ebook img

Expanded Natural Product Diversity Revealed by Analysis of Lanthipeptide-Like Gene Clusters in ... PDF

12 Pages·2015·3.15 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Expanded Natural Product Diversity Revealed by Analysis of Lanthipeptide-Like Gene Clusters in ...

Expanded Natural Product Diversity Revealed by Analysis of Lanthipeptide-Like Gene Clusters in Actinobacteria QiZhang,a*JamesR.Doroghazi,bXilingZhao,aMarkC.Walker,a WilfredA.vanderDonka,b DepartmentofChemistryandHowardHughesMedicalInstitute,UniversityofIllinoisatUrbana-Champaign,Urbana,Illinois,USAa;InstituteforGenomicBiology, UniversityofIllinoisatUrbana-Champaign,Urbana,Illinois,USAb Lanthionine-containingpeptides(lanthipeptides)arearapidlygrowingfamilyofpolycyclicpeptidenaturalproductsbelonging tothelargeclassofribosomallysynthesizedandposttranslationallymodifiedpeptides(RiPPs).Lanthipeptidesarewidelydis- tributedintaxonomicallydistantspecies,andtheircurrentlyknownbiosyntheticsystemsandbiologicalactivitiesarediverse. D Buildingontherecentnaturalproductgeneclusterfamily(GCF)project,wereportherelarge-scaleanalysisoflanthipeptide- o w likebiosyntheticgeneclustersfromActinobacteria.Ouranalysissuggeststhatlanthipeptidebiosyntheticpathways,andbyex- n trapolationthenaturalproductsthemselves,aremuchmorediversethancurrentlyappreciatedandcontainmanydifferentpost- lo a translationalmodifications.Furthermore,lanthioninesynthetasesaremuchmorediverseinsequenceanddomaintopology d thancurrentlycharacterizedsystems,andtheyareusedbythebiosyntheticmachineriesfornaturalproductsotherthanlanthip- e d eptides.Thegeneclusterfamiliesdescribedheresignificantlyexpandthechemicaldiversityandbiosyntheticrepertoireoflan- f r thionine-relatednaturalproducts.Biosynthesisofthesenovelnaturalproductslikelyinvolvesunusualandunprecedentedbio- o m chemistries,asillustratedbyseveralexamplesdiscussedinthisstudy.Inaddition,classIVlanthipeptidegeneclustersareshown h nottobesilent,settingthestagetoinvestigatetheirbiologicalactivities. t t p : / / a Lanthipeptidesarearapidlygrowingfamilyofpolycyclicpep- functionalimportanceoflanthioninescaffoldsandaconvergent e m tides characterized by the presence of the thioether cross- evolutionprocesstoproducethem(12).Notably,productsgen- . linked amino acids lanthionine and methyllanthionine (1–5). eratedbythesefourclassesoflanthioninesynthetasesarenotlim- a s Thesecompoundsarewidelydistributedintaxonomicallydistant itedtolanthipeptides.Forexample,manylanthipeptide-likebio- m speciesanddisplayverydiversebiologicalactivities,rangingfrom syntheticgeneclustersencodeprecursorpeptidesthathavenoCys .o antimicrobialtoantiallodynic(5–7).Antibacteriallanthipeptides, residues,andtheirproductsarethereforenotlanthipeptides(19). rg suchasthecommerciallyusedfoodpreservativenisin,aretermed Overthepast5years,severalstudieshavereportedbioinfor- / o lantibiotics(8).Lanthipeptidesaregeneratedfromaribosomally matic genome mining efforts based on the then-available ge- n synthesized linear precursor peptide (generically termed LanA) nomes.Thesestudieshavetypicallyfocusedonanenzyme-spe- N o andthereforebelongtothelargeclassofnaturalproductsthatare cificquery,suchasclassILanBandLanCenzymes(20),classII v ribosomally synthesized and posttranslationally modified pep- LanM proteins (21), or the bifunctional LanT proteins, which e m tides(RiPPs)(9).TheprecursorpeptideLanAconsistsofaC-ter- transportlanthipeptidesandremovetheirleadersequences(22). b minalcorepeptidewhereallposttranslationalmodificationstake Buildingontherecentnaturalproductgeneclusterfamily(GCF) e r placeandanN-terminalleaderpeptidethatisimportantforpost- project(23),herewereportlarge-scaleanalysisoflanthipeptide- 1 translationalmodificationsandthatissubsequentlyremovedby likebiosyntheticgeneclustersthatisdrivenbysimilaritiesinen- 7 , proteolysis(10,11).Theinstallationofthe(methyl)lanthionine tireclustersratherthanspecificenzymes.Wefocusedtheanalysis 2 0 thioetherbridgesisachievedbytheinitialdehydrationofSerand onlanthipeptidesfromActinobacteria,whicharerelativelyunder- 1 Thrresiduesintheprecursorpeptides,followedbystereoselective studiedcomparedtofamilymembersfromFirmicutes.Actinobac- 8 b intramolecularMichael-typeadditionofCysthiolstothenewly y formeddehydroaminoacids(Fig.1A). g u Four classes of biosynthetic enzymes are known to catalyze Received24February2015 Accepted14April2015 e lanthionineformation(2,12)(Fig.1B).ClassIlanthioninesyn- Acceptedmanuscriptpostedonline17April2015 s t thetasesconsistofadehydrataseandacyclasethataregenerically CitationZhangQ,DoroghaziJR,ZhaoX,WalkerMC,vanderDonkWA.2015. termedLanBandLanC,respectively(8).ClassIIenzymesarege- Expandednaturalproductdiversityrevealedbyanalysisoflanthipeptide-like geneclustersinActinobacteria.ApplEnvironMicrobiol81:4339–4350. nericallynamedLanMs,whicharesinglepolypeptidescontaining doi:10.1128/AEM.00635-15. anN-terminaldehydratasedomainthatbearsnohomologytoany Editor:M.A.Elliot functionallyknownenzymesandaC-terminalLanC-likecyclase AddresscorrespondencetoWilfredA.vanderDonk,[email protected]. domain (13, 14). Class III and class IV synthetases are trifunc- *Presentaddress:QiZhang,DepartmentofChemistry,FudanUniversity, tionalenzymestermedLanKC(15)andLanL(16),respectively. Shanghai,China. TheseenzymescontainanN-terminallyasedomainandacentral Q.Z.andJ.R.D.sharethepositionoffirstauthor. kinasedomainbutdifferintheirCtermini.LanCandtheC-ter- Supplementalmaterialforthisarticlemaybefoundathttp://dx.doi.org/10.1128 minaldomainsofLanMandLanLcontainaconservedzinc-bind- /AEM.00635-15. ingmotif(Cys-Cys-His/Cys)(17,18),whereastheC-terminalcy- Copyright©2015,AmericanSocietyforMicrobiology.AllRightsReserved. clasedomainsofLanKClacktheseconservedresidues(Fig.1B). doi:10.1128/AEM.00635-15 The four distinct classes of biosynthetic machinery reflect the July2015 Volume81 Number13 AppliedandEnvironmentalMicrobiology aem.asm.org 4339 Zhangetal. D o w n lo a d e d f r o m h t t p : / / a FIG1Biosynthesisoflanthipeptides.(A)Themechanismof(methyl)lanthionineformation.(B)Thefourcurrentlyknownclassesoflanthipeptidesynthetases. e m Xnrepresentsapeptidelinker.Theconservedzinc-bindingmotifsarehighlightedbythepurplelinesinthecyclasedomains.SpaB_Cisaneliminationdomain . presentasastand-aloneproteininthiopeptidebiosynthesisandastheC-terminaldomainofLanBenzymesinlanthipeptidebiosynthesis. a s m . teriacarryawealthofnaturalproductbiosyntheticgeneclusters mationcanbefoundathttp://www.igb.illinois.edu/labs/metcalf/gcf/lant o r whose products encompass highly diverse chemical structures. .html. Use of these pages requires a JavaScript-enabled web browser. g / This phylum has been the source and/or inspiration for the Mouseoverofageneprovidesaroughannotationandshouldbecon- o majorityofpharmaceuticallyusefulnaturalproducts(24,25). firmedwithadditionalmethodsbeforefurtheruse.Mouseoveralsohigh- n N Although Actinobacteria constitute only a small proportion of lightsothergenesonthepagethatareinthesamehomologygroup.On o knownlanthipeptideproducers,theyencodeadiversesetofpost- click,eachgenewillopenanewtabcontainingtheaminoacidsequence v andalinktoBLASTanalysisofthesequence.Straindesignationssuchas e translationalmodificationsthathavenotbeenobservedforlan- m Streptomyces species B-3253 refer to strains in the Culture Collection thipeptidesfromotherphyla(2)(e.g.,lysinoalanineformationin b (NRRL)oftheAgriculturalResearchService(ARS).Thegenomicinfor- e cinnamycin [26], tryptophan chlorination and proline dihy- r mationcanbefoundbyenteringB-3253intotheNCBIsearchfieldand droxylationinmicrobisporicin[27,28,alsocalledNAI-107[29], 1 then searching in the Assembly or BioSample databases. Designations 7 andglycosylationinNAI-112[30]).Theuniquemodificationsin , suchasStreptomycesspeciesB-3253_23refertocluster23inthisstrain. 2 actinobacteriallanthipeptidebiosynthesissuggestgreatpotential Network analysis was performed by BLASTP searches, comparing 0 forexploringunknownlanthipeptidechemicalspaceinthisphy- eachsequenceagainsteachothersequence.AVBAscriptwaswrittento 18 lum. Our analysis suggests that lanthipeptides are likely much removeallduplicatecomparisons,andtheresultwasimportedintothe b more diverse than is currently appreciated and contain many Cytoscapesoftwarepackage(31).Thenodeswerearrangedbyusingthe y novel posttranslational modifications. More intriguingly, our yFiles organic layout provided with Cytoscape version 2.8.3. Sequence g u analysissuggeststhatinsomecaseslanthipeptidesynthetaseshave logosweregeneratedonlineusingWeblogo(32). e beenrepurposedforproducingnaturalproductsotherthanlan- Cellcultures,samplepreparation,andMSanalysis.Dimethylsul- st thipeptides,expandingnaturalproductdiversity. foxide(DMSO)stocksofStreptomyceskatraeISP5550werepreparedby mixing600(cid:2)lofanS.katrae ISP5550liquidculturewithanequalvolume MATERIALSANDMETHODS ofsterilized20%dimethylsulfoxide(DMSO).Theresultingsolutionwas Chemicals,media,andgeneralmethods.Unlessotherwisenoted,reagents mixed,flashfrozen,andstoredat(cid:3)80°C.S.katraeISP5550wasinocu- werepurchasedfromFisherScientific.YeastextractwaspurchasedfromBec- lated from DMSO stocks onto solid ATCC172 medium (20 g soluble tonDickinsonandN-ZaminetypeAfromSigma-Aldrich.Acetonitrilefor starch,5gyeastextract,5gN-ZaminetypeA,1gcalciumcarbonate,15g matrix-assistedlaserdesorptionionizationmassspectrometry(MALDIMS) agar,and1literofMilli-Qwater;afterautoclavingthemedium,sterilized analysiswaspurchasedfromAvantorPerformanceMaterials.MALDI–time glucosewasaddedtoa1%finalconcentration)andincubatedat30°Cfor offlight(MALDI-TOF)MSwascarriedoutonaBrukerUltrafleXtremeTOF/ 4to5days. TOF.Reversed-phaseliquidchromatographyelectrosprayionization(ESI) ThepresenceofvenezuelinswasdetectedusingcolonyMALDI-TOF tandemMSwascarriedoutandprocessedusingaSynaptESIquadrupole MS.Asmallportion(approximately1by1mm)ofcolonywastransferred TOFmassspectrometrysystem(Waters). ontoaBrukerMTP384polishedsteeltargetplate.Ontopofthecolony,2 Bioinformatics. GCF analysis, BLAST searches, and phylogenetic (cid:2)lofsinapicacidmatrixwasoverlaidandallowedtoairdry.Sinapicacid analysiswereallperformedasdescribedpreviously(23).AllGCFinfor- matrixwaspreparedbysaturatinganacetonitrile(MeCN)–Milli-Qwater 4340 aem.asm.org AppliedandEnvironmentalMicrobiology July2015 Volume81 Number13 Lanthipeptide-LikeGeneClustersinActinobacteria (80:20) solution with sinapic acid (Sigma-Aldrich). MALDI-TOF MS 12h.Thereactionmixturewasdriedandmixedwithasolutionofacetyl analysis of the sample was performed using a Bruker UltrafleXtreme chloride(Sigma-Aldrich)andmethanol.Followingrefluxat110°Cfor45 MALDI-TOFTOF-MSmaintainedbytheUIUCSchoolofChemicalSci- min,thereactionmixturewasdriedand3mlofdichloromethane(Sigma- ences Mass Spectrometry Laboratory. Data acquisition was completed Aldrich)wasadded.Aftercoolingthesolutionto0°C,1mlofpentafluo- usingBruker’sFlexControlprogram,whileFlexAnalysiswasusedfordata ropropionicanhydride(Sigma-Aldrich)wasadded,andthereactionmix- analysis.Priortodataacquisition,theinstrumentwascalibratedusing turewasrefluxedfor15minat110°C.Thereactionmixturewasdriedand peptidecalibrationstandardII(BrukerDaltonics,Billerica,MA)andthe storedat(cid:3)80°C,andpriortoGC-MSanalysis,thesamplewasredissolved matrixsuppressionmodesettodeflectionmode.Thedatawerenotsub- in100(cid:2)lofmethanol.Particulateswereremovedbycentrifugationat jectedtoprocessing. 23,700(cid:4)gfor4min.AnAgilentHewlett-Packard5973massspectrom- UpondetectionofvenezuelinsbycolonyMALDI-TOFMSfromsolid eterequippedwithaCP-Chirasil-LVal0.12-(cid:2)m,25-mby0.25-mmcol- culturesofS.katraeISP5550,liquidcultureswereanalyzedforthepro- umn(7-in.cage;AgilentTechnologies)wasusedtoperformtheGC-MS ductionofvenezuelins.Asinglecolonywastransferredinto50to100ml analysis.Thesamplewasintroducedtotheinstrumentviaasplit(1:5) ofliquidATCC172medium,preparedinthesamewayasthesolidme- injectionof2to5(cid:2)lwitha2.0-ml/minheliumgasflowrate.Theinitial diumwiththeomissionofagar.Theliquidculturewasincubatedwith inlettemperaturewas190°C,andagradientof20°C/minfrom160°Cfor shakingat30°Cfor12days.Supernatantfromtheliquidcultureswas 5minto180°Cfor10minwasused.Thefollowingmassspectrometer D o obtainedbycentrifugingat4,650(cid:4)gfor15min.Thehydrophobiccom- settingswereused:185°CfortheMSDtransferlineheater,150°Cforthe w ponents of the supernatant were desalted by ZipTip (EMD Millipore) MS Quad analyzer, and 230°C for the ion source. Data were acquired n accordingtothemanufacturer’sinstructions.TheZipTipcontentswere usingscanandselectedionmonitoringat365and379Da.Theidentityof lo directlyelutedontoaBrukerMTP384polishedsteeltargetplateonaspot (methyl)lanthionineresidueswasconfirmedbyaddingauthenticmeth- ad containing1(cid:2)lofsinapicacidmatrix.AnalysisbyMALDI-TOFMSwas yl(lanthionine)standardstothesampleandanalyzingtheresultingmix- e performedasdescribedabove. turebyGC-MS.Themixturesofsampleandstandardwerepreparedsuch d InpreparationforESI-MS,peptidecomponentsofthesupernatant thattherewasanapproximatelyequalcontributionofsignalarisingfrom fro wereprecipitatedusingammoniumsulfate.A60%finalconcentrationof thesampleandstandard. m ammoniumsulfatewasachievedwiththeadditionof30gofammonium h sulfateto50mlofsupernatant.Thesolutionwasallowedtoincubateat RESULTS tt p roomtemperaturefor30min.Theresultingprecipitatewaspelletedby PhylogeneticanalysisofLanC-likeenzymes.Miningof830acti- : / centrifugation at 22,789 (cid:4) g for 10 min, and the supernatant was de- nobacterial genomes, including 344 newly sequenced genomes /a canted. The pellet was redissolved in Milli-Q water and subjected to obtainedfortheGCFproject(23),revealed1,163lanthipeptide- e m ESI-MSanalysisusinganAcquityultraperformanceliquidchromatogra- likegeneclusters,whichweregroupedintomorethan100differ- . a phy(UPLC)systemcoupledtoaWatersSynaptESI-QTOF.TheUPLC entfamiliesaccordingtotheirsequenceandorganizationalsimi- s wasequippedwithanAcquityUPLCBEHC81.7-(cid:2)m,1.0-by100-mm larities(seeFig.S1inthesupplementalmaterial)(23).Strikingly, m column.SamplewasintroducedintothecolumnviaanAcquityautoin- the GCFs that produce the known lanthipeptides produced by .o jectorandsubjectedtoagradientof2%Bfrom0to2min,2%to98%B r Actinobacteriamakeupaverysmallfraction,illustratingthetre- g from2to12min,and98%Bfrom12to15min(Awas0.1%formicacid / mendousdiversityofyet-to-be-investigatedGCFs.Tofirstinves- o inwaterandBwas0.1%formicacidinMeCN).TheWatersMassLynx n tigate the phylogenetic relationship of LanC-like enzymes from V4.1programwasusedtotune,calibrate,andacquiredata.[Glu1]-Fibri- N nopeptideBhuman(Sigma-Aldrich)wasusedasanexternalcalibrant, different gene clusters, we constructed a maximum-likelihood o andthemassofvenezuelinwasverifiedtobewithin5ppmofitscalculated (ML) tree using enzymes from 29 large families that each are v e mass.Collision-induceddissociationwasachievedusingaseriesofenergy foundinatleastfivedifferentspecies(oroperationaltaxonomic m rampsrangingfrom30to60eV. units with a clustering threshold of 99% identity in ribosomal b e Isolationofvenezuelins.S.katraeISP5550liquidculturesupernatant proteins [23]). This analysis makes it possible to infer a gene’s r wassubjectedtopressure-basedsampleconcentrationratherthanammo- involvementinaGCFbasedonconservationoverevolutionary 1 niumsulfateprecipitation.Aftercentrifugation,40mlofculturesuper- time(34).GeneconservationwithinaGCFreliesontheinclusion 7, natantwasfurtherclarifiedbyfiltrationthrougha0.22-(cid:2)mnylonmem- ofmultiplespeciesintheanalysis,asgenomediversitywithina 2 0 braneandthenloadedintoanAmiconstirredcellequippedwitha1-kDa singleStreptomycesspeciesismuchreducedandsyntenyextends 1 nominal-molecular-mass limit regenerated cellulose disc (EMD Milli- 8 nearlytheentirelengthofthechromosome(35).Thetreeshows pore).Theclarifiedsupernatantwasconcentratedatroomtemperature b distinct phylogenetic distributions of enzymes from different y fromavolumeof40to2mloverapproximately4h.Theconcentrated supernatantwasflashfrozenandstoredat(cid:3)20°Cpriortofractionation classes,asLanCandtheC-terminaldomainsofLanM,LanL,and gu by analytical reversed-phase high-performance liquid chromatography LanKCfallintofourdifferentclades(Fig.2).Thisobservationis e (HPLC)usinganAgilent1260InfinityinstrumentequippedwithaPhe- consistent with our previous proposal that the four classes of st nomenexLuna10-(cid:2)m,C (2)100-Å,250-by4.6-mmcolumn.Thein- lanthipeptide synthetases have evolved from different ancestors 18 strumentwasmanagedusingAgilentInstrument1(online)software.The (12,36).Interestingly,threecasesofnovelGCFsemergewithin mobilephaseconsistedofA(0.1%trifluoroaceticacid[TFA][AcrosOr- an existing GCF: GCF100 branches within the LanM clade of ganics])inwaterandB(0.1%TFAin80%MeCN–20%water),witha GCF146 (this GCF also contains a LanKC-encoding gene and gradientof2%Bfrom0to5min,2to100%Bfrom5to50min,and100% henceappearstwiceinFig.2),GCF1andGCF29branchwithin Bfrom50to60min.A0.5-(cid:2)laliquotofeachfractionelutingafter20min GCF20,andGCF133andGCF140branchwithinGCF31.Below wasspottedwithanequalvolumeofsinapicacidmatrixandanalyzedby we highlight several families of lanthipeptide-like gene clusters MALDI-TOFMSforthepresenceofvenezuelin.Venezuelin-containing thataremostinterestinginthattheydeviatefromthecurrently fractions(typicallyelutingat35to38min)wereflashfrozenanddriedin knownlanthipeptidebiosyntheticsystemsandlikelyencodenovel vacuo.Three1-mlinjectionsofconcentratedS.katraeISP5550superna- tantyielded100(cid:2)gofHPLC-purified,drymaterial. andunusualbiochemistryinthebiosynthesisoflanthionine-re- Detectionoflanthionine.HPLC-purifiedvenezuelinwasanalyzedby latednaturalproducts. gaschromatography(GC)-MSaspreviouslydescribed(33).Inbrief,the Novelmulticomponentlanthipeptidesystems.Two-compo- samplewasredissolvedin3mlof6MHClandheatedat110°Cfor10to nentlanthipeptidesarenormallypotentantimicrobialagentsin July2015 Volume81 Number13 AppliedandEnvironmentalMicrobiology aem.asm.org 4341 Zhangetal. D o w n lo a d e d f r o m h t t p : / / a e m . a s m . o r g / o n FIG2 AnMLtreeofLanCsandLanC-likedomains.Intheouterring,thefourdifferentclassesofenzymesaredepictedbythecolordefinedinthelegend, N whereasthedifferentGCFsareshownintheinnerringwithrandomcolors.TheGCFnumbersaredefinedinreference23andcanbefoundathttp://www.igb o v .illinois.edu/labs/metcalf/gcf/lant.html.PKS,polyketidesynthetase;NRPS,nonribosomalpeptidesynthetase;TOMM,thiazole/oxazole-modifiedmicrocins. e m b e whichthetwoposttranslationallymodifiedpeptidesexertstrong recently characterized NpnAs (19). Like in the Npn cluster, an r synergisticbiologicalactivity(37).Todate,isolatedtwo-compo- oxidoreductasecontainingthecharacteristicNAD-bindingRoss- 1 7 nent lantibiotics have been confined to Firmicutes, but several mannfoldisalsoencodedinthegenecluster.Apossiblerolefor , familiesoflanthipeptidegeneclustersintheActinobacterialikely thisoxidoreductaseistoproduceD-aminoacidsbystereoselective 20 encodetwo-componentlanthipeptides.Averyrecentstudyalso reductionofthedehydroaminoacidsresultingfromLanMcatal- 1 8 suggestedthepresenceoftwo-componentlanthipeptidesinthree ysis(45–47).Thesefindingssetthestageforinvestigationwhether b Streptomyces strains (22). Among the most interesting class is thematureproductsoftheLanMandLanKCsubstratesindeedform y GCF146(70members),whichiscurrentlythesecond-largestlan- a novel functional two-component lanthipeptide system in which g u thipeptideGCF(seeFig.S1inthesupplementalmaterial).Each onepeptidedoesnotcontainlanthionine/labioninstructures. e memberencodesaLanMandaLanKC,andthecorepeptidesof GCF30 (12 members) consists of gene clusters appearing in s t the putative LanKC substrates have a strictly conserved CxSxxS two different types of organization, both of which encode two motif(Fig.3A).PreviousstudieshaveshownthatLanKCproteins LanMs and two LanA substrates (Fig. 3B). Both LanAs have a canturnSxxSxxxCmotifsintoalabioninscaffoldbyinitialMi- Gly-Gly/Alamotifcharacteristicforleaderpeptideremovaland chaeladditionoftheC-terminalCystoacentraldehydroalanine multipleCysandSer/Thrresidues(seeFig.S2inthesupplemental (formedfromSer)andsubsequentadditionoftheresultingeno- material).Therefore,theproductsofthesegeneclustersarelikely late onto the N-terminal dehydroalanine of the motif (38–42). similartowell-knowntwo-componentlantibioticssuchashalo- TheCxSxxSmotifinGCF146couldbeavariationofthelabionin- duracinandlichenicidinproducedbybacilli(20,37,48–51).One forming sequence. Another interesting finding is that a radical GCF30 member from Streptomyces viridochromogenes was also SAM protein containing a canonic CxxxCxxC motif (43, 44) is notedinarecentgenomeminingstudyfocusingonLanTanalogs strictly conserved in these gene clusters, which may catalyze an (22). unprecedented posttranslational modification in lanthipeptide GCF46 (6 members) consists of gene clusters encoding two maturation.TheputativeLanMsubstratesinGCF146,however, LanAsandtwoLanKCenzymes(Fig.3C).ThetwoLanKCsshare donotcontaincysteineresidues(Fig.3A)andaresimilartothe highsequencesimilarities(about40%identity)witheachother, 4342 aem.asm.org AppliedandEnvironmentalMicrobiology July2015 Volume81 Number13 Lanthipeptide-LikeGeneClustersinActinobacteria D o w n lo a d e d f r o m h t t p : / / a e m . a s m . o r g / o n N o v e m FIG3GCFsthatlikelyproducetwo-componentlanthipeptides.(A)ArepresentativegeneclusterofGCF146andthesequencelogosoftheprecursorpeptide b substrates.ThepredictedLanKCsubstrate/enzymepairisshowninblue,andthepredictedLanMsubstrate/enzymepairisshowninred.Thestrictlyconserved e CxSxxSmotifoftheputativeLanKCsubstrateandtheGG/AleaderpeptidecleavagesiteoftheputativeLanMsubstratearehighlightedbyredboxes.(B)A r 1 representativegeneclusterofGCF30thatlikelyencodesahaloduracin-likesystem.Thegeneclustersappearintwodifferenttypes,andhomologousenzymesare 7 linkedbybluedashedlines.(C)ArepresentativegeneclusterofGCF46thatmayencodeclassIIItwo-componentlanthipeptides.(D)Arepresentativegenecluster , ofGCF140thatmayencodethreeprecursorpeptidesandaLanKC.Theputativefunctionsofthegeneproductsareshownbycolors.Thelogosoftheprecursor 2 0 peptidesinGCF30,GCF46,andGCF140areshowninFig.S2toS4,respectively,inthesupplementalmaterial.Theboundariesofeachgeneclusterarepredicted 1 basedontheconservedgeneswithineachGCFandarenotclearlydefined.RS,radicalSAM;OR,oxidoreductase. 8 b y g u andthetwoLanAsaresimilarbutnotidentical(seeFig.S3inthe Cysresidueinthecorepeptideregion,whereasonepeptidehasa e supplementalmaterial).BothLanAshavehighlyconservedCxx- Cysresidueintheleaderpeptide(seeFig.S4inthesupplemental s t SxxSmotifs,suggestingapotentialfirstclassIIItwo-component material).Itremainstobedeterminedwhethertheseputativepre- lanthipeptide.AradicalSAMproteinisalsoencodedinthegene cursor peptides are substrates of the corresponding LanKC en- cluster,whosefunctionremainstobedetermined.Notably,the zyme. two LanAs in the gene clusters from GCF46 are significantly Lanthionine synthetases associated with polyketide and shorterthanotherLanAsandspanonlyabout30aminoacids(see nonribosomalpeptidebiosynthesis.Thethird-largestlanthipep- Fig.S3inthesupplementalmaterial).Theseshortprecursorpep- tidefamilyintheinvestigatedgenomecollectionisGCF133(48 tides are possibly truncated LanAs, which have recently been members)(seeFig.S1inthesupplementalmaterial),whichrep- found in several lanthipeptide biosynthetic systems and were resentsaveryunusualbiosyntheticcluster.Eachmemberofthis showntobegenuinesubstrates(19). family encodes a LanKC and a series of polyketide synthetase Another intriguing lanthipeptide biosynthetic system was (PKS)-likeenzymes,includinganacylcarrierprotein(ACP),two foundinGCF140(29members),whosegeneclusterseachencode 3-oxoacyl-ACP synthases (KS), a malonyltransferase (MT), a threeputativeprecursorpeptides,aLanKC,andasetofhypothet- short-chaindehydrogenase/reductase(SDR)likelytobeaketore- icalenzymes(Fig.3D).Notably,allthreeprecursorpeptideslacka ductase(KR),andaputativeenoylcoenzymeA(enoyl-CoA)hy- July2015 Volume81 Number13 AppliedandEnvironmentalMicrobiology aem.asm.org 4343 Zhangetal. D o w n lo FIG4AssociationofgenesencodinglanthipeptidesynthetaseswithPKSandNRPSgenes.(A)ArepresentativegeneclusterofGCF133thatlikelyencodes a lanthipeptidesynthetase-PKShybridsystems.(B)ArepresentativegeneclusterofGCF26thatlikelyencodeslanthipeptidesynthetase-NRPShybridsystems,and d alogodepictingtheprecursorpeptidesequences.Theemptysitesintheleaderpeptideregionareaconsequenceofhighsequencedivergence(i.e.,noconserved e d residues).ThesequencealignmentofGCF26precursorpeptidesisshowninFig.S5inthesupplementalmaterial.TheGGleaderpeptidecleavagesiteandthe f conservedCysresidueintheputativecoreregionarehighlightedbyaredboxandaredasterisk,respectively.Theputativefunctionsofgeneproductsareshown r o bycolors.MT,malonyltransferase;ACP,acylcarrierprotein;KS,ketosynthase;KR,ketoreductase;DH,dehydratase/enoyl-CoAhydratase;AL,ATP-dependent m ligase;RNR,ribonucleotidereductase-like(theseRNR-likeproteinsappeartocontaintheligandsforadinuclearmetalclusterbutnotatyrosineforradical h formation);sLanB,smallLanB.TheboundariesofeachgeneclusterarepredictedbasedontheconservedgeneswithineachGCFandarenotclearlydefined. t t p : / / a e dratase(Fig.4A).TheseenzymesarereminiscentofatypeIIPKS suggestthepossibilityofcrosstalkbetweenribosomalandnonri- m system,which,unlikemodularPKSs,arecomplexesofmonofunc- bosomalpeptidenaturalproducts,whichhasrecentlyalsobeen . a tionalenzymes(52).Alanthipeptideprecursorpeptidecouldnot reportedinanothercontextforpheganomycinbiosynthesis(55). s m befoundinthecluster,buttheLanKCislikelytobeinvolvedin Interestingly,theLanMenzymesencodedinGCF26alllackthe . thebiosynthesisoftheproductofGCF133,asitsencodinggeneis normallyhighlyconservedzincligandsthatareimportantforcy- o r embeddedinthemiddleofthecluster(Fig.4A).AP450enzymeis clization(seeFig.S6andTableS1inthesupplementalmaterial). g / alsoencodedinthegenecluster,whichsharessignificantsimilar- Ofthe211LanMenzymesencodedinthegenomesinvestigated o n ity(37%identityand53%similarity)withEryF,whichisinvolved here, 196 have the canonical conserved CC(H/C) zinc-binding N inerythromycinbiosynthesis(53).Inaddition,theGCFencodes ligandset.Ofthe15thatdonot,12areencodedinclusterswith o anenzymesharingsignificantsimilaritiestononhemedinuclear NRPSgenes(GCF26andGCF98)(seeTableS1inthesupplemen- v e FeorFe/Mnenzymesrelatedtothesmallsubunitofribonucle- talmaterial).ThesefindingssuggestthattheseLanMenzymesare m otidereductase(RNR).Itiscurrentlytooearlytoproposepoten- usedonlyfordehydrationprocessesandnotforcyclization. b e tialproductsofGCF133.Regardless,thebiosynthesisalmostcer- ClusterscontainingLanCbutnotLanBenzymes.Dehydra- r tainlyinvolvesunprecedentedandintriguingbiochemistry. tionofSer/ThrresiduescatalyzedbyLanBsisaprerequisitefor 1 7 WehaverecentlyshownthatthenisindehydrataseNisBcon- LanC-catalyzed cyclizations (Fig. 1A). However, LanC-like en- , sistsofanN-terminaldomainthatutilizesglutamyl-tRNAtoglu- zymesarewidespreadineukaryotes,whereasthecorresponding 2 0 tamylatethesidechainsofSerandThrresiduesthataretargeted LanBhomologsarenotpresent(12,36).Themoleculardetailsof 1 8 for dehydration and a small C-terminal domain (SpaB_C do- thefunctionsofeukaryoticLanC-likeenzymesremainlargelyelu- b main)thatisrequiredforglutamateeliminationtoformthede- sive (56–61). In prokaryotes, orphan LanCs have also been ob- y hydroamino acids (54). Notably, a set of small LanBs (sLanBs) servedsporadically,whichcouldpossiblybeevolutionaryvestiges g u lacking the elimination domain are apparently associated with (12,21).Inouranalysis,wenotedthatGCF125,thefourth-largest e nonribosomal peptide synthetases (NRPSs), possibly adding lanthipeptide family in the investigated Actinobacteria genome s t aminoacidstothegrowingpeptideinatRNA-dependentmanner collection,with36members(seeFig.S1inthesupplementalma- (54).WhilethemajorityofthesesLanBsresideontheirownpoly- terial), encodes LanCs but not LanBs (Fig. 5A). Putative LanA peptide chain, the NRPS GCF348 (23) contains a gene cluster substratesarealsoencodedinthegenecluster,whicharehighly whereinthesLanBresidesinamoduleofanNRPSalongwithan conservedinsequenceandcontainmultipleCysandSer/Thrres- adenylationdomainandapeptidylcarrierprotein,providingfur- idues(Fig.5A).Anenzymefromthecupinfamily,alargefamilyof ther support for integration of sLanB into the assembly line of enzymeswithhighlydiversefunctions(62),isalsopresentinthese certainNRPSbiosyntheticpathways. geneclusters.Interestingly,ahypotheticalproteinsharingweak Wealsonotedauniquefamily,GCF26(8members),thaten- similaritywithLanMenzymes(BLASTEvalueof(cid:5)10(cid:3)6withthe codesansLanB,aLanM,andanNRPS(Fig.4B).AputativeLanA TIGR03897familyconsistingofLanMs)isalsoencoded(Fig.5A), substrateisalsoencodedintheseclusters,whichhasaconserved suggestinganovellanthipeptidebiosyntheticsystem.ThisLanM- Gly-GlyproteolyticleaderpeptideremovalsiteandmultipleSer/ likestand-aloneenzymeislikelyadehydrataseandpossiblyasur- ThrresiduesbutonlyoneCysinthepredictedcorepeptide(Fig. rogateforthecanonicalLanBenzymesusuallyfoundinconjunc- 4B;seeFig.S5inthesupplementalmaterial).Theseobservations tion with LanC proteins. A stand-alone dehydratase domain 4344 aem.asm.org AppliedandEnvironmentalMicrobiology July2015 Volume81 Number13 Lanthipeptide-LikeGeneClustersinActinobacteria D o w n lo a d e d f r o m h t FIG5PutativeLanC-containinglanthipeptidesystemswithoutLanBenzymes.(A)Arepresentativegeneclusterandtheprecursorpeptidesequencelogoof tp GCF125.(B)ArepresentativegeneclusterandtheprecursorpeptidesequencelogoofGCF114.Theputativefunctionsofgeneproductsareshownbycolors.The :/ / boundariesofeachgeneclusterarepredictedbasedontheconservedgeneswithineachGCFandarenotclearlydefined. a e m . a relatedtoLanMproteinsisalsofoundinPoyE,whichisinvolved dehydrogenaseisflavinmononucleotidedependent,andrelated s m in polytheonamide biosynthesis (63), although the LanM-like enzymescatalyzetheconversionofazolinestoazoles(64,72).The . proteins in GCF125 are more divergent from canonical LanM twoTOMMenzymesandLanMinGCF127areencodedtogether o r proteins than PoyE. The very high density of Ser, Cys, and Gly with a P450 enzyme, a putative precursor substrate, and three g / residuesinthesubstratepeptides(Fig.5A)isreminiscentofthia- transporterproteins. o n zole/oxazole-modified microcins (TOMMs) (64), but no other PossibleO-methylationinclassIlanthipeptidebiosynthesis. N RiPPbiosyntheticgeneswerefoundinthegeneclusters. Areoccurringobservationinouranalysis,onethatwasalsomade o AnothernotablefamilywhosemembersencodeLanCswith- previously with a smaller genome set (21), is that many class I v e outthecorrespondingLanBsisGCF114(9members)(Fig.5B). lanthipeptidebiosyntheticgeneclustershaveaproteinhomolo- m Nootherlanthipeptidesynthetase-likeenzymesarefoundinthis gous to L-isoaspartate O-methyltransferase. These gene cluster b e family.Onceagain,theputativeLanAsencodedinthesegeneclus- families include GCF1, GCF20, GCF27, GCF29, GCF44, and r terscontainmultipleGly,Ser,andCysresidues(Fig.5B),present- GCF124(Fig.7A;seeFig.S7inthesupplementalmaterial).The 1 7 ingapotentiallyveryinterestingnaturalproductbiosynthesissys- LanAprecursorpeptidesfromeachfamilyaredistinctfromoth- , temforfutureinvestigations. ers,buttheyallcontainatleastoneAspresidueinthecoreregion 2 0 Orchestration of lanthipeptide and TOMM biosynthesis. that is conserved in each GCF (see Fig. S7 in the supplemental 1 8 ThiopeptidesareaclassofRiPPscharacterizedbyasix-member material).WhethertheseAspresiduesarerelatedtomethyltrans- b nitrogen-containing heterocycle that is believed to be formed ferremainstobeinvestigated.Althoughmethyltransferasesindif- y fromcycloadditionofdehydroalanineresidues(65).Inaddition, ferent gene cluster families share significant similarities, they g u thiopeptidestypicallycontainazoleheterocycles.Thedehydroala- mostly separate into different clusters (Fig. 7B), suggesting that e ninesinthiopeptidesareformedbyaLanB-likeenzymeandthe eachfamilyofenzymesmayhaveevolvedseparately.Interestingly, s t azoles by a cyclodehydratase/dehydrogenase pair (66, 67). thephylogenyofLanCisdifferentfromtheclusteringofthemeth- GCF127 (8 members; currently limited to Kitasatospora ) is a yltransferases.Forexample,theLanCsfromGCF1,GCF29,and uniquefamilythatalsocombineslanthipeptideandTOMMbio- GCF124aremorecloselyrelatedtoeachotherandareonasepa- syntheticmachinerybutinamannerdifferentfromthatforthe ratebranchfromGCF27(Fig.2),butthemethyltransferasesfrom thiopeptides.ThisfamilyencodesaLanMandapairofTOMM GCF27andGCF124areverycloselyrelatedandseparateonlywith biosyntheticenzymes,includingacyclodehydrataseandadehy- verystringentcutoff(Fig.7B),suggestingthattheLanCandmeth- drogenase.Notably,basedonsequence,theLanMhasafunctional yltransferaseenzymesmaynothavecoevolved.Thisfindingisin dehydratasedomainbuttheC-terminaldomainisnothomolo- contrasttotheobservationthat,exceptforrarecases,LanCand goustothecanonicalLanC-likecyclizationdomain.Theputative LanBenzymesappeartohavecoevolved(12).Anotablefinding cyclodehydratase is a fusion protein containing an N-terminal forGCF20andGCF29isthatastand-aloneSpaB_Cprotein,sim- dockingdomainandaC-terminalYcaOdomain(68),anorgani- ilartotheeliminationproteininthiopeptidebiosynthesis(54),is zationsimilartothatofthecyclodehydratasesinvolvedinthio- encodedinthegenecluster(Fig.7A);thisSpaB_Cproteinlikely peptide and cyanobactin biosynthesis (Fig. 6 ) (64, 66–71). The involvesnovelchemistry. July2015 Volume81 Number13 AppliedandEnvironmentalMicrobiology aem.asm.org 4345 Zhangetal. FIG6 ArepresentativegeneclusterofGCF127thatlikelyencodeslanthipeptide-TOMMhybridsystems.Theputativefunctionsofgeneproductsareshownby D colors.TheboundariesofeachgeneclusterarepredictedbasedontheconservedgeneswithineachGCFandarenotclearlydefined.CD,cyclodehydratase;DHG, o w dehydrogenase. n lo a d Venezuelins produced by Actinobacteria. Although they TOFMS).ThreeStreptomycesstrains(S.katraeISP5550,S.laven- e share similar enzyme structure and organization, class IV LanL dulaesubsp.lavendulaeNRRLB-2508,andStreptomycessp.strain d enzymesaresignificantlyoutnumberedbytheclassIIILanKCsin NRRLB-2375)producedvenezuelinsindetectableamounts(Fig. fr o Actinobacteria(Fig.2).Venezuelin,previouslyobtainedonlyviain 8C;seeFig.S8inthesupplementalmaterial).Venezuelinsofdif- m vitro modification of the precursor peptide VenA by VenL fol- ferentlengthsweredetected,similartotheobservationswithclass h lowedbyproteolyticremovaloftheleaderpeptide(16),represents IIIlanthipeptides(38,39,42,73).Thevariationinlengthsofthe tt p theonlyclassIVlanthipeptidecharacterizedsofar.However,pro- observedvenezuelinscorrespondedtothepresenceorabsenceof : / / ductionofvenezuelinwasdetectedneitherinthewild-typestrain Phe28andAla29(numberingbasedonVenAsequence)(Fig.8B; a e Streptomycesvenezuelaenorafterattemptedexpressionofthegene seeFig.S8inthesupplementalmaterial),presumablyarisingfrom m clusterinStreptomyceslividans,raisingthequestionwhetherven- stepwiseremovalof(partof)theleaderpeptides.Thevenezuelin . a ezuelinisagenuinenaturallanthipeptide.Inourcurrentanalysis, fromS.katraeISP5550,whichcontainedAla29,wasfurtherana- s m wenotedthatGCF147(33members)(seeFig.S1inthesupple- lyzedbyelectrosprayionization(ESI)-MS-MSanalysis(Fig.8D). . mentalmaterial)consistsmostlyofvenezuelin-likegeneclusters Thelackofanyfragmentationshowedthatthepeptidelikelycon- o r (Fig.8A),andtheputativeprecursorpeptidesequencesarehighly sistsofoverlapping(methyl)lanthioninerings,consistentwiththe g / conserved (Fig. 8B), suggesting the wide occurrence of venezu- previouslyproposedringtopologyofvenezuelinsbasedonexten- o n elin-likelanthipeptidegeneclusters(althoughitwasfirstdiscov- sivemutagenesisstudies(16).Additionalverificationthatvenezu- N ered in S. venezuelae, here we collectively designate all these elinfromS.katraeISP5550isindeedalanthipeptidewasprovided o similar putative lanthipeptides venezuelins). The conserved byhydrolysisofthepeptideandderivatizationoftheconstituent v e genesinGCF147includeaLanAgene,aLanLgene,andtwoABC aminoacidsasmethylestersandpentafluoropropionamides.Chi- m transportergenes(Fig.8A),indicatingthat(methyl)lanthionine ralgaschromatography(GC)-MSanalysisofthederivatizedven- b e formation is likely the only posttranslational modification on ezuelin residues revealed the presence of (methyl)lanthionine, r LanA core peptides in this family. We screened for venezuelin supportingthedesignationofvenezuelinasalanthipeptide(Fig. 1 7 production in strains from GCF147 using matrix-assisted laser 8E).The(methyl)lanthioninederivativesallhadtheDLconfigu- , 2 desorptionionization–timeofflightmassspectrometry(MALDI- ration.Ouranalysisvalidatesthatvenezuelinsaregenuinenatural 0 1 8 b y g u e s t FIG7O-MethyltransferasesinclassIlanthipeptidebiosynthesis.(A)RepresentativegeneclustersofGCFsthatencodeclassIlanthipeptidesystemswitha putativeO-methyltransferase.(B)SequencesimilaritynetworkanalysisoftheputativeO-methyltransferasesinpanelA. 4346 aem.asm.org AppliedandEnvironmentalMicrobiology July2015 Volume81 Number13 Lanthipeptide-LikeGeneClustersinActinobacteria D o w n lo a d e d f r o m h t t p : / / a e m . a s m . o r g / o n N o v e m b e FIG8ProductionofvenezuelinsinActinobacteria.(A)RepresentativegeneclustersofGCF147.(B)AlogodepictingtheGCF147precursorpeptidesequences. r (C)MALDI-TOFMSanalysisofvenezuelinproducedbyStreptomyceskatraeISP5550.MALDI-TOFMSanalysisofvenezuelinsproducedbyStreptomyces 1 lavendulaesubsp.lavendulaeNRRLB-2508andStreptomycessp.NRRLB-2375areshowninFig.S8inthesupplementalmaterial.(D)ESI-MS-MSanalysisof 7 , venezuelinproducedbyS.katraeISP5550.Thelackoffragmentationisconsistentwithaglobular,overlappingringtopology.(E)ChiralGC-MSanalysisof 2 hydrolyzedandderivatizedvenezuelinresidues,whichrevealedthepresenceofDL-lanthionineandDL-methyllanthionine.Tracei,sampleshowingthepresence 0 ofDL-lanthionine;traceii,samplespikedwithDL-lanthioninestandard;traceiii,sampleshowingthepresenceofDL-methyllanthionine;traceiv,samplespiked 1 8 withDL-methyllanthioninestandard. b y g u products,andbasedonthefrequencyoftheirbiosyntheticgenes thusfar.Analysisofjust17selectedGCFsthatareamongthemost e (seeFig.S1inthesupplementalmaterial),theymaybeproduced abundantGCFsalreadyrevealednovelposttranslationalmodify- s t by many Actinobacteria. This observation also further supports ingenzymesthatappeartohavebeenrecruitedforlanthipeptide theprevioussuggestionthatidentificationoftheproductsofsilent biosynthesis, as well as several intriguing systems that illustrate clusters may be accomplished by screening several strains that evenmorecrosstalkbetweendifferentRiPPsystemsthanrecog- containtheGCF(23). nizedatpresent(9).Theanalysisalsoshowsthattheclassification systemcurrentlyinusemayneedtobeupdated,sinceseveralof DISCUSSION theGCFsdonotfallclearlyinthefourclassesastheyarecurrently Lanthipeptidesareanintriguingclassofnaturalproductsnotonly defined.Forinstance,GCF146appearstobeahybridofclassII because of their potential medicinal values but also because of andIIIlanthipeptidegeneclusters,andGCFs26and125contain theirwideoccurrenceandsuitabilityforgenomeminingandhet- genesencodingenzymesthatwouldcurrentlydefinethemasclass erologousexpressionstudies.AnextensiveanalysisofActinobac- IorII.Inaddition,theanalysessuggestcrosstalkbetweenlanthi- teriagenomesbuildingontherecentgeneclusterfamilyproject peptidebiosyntheticenzymesandPKSandNRPSsystems. shows that the chemical space of lanthipeptide-related natural WeemphasizethatinadditiontotheseinterestingGCFsthat productsisfarbeyondwhattheresearchcommunityhastapped containatleast5members,averylargenumberofsmallerGCFsas July2015 Volume81 Number13 AppliedandEnvironmentalMicrobiology aem.asm.org 4347 Zhangetal. wellassingletonclusterswereidentifiedinActinobacteria(seeFig. DJ,DawsonM,DittmannE,DonadioS,DorresteinPC,EntianK-D, S1 in the supplemental material) (23), which suggests an even Fischbach MA, Garavelli JS, Göransson U, Gruber CW, Haft DH, HemscheidtTK,HertweckC,HillC,HorswillAR,JasparsM,KellyWL, largerdiversitythanthatdiscussedhere.Infact,withtheexcep- KlinmanJP,KuipersOP,LinkAJ,LiuW,MarahielMA,MitchellDA, tionoftheclassIIIlanthipeptidessuchasthemorphogenSapB MollGN,MooreBS,MüllerR,NairSK,NesIF,NorrisGE,OliveraBM, and various peptins (both encoded within GCF31, the largest Onaka H, Patchett ML, Piel J, Reaney MJT, Rebuffat S, et al. 2013. GCF),theknownlanthipeptidesfromActinobacteria,suchasmi- Ribosomallysynthesizedandpost-translationallymodifiedpeptidenatu- crobisporicinandactagardine,arefoundinsuchsmallGCFsor ralproducts:overviewandrecommendationsforauniversalnomencla- ture.NatProdRep30:108–160.http://dx.doi.org/10.1039/C2NP20085F. singletonclusters(seeFig.S1inthesupplementalmaterial),fur- 10. OmanTJ,vanderDonkWA.2010.Followtheleader:theuseofleader therhighlightingthatalargeamountofstructuralandfunctional peptidestoguidenaturalproductbiosynthesis.NatChemBiol6:9–18. diversityremainstobediscovered.Basedonprecedentwiththe http://dx.doi.org/10.1038/nchembio.286. smallnumberofpreviouslycharacterizedlanthipeptidesfromAc- 11. Plat A, Kuipers A, Rink R, Moll GN. 2013. Mechanistic aspects of lanthipeptideleaders.CurrProteinPeptSci14:85–96.http://dx.doi.org tinobacteria,weanticipatethatalargesubsetofthelanthipeptide- /10.2174/1389203711314020001. relatednaturalproductsuncoveredinthisworkarelikelyantibi- 12. ZhangQ,YuY,VelásquezJE,vanderDonkWA.2012.Evolutionof D otics,especiallythosemadebymachinerythatishomologousto lanthipeptidesynthetases.ProcNatlAcadSciUSA109:18361–18366. o classIandIIbiosyntheticenzymes.Conversely,manyothersmay http://dx.doi.org/10.1073/pnas.1210393109. w haveotherbiologicalactivitiesthatremaintoberevealedbyfuture 13. Siezen RJ, Kuipers OP, de Vos WM. 1996. Comparison of lantibiotic n geneclustersandencodedproteins.AntonieVanLeeuwenhoek69:171– lo studies.Indeed,mostoftheclassIIIlanthipeptidesreportedthus a 184.http://dx.doi.org/10.1007/BF00399422. farfromActinobacteriahavenoorweakantimicrobialactivities, d 14. XieL,MillerLM,ChatterjeeC,AverinO,KelleherNL,vanderDonkWA. e andquiteafewhaveanti-allodynic/antinociceptiveactivity(38, 2004.Lacticin481:invitroreconstitutionoflantibioticsynthetaseactivity. d 74)ormorphogeneticactivities(75).Sincethevenezuelinsdidnot Science303:679–681.http://dx.doi.org/10.1126/science.1092600. fr display antimicrobial activity in a previous study (16), class IV 15. Müller WM, Schmiederer T, Ensle P, Süssmuth RD. 2010. In vitro om biosynthesis of the prepeptide of type-III lantibiotic labyrinthopeptin lanthipeptides may also have activities that would have eluded A2includingformationofaC-Cbondasapost-translationalmodifica- h antimicrobial screens. The unusual biosynthetic systems high- tion.AngewChemIntEd49:2436–2440.http://dx.doi.org/10.1002/anie tt p lightedherewillhelpguidefutureeffortstodiscovernovelbio- .200905909. : / synthetic mechanisms. More importantly, these studies set the 16. Goto Y, Li B, Claesen J, Shi Y, Bibb MJ, van der Donk WA. 2010. /a Discoveryofuniquelanthioninesynthetasesrevealsnewmechanisticand e stage for discovery of natural products with new scaffolds that evolutionary insights. PLoS Biol 8:e1000339. http://dx.doi.org/10.1371 m potentiallyhaveinterestingbiologicalactivities. /journal.pbio.1000339. .a 17. Li B, Yu JP, Brunzelle JS, Moll GN, van der Donk WA, Nair SK. s ACKNOWLEDGMENTS 2006.Structureandmechanismofthelantibioticcyclaseinvolvedin m nisinbiosynthesis.Science311:1464–1467.http://dx.doi.org/10.1126 .o ThisworkwassupportedbytheNationalInstitutesofHealth(GMPO1 /science.1121422. r g GM077596 to W.A.V.D.D. and GM R01 058822 to W.A.V.D.D.). The 18. TangW,vanderDonkWA.2012.Structuralcharacterizationoffour / BrukerUltrafleXtremeMALDI-TOF/TOFmassspectrometerwaspur- prochlorosins:anovelclassoflantipeptidesproducedbyplanktonicma- o n chasedinpartwithagrantfromtheNationalInstitutesofHealth(S10 rine cyanobacteria. Biochemistry 51:4271–4279. http://dx.doi.org/10 RR027109).J.R.D.wasfundedthroughanInstituteforGenomicBiology .1021/bi300255s. N o fellowship,andM.C.W.issupportedby1F32GM0112284-01(NIH). 19. ZhangQ,YangX,WangH,vanderDonkWA.2014.Highdivergence v of the precursor peptides in combinatorial lanthipeptide biosynthesis. e ACSChemBiol9:2686–2694.http://dx.doi.org/10.1021/cb500622c. m REFERENCES 20. BegleyM,CotterPD,HillC,RossRP.2009.Rationalgenomeminingfor b e 1. Willey JM, van der Donk WA. 2007. Lantibiotics: peptides of diverse LanMproteinsleadstotheidentificationofanoveltwo-peptidelantibi- r structureandfunction.AnnuRevMicrobiol61:477–501.http://dx.doi otic,lichenicidin.ApplEnvironMicrobiol75:5451–5460.http://dx.doi 1 .org/10.1146/annurev.micro.61.080706.093501. .org/10.1128/AEM.00730-09. 7 , 2. KnerrPJ,vanderDonkWA.2012.Discovery,biosynthesis,andengi- 21. Marsh AJ, O’Sullivan O, Ross RP, Cotter PD, Hill C. 2010. In silico 2 neeringoflantipeptides.AnnuRevBiochem81:479–505.http://dx.doi analysishighlightsthefrequencyanddiversityoftype1lantibioticgene 0 .org/10.1146/annurev-biochem-060110-113521. clustersingenomesequencedbacteria.BMCGenomics11:679.http://dx 1 8 3. BierbaumG,SahlHG.2009.Lantibiotics:modeofaction,biosynthesis .doi.org/10.1186/1471-2164-11-679. andbioengineering.CurrPharmBiotechnol10:2–18.http://dx.doi.org 22. Singh M, Sareen D. 2014. Novel LanT associated lantibiotic clusters b y /10.2174/138920109787048616. identifiedbygenomedatabasemining.PLoSOne9:e91352.http://dx.doi g 4. RossAC,VederasJC.2011.Fundamentalfunctionality:recentdevelop- .org/10.1371/journal.pone.0091352. u mentsinunderstandingthestructure-activityrelationshipsoflantibiotic 23. DoroghaziJR,AlbrightJC,GoeringAW,JuKS,HainesRR,Tchalukov e peptides.JAntibiot64:27–34.http://dx.doi.org/10.1038/ja.2010.136. KA,LabedaDP,KelleherNL,MetcalfWW.2014.Aroadmapfornatural s t 5. Piper C, Cotter PD, Ross RP, Hill C. 2009. Discovery of medically productdiscoverybasedonlarge-scalegenomicsandmetabolomics.Nat significantlantibiotics.CurrDrugDiscovTechnol6:1–18.http://dx.doi ChemBiol10:963–968.http://dx.doi.org/10.1038/nchembio.1659. .org/10.2174/157016309787581075. 24. BerdyJ.2005.Bioactivemicrobialmetabolites.JAntibiot58:1–26.http: 6. DischingerJ,BasiChipaluS,BierbaumG.2014.Lantibiotics:promising //dx.doi.org/10.1038/ja.2005.1. candidatesforfutureapplicationsinhealthcare.IntJMedMicrobiol 25. MonciardiniP,IorioM,MaffioliS,SosioM,DonadioS.2014.Discov- 304:51–62.http://dx.doi.org/10.1016/j.ijmm.2013.09.003. eringnewbioactivemoleculesfrommicrobialsources.MicrobBiotechnol 7. CoxCR,CoburnPS,GilmoreMS.2005.Enterococcalcytolysin:anovel 7:209–220.http://dx.doi.org/10.1111/1751-7915.12123. twocomponentpeptidesystemthatservesasabacterialdefenseagainst 26. O¨kesli A, Cooper LE, Fogle EJ, van der Donk WA. 2011. Nine post- eukaryoticandprokaryoticcells.CurrProteinPeptSci6:77–84.http://dx translationalmodificationsduringthebiosynthesisofcinnamycin.JAm .doi.org/10.2174/1389203053027557. ChemSoc133:13753–13760.http://dx.doi.org/10.1021/ja205783f. 8. SchnellN,EntianKD,SchneiderU,GötzF,ZahnerH,KellnerR,Jung 27. FoulstonLC,BibbMJ.2010.Microbisporicingeneclusterrevealsun- G.1988.Prepeptidesequenceofepidermin,aribosomallysynthesized usualfeaturesoflantibioticbiosynthesisinactinomycetes.ProcNatlAcad antibiotic with four sulphide-rings. Nature 333:276–278. http://dx.doi SciUSA107:13461–13466.http://dx.doi.org/10.1073/pnas.1008285107. .org/10.1038/333276a0. 28. CastiglioneF,LazzariniA,CarranoL,CortiE,CiciliatoI,GastaldoL, 9. Arnison PG, Bibb MJ, Bierbaum G, Bowers AA, Bugni TS, Bulaj G, CandianiP,LosiD,MarinelliF,SelvaE,ParentiF.2008.Determining CamareroJA,CampopianoDJ,ChallisGL,ClardyJ,CotterPD,Craik thestructureandmodeofactionofmicrobisporicin,apotentlantibiotic 4348 aem.asm.org AppliedandEnvironmentalMicrobiology July2015 Volume81 Number13

Description:
Expanded Natural Product Diversity Revealed by Analysis of. Lanthipeptide-Like Gene Clusters in Actinobacteria. Qi Zhang,a* James R. Doroghazi,b
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.