.org/10.1007/BF00399422. farfromActinobacteriahavenoorweakantimicrobialactivities, d 14. XieL,MillerLM,ChatterjeeC,AverinO,KelleherNL,vanderDonkWA. e andquiteafewhaveanti-allodynic/antinociceptiveactivity(38, 2004.Lacticin481:invitroreconstitutionoflantibioticsynthetaseactivity. d 74)ormorphogeneticactivities(75).Sincethevenezuelinsdidnot Science303:679–681.http://dx.doi.org/10.1126/science.1092600. fr display antimicrobial activity in a previous study (16), class IV 15. Müller WM, Schmiederer T, Ensle P, Süssmuth RD. 2010. In vitro om biosynthesis of the prepeptide of type-III lantibiotic labyrinthopeptin lanthipeptides may also have activities that would have eluded A2includingformationofaC-Cbondasapost-translationalmodifica- h antimicrobial screens. The unusual biosynthetic systems high- tion.AngewChemIntEd49:2436–2440.http://dx.doi.org/10.1002/anie tt p lightedherewillhelpguidefutureeffortstodiscovernovelbio- .200905909. : / synthetic mechanisms. More importantly, these studies set the 16. Goto Y, Li B, Claesen J, Shi Y, Bibb MJ, van der Donk WA. 2010. /a Discoveryofuniquelanthioninesynthetasesrevealsnewmechanisticand e stage for discovery of natural products with new scaffolds that evolutionary insights. PLoS Biol 8:e1000339. http://dx.doi.org/10.1371 m potentiallyhaveinterestingbiologicalactivities. /journal.pbio.1000339. .a 17. Li B, Yu JP, Brunzelle JS, Moll GN, van der Donk WA, Nair SK. s ACKNOWLEDGMENTS 2006.Structureandmechanismofthelantibioticcyclaseinvolvedin m nisinbiosynthesis.Science311:1464–1467.http://dx.doi.org/10.1126 .o ThisworkwassupportedbytheNationalInstitutesofHealth(GMPO1 /science.1121422. r g GM077596 to W.A.V.D.D. and GM R01 058822 to W.A.V.D.D.). The 18. TangW,vanderDonkWA.2012.Structuralcharacterizationoffour / BrukerUltrafleXtremeMALDI-TOF/TOFmassspectrometerwaspur- prochlorosins:anovelclassoflantipeptidesproducedbyplanktonicma- o n chasedinpartwithagrantfromtheNationalInstitutesofHealth(S10 rine cyanobacteria. Biochemistry 51:4271–4279. http://dx.doi.org/10 RR027109).J.R.D.wasfundedthroughanInstituteforGenomicBiology .1021/bi300255s. N o fellowship,andM.C.W.issupportedby1F32GM0112284-01(NIH). 19. ZhangQ,YangX,WangH,vanderDonkWA.2014.Highdivergence v of the precursor peptides in combinatorial lanthipeptide biosynthesis. e ACSChemBiol9:2686–2694.http://dx.doi.org/10.1021/cb500622c. m REFERENCES 20. BegleyM,CotterPD,HillC,RossRP.2009.Rationalgenomeminingfor b e 1. Willey JM, van der Donk WA. 2007. Lantibiotics: peptides of diverse LanMproteinsleadstotheidentificationofanoveltwo-peptidelantibi- r structureandfunction.AnnuRevMicrobiol61:477–501.http://dx.doi otic,lichenicidin.ApplEnvironMicrobiol75:5451–5460.http://dx.doi 1 .org/10.1146/annurev.micro.61.080706.093501. .org/10.1128/AEM.00730-09. 7 , 2. KnerrPJ,vanderDonkWA.2012.Discovery,biosynthesis,andengi- 21. Marsh AJ, O’Sullivan O, Ross RP, Cotter PD, Hill C. 2010. In silico 2 neeringoflantipeptides.AnnuRevBiochem81:479–505.http://dx.doi analysishighlightsthefrequencyanddiversityoftype1lantibioticgene 0 .org/10.1146/annurev-biochem-060110-113521. clustersingenomesequencedbacteria.BMCGenomics11:679.http://dx 1 8 3. BierbaumG,SahlHG.2009.Lantibiotics:modeofaction,biosynthesis .doi.org/10.1186/1471-2164-11-679. andbioengineering.CurrPharmBiotechnol10:2–18.http://dx.doi.org 22. Singh M, Sareen D. 2014. Novel LanT associated lantibiotic clusters b y /10.2174/138920109787048616. identifiedbygenomedatabasemining.PLoSOne9:e91352.http://dx.doi g 4. RossAC,VederasJC.2011.Fundamentalfunctionality:recentdevelop- .org/10.1371/journal.pone.0091352. u mentsinunderstandingthestructure-activityrelationshipsoflantibiotic 23. DoroghaziJR,AlbrightJC,GoeringAW,JuKS,HainesRR,Tchalukov e peptides.JAntibiot64:27–34.http://dx.doi.org/10.1038/ja.2010.136. KA,LabedaDP,KelleherNL,MetcalfWW.2014.Aroadmapfornatural s t 5. Piper C, Cotter PD, Ross RP, Hill C. 2009. Discovery of medically productdiscoverybasedonlarge-scalegenomicsandmetabolomics.Nat significantlantibiotics.CurrDrugDiscovTechnol6:1–18.http://dx.doi ChemBiol10:963–968.http://dx.doi.org/10.1038/nchembio.1659. .org/10.2174/157016309787581075. 24. BerdyJ.2005.Bioactivemicrobialmetabolites.JAntibiot58:1–26.http: 6. DischingerJ,BasiChipaluS,BierbaumG.2014.Lantibiotics:promising //dx.doi.org/10.1038/ja.2005.1. candidatesforfutureapplicationsinhealthcare.IntJMedMicrobiol 25. MonciardiniP,IorioM,MaffioliS,SosioM,DonadioS.2014.Discov- 304:51–62.http://dx.doi.org/10.1016/j.ijmm.2013.09.003. eringnewbioactivemoleculesfrommicrobialsources.MicrobBiotechnol 7. CoxCR,CoburnPS,GilmoreMS.2005.Enterococcalcytolysin:anovel 7:209–220.http://dx.doi.org/10.1111/1751-7915.12123. twocomponentpeptidesystemthatservesasabacterialdefenseagainst 26. O¨kesli A, Cooper LE, Fogle EJ, van der Donk WA. 2011. Nine post- eukaryoticandprokaryoticcells.CurrProteinPeptSci6:77–84.http://dx translationalmodificationsduringthebiosynthesisofcinnamycin.JAm .doi.org/10.2174/1389203053027557. ChemSoc133:13753–13760.http://dx.doi.org/10.1021/ja205783f. 8. SchnellN,EntianKD,SchneiderU,GötzF,ZahnerH,KellnerR,Jung 27. FoulstonLC,BibbMJ.2010.Microbisporicingeneclusterrevealsun- G.1988.Prepeptidesequenceofepidermin,aribosomallysynthesized usualfeaturesoflantibioticbiosynthesisinactinomycetes.ProcNatlAcad antibiotic with four sulphide-rings. Nature 333:276–278. http://dx.doi SciUSA107:13461–13466.http://dx.doi.org/10.1073/pnas.1008285107. .org/10.1038/333276a0. 28. CastiglioneF,LazzariniA,CarranoL,CortiE,CiciliatoI,GastaldoL, 9. Arnison PG, Bibb MJ, Bierbaum G, Bowers AA, Bugni TS, Bulaj G, CandianiP,LosiD,MarinelliF,SelvaE,ParentiF.2008.Determining CamareroJA,CampopianoDJ,ChallisGL,ClardyJ,CotterPD,Craik thestructureandmodeofactionofmicrobisporicin,apotentlantibiotic 4348 aem.asm.org AppliedandEnvironmentalMicrobiology July2015 Volume81 Number13
Description: