ebook img

Exoplanet detection in angular differential imaging by statistical learning of the nonstationary patch PDF

29 Pages·2017·28.97 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Exoplanet detection in angular differential imaging by statistical learning of the nonstationary patch

A&A618,A138(2018) Astronomy https://doi.org/10.1051/0004-6361/201832745 & (cid:13)c ESO2018 Astrophysics Exoplanet detection in angular differential imaging by statistical learning of the nonstationary patch covariances The PACO algorithm Olivier Flasseur1,Loïc Denis1,Éric Thiébaut2,andMaud Langlois2 1 UniversitédeLyon,UJM-Saint-Etienne,CNRS,Institutd’OptiqueGraduateSchool,LaboratoireHubertCurienUMR5516,42023 Saint-Etienne,France e-mail:[email protected], [email protected] 2 Université de Lyon, Université Lyon1, ENS de Lyon, CNRS, Centre de Recherche Astrophysique de Lyon UMR 5574, 69230 Saint-Genis-Laval,France e-mail:[email protected] Received31January2018/Accepted22March2018 ABSTRACT Context.Thedetectionofexoplanetsbydirectimagingisanactiveresearchtopicinastronomy.Evenwiththecouplingofanex- tremeadaptive-opticssystemwithacoronagraph,itremainschallengingduetotheveryhighcontrastbetweenthehoststarandthe exoplanets. Aims.Thepurposeofthispaperistodescribeamethod,namedPACO,dedicatedtosourcedetectionfromangulardifferentialimaging data.Giventhecomplexityofthefluctuationsofthebackgroundinthedatasets,involvingspatiallyvariantcorrelations,weaimto showthepotentialofaprocessingmethodthatlearnsthestatisticalmodelofthebackgroundfromthedata. Methods.Incontrasttoexistingapproaches,theproposedmethodaccountsforspatialcorrelationsinthedata.Thosecorrelations andtheaveragestellarspecklesarelearnedlocallyandjointlytoestimatethefluxofthe(potential)exoplanets.Bypreventingfrom subtractingimagesincludingthestellarspecklesresiduals,thephotometryisintrinsicallypreserved.Anonstationarymulti-variate Gaussianmodelofthebackgroundislearned.Thedecisioninfavorofthepresenceortheabsenceofanexoplanetisperformedbya binaryhypothesistest. Results.ThestatisticalaccuracyofthemodelisassessedusingVLT/SPHERE-IRDISdatasets.Itisshowntocapturethenonstationar- ityinthedatasothatauniquethresholdcanbeappliedtothedetectionmapstoobtainconsistentdetectionperformanceatallangular separations.Thisstatisticalmodelmakesitpossibletodirectlyassessthefalsealarmrate,probabilityofdetection,photometricand astrometricaccuracieswithoutresortingtoMonte-Carlomethods. Conclusions.PACOoffersappealingcharacteristics:itisparameter-freeandphotometricallyunbiased.Thestatisticalperformancein termsofdetectioncapability,photometricandastrometricaccuraciescanbestraightforwardlyassessed.Afastapproximateversion ofthemethodisalsodescribedthatcanbeusedtoprocesslargeamountsofdatafromexoplanetssearchsurveys. Keywords. techniques:imageprocessing–techniques:highangularresolution–methods:statistical–methods:dataanalysis 1. Introduction Bonavitaetal.2014;Macintoshetal.2015;Chauvinetal.2017). Thisismainlyduetothedifficultyindetectingafaintexoplanet Directimagingofexoplanetsisarecentobservationaltechnique signal given the very large contrast (greater than 10−5 in the (Traub&Oppenheimer2010)particularlyadaptedtotheobser- near infrared) between the companions and their host star. In vationofyoungandmassiveexoplanets.Itiscomplementaryto addition to the use of extreme adaptive optics, optical atten- conventional indirect imaging methods (Santos 2008) such as uation of the host star by using a coronagraph is mandatory Dopplerspectroscopyortheradialvelocitytechniquethathaveled to reach this level of contrast (Soummer 2004; Mawetetal. tothedetectionandcharacterizationofseveralhundredsubJovian 2006). Currently, two exoplanet-searchers are optimized using mass exoplanets (Schneideretal. 2011). Direct imaging is also these instrumental techniques for direct imaging observations: a privileged observation method to reconstruct the spectrum of the Spectro-Polarimetry High-contrast Exoplanet REsearch lowmasssubstellarobjects(Viganetal.2010).Thisinformation (SPHERE; Beuzitetal. 2008) at the Very Large Telescope is crucial for estimating physical parameters critical for the (VLT) of the European Southern Observatory (ESO) and the characterization of these objects. In particular, it is mandatory GeminiPlanetImager(GPI;Macintoshetal.2014)attheGEM- to estimate the objects age, surface gravity, composition, or INI observatory. These two instruments offer spectroscopic effective temperature (Allardetal. 2003, 2007) and to predict observations capability in the near infrared via integral fields their evolution (Burrowsetal. 1997; Chabrieretal. 2000) by spectrographs(IFS)orlongslitspectroscopy(Viganetal.2010). refiningthenumericalmodelsoflowmassobjectsandtheexo- The VLT/SPHERE is also equipped with a differential imager, planetformationtheories.Despitethepromisingfutureofdirect the InfraRed Dual Imaging Spectrograph (IRDIS; Dohlenetal. imaging, only a few dozen exoplanets have been successfully 2008a,b) optimized for imaging exoplanets using angular and detected to this day using this technique (Lagrangeetal. 2009; spectraldifferentialimaging.Inordertoenhancetheachievable A138,page1of27 OpenAccessarticle,publishedbyEDPSciences,underthetermsoftheCreativeCommonsAttributionLicense(http://creativecommons.org/licenses/by/4.0), whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedtheoriginalworkisproperlycited. A&A618,A138(2018) contrast, several observation strategies have been developed Insteadofonlyminimizingthenoise(i.e.,thenormoftheresid- to exploit temporal or spectral diversity. Spectral differential uals),TLOCIalsomaximizestheexoplanetsignal-to-noiseratio imaging(SDI;Racineetal.1999)isbasedontheassumptionthat (S/N) in the residuals. In other words, the influence of a spe- stellarspecklesfromdiffractionarestronglycorrelatedfromone cific choice of linear combination on the reduction of the flux wavelengthtoanother(whenthedifferentialaberrationsaresmall) of the candidate companion is also considered. The TLOCI al- aftercompensatingforthewavelengthscaling.Multipleimages gorithm is often calibrated for exoplanet signal self-subtraction at different wavelengths can thus be combined to numerically byinjecting“fake”exoplanets(faintpointsources)intothedata suppressalargefractionofthestellarspeckles.Inaddition,the to determine the algorithm throughput at each position in the SDItechniqueassumesthattheexoplanetfluxisdetectableatone fieldofviewafterthespeckleremoval.Foreachfakeexoplanet wavelengthwhileitistooweakattheotherwavelength.Angular injected, the ratio of the exoplanet flux in the resulting image differentialimaging(ADI;Maroisetal.2006)consistsoftracking to its initial flux is estimated to produce the 1D-throughput as theobservationtargetovertime(thetelescopederotatoristunedto a function of the angular separation. The MLOCI algorithm maintainthetelescopepupilstablewhilethefieldofviewrotates). (Wahhajetal. 2015) injects fake point sources and maximizes Consequently,candidatecompanionsdescribeanapparentmotion theirS/N,whichalsoimprovestheS/Nofthesourcespresentin along a predictive circular trajectory around the host star while thedata.IntheALOCIalgorithm(Currieetal.2012a,b),thedata the telescope pupil(including spiders) and coronagraph remain aredividedintoannuliandprocessedindependently,therebyal- static.Specklesresultingfrominstrumentalaberrationsarethus lowing different linear combinations at different angular sep- stronglycorrelatedfromoneexposure totheother.The images arations in the definition of the stellar PSF. Another method, canbecombinedtocancelmostofthespeckleswhilepreserving called ANDROMEDA (Mugnieretal. 2009; Cantalloubeetal. partofthesignalfromtheoff-axissources.Theirapparentmotion 2015), forms differences of temporal images to suppress stellar helpstoseparatethemfromthespecklebackground.Detectability specklesandperformsthedetectionofdifferentialoff-axisPSFs oftheexoplanetsthereforereliesonthecombinedabilityofthe (i.e., the signature of an exoplanet in the difference images). A instrument and the numerical processing to suppress the light generalizedlikelihoodratiotestisthenevaluated.Sincethetech- fromthehoststarandextractthesignalfromtheexoplanetsfrom niques discussed so-far are based on image differences that al- the remaining stellar speckles. Elaborate processing methods ways reduce the amplitude of the signal due to the exoplanets, combiningmulti-temporaland/ormulti-spectraldataplayacen- adaptedpost-processingcalibrationsmustbeappliedtorecover tralroletoreachtheultimatedetectionlimitachievablebysuch the photometry of the detected exoplanets. MOODS algorithm instruments. (Smithetal. 2009), based on the joint estimation of the exo- Thispaperisorganizedasfollows.InSect.2wereviewthe planet amplitude and of the stellar PSF (considered constant currentmethodsforexoplanetdetectioninADIorSDI.InSect.3 for all observations of a temporal dataset), circumvents this wethenintroducetheprincipleofourmethodbasedonamod- problem. eling of patch covariances. The detailed implementation of the Another family of methods considers that the fluctuations algorithmisdescribedinSect.4.Weassesstheperformanceof of the stellar speckles (i.e., the stellar PSF) span a small- ourmethodonVLT/SPHERE-IRDISdatasetsinSect.5.Finally, dimensionalsubspace.Exoplanetsarethusdetectedonthesub- Sect.6drawstheconclusionsofthepaper. space orthogonal to the subspace that captures fluctuations of thestellarspeckles.Thedataareprojectedinanorthogonalba- siscreatedbyprincipalcomponentsanalysis(PCA).Thisisthe 2. Currentmethodsforexoplanetdirectdetection principle of the KLIP algorithm (Soummeretal. 2012) which builds a basis of the subspace capturing the stellar PSF by per- usingangularand/orspectraldifferentialimaging formingaKarhunen-Loèvetransformoftheimagesfromtheref- Several methods have been developed to combine different im- erence library. To obtain a model of the stellar PSF to subtract agestakenatseveralconsecutivetimesand/orwavelengths.Stel- in order to attenuate the speckles, the science data is projected larspecklescanbeattenuatedbysubtractingareferencestellar onto a predetermined number of modes. Even if the general point spread function (PSF). This is the principle of the LOCI principle is close to the LOCI type algorithms, KLIP is much algorithm (Lafreniereetal. 2007). The reference stellar PSF to faster thanks to the truncation. The sKLIP (Absiletal. 2013) be subtracted to the data is created by a linear combination of algorithm partially prevents the subtraction of signal from the images selected in a library of data acquired under experimen- companionsbybuildingthereferencelibraryonlyfromimages talconditionssimilartothoseoftheobservationofinterest.The where the candidate exoplanets underwent a sufficient rotation. optimizationofthiscombinationisperformedbyminimizing,in The LLSG (Gonzalezetal. 2016) algorithm is also related to the least squares sense, the residual noise inside multiple sub- subspacemethods.Itlocallydecomposesatemporalserieofim- sectionsoftheimage.Toensureamoreefficientsuppressionof ages into low-rank, sparse and Gaussian components. It is ex- stellarleakages,thereferencestellarPSFisgenerallyextracted perimentallyshownthattheexoplanetsignalsmostlyremainin fromdatainwhichtheexoplanetsaretobedetected.Whileat- the sparse term allowing for an improved detection. However, tenuatingatbestthestellarspeckles,cancellationofpartofthe itisexpectedthatthismethodissensitivetooutliersinthedata signal fromthe exoplanetsalso occurswhen therotation of the (suchasbadorhotpixels),whicharealsorecoveredinthesparse field of view is small. This problem is more acute at the vicin- componenttogetherwiththecandidateexoplanets. ity of the host star since displacements due to the rotation of Finally, the last family of detection methods are based on thefieldofviewarethesmallestthere.Manyvariantshavebeen a modeling of the stellar PSF based on diffraction modeling. developed to partially alleviate this problem. A more elaborate PeXalgorithm(Thiébautetal.2016;Devaney&Thiébaut2017) versionofLOCIcalledTLOCI(Maroisetal.2013,2014)iscur- models the chromatic dependence of speckles. MEDUSAE rently considered as one of the most advanced standards for method(Ygouf2012;Cantalloube2016)performsaninversion thedetectionandcharacterizationofexoplanetsbydirectimag- toidentifythephaseaberrationsinaphysicalmodelofthecoro- ing. The main variation compared to the standard LOCI algo- nagraphanddeconvolvetheimagestorecoverthecircumstellar rithm is related to the construction of the reference stellar PSF. objectsbyexploitingspectraldiversityandregularizationterms. A138,page2of27 O.Flasseuretal.:PACO:ExoplanetdetectionbasedonPAtchCOvariances All of these techniques have several tuning parameters that often require tuning by trial and error and the intervention of anexpert,makingtheoptimalitydifficulttoreach.Itisalsoof- ten observed that the detection maps (or residual images) have nonstationarybehaviors(typicallywithavariancethatincreases at smaller angular separations). As a result, it is necessary to carryoutapre-calibrationsteptocontroltheprobabilityoffalse alarmwhenusingthesetechniques.Thispre-calibrationistricky toperforminthepresenceofnumerousbackgroundsources.The pre-calibrationisalsodependentontheinjectedfakeexoplanet flux,resultinginalargeprocessingtime. 3. PACO:Exoplanetdetectionbasedon PAtchCOvariances The prereduction of the SPHERE datasets uses the Data Reduction Handling (DRH) pipeline (Pavlovetal. 2008) that was delivered by the SPHERE consortium with the instrument to ESO. Additional optimized prereduction tools allow accu- rate astrometric calibrations (Maireetal. 2016). These prere- ductions made use of the SPHERE data center (Delormeetal. 2017) which assembles raw images into calibrated datasets by performing several corrections: bad pixels identification and interpolation1,thermalbackgroundsubtraction,flat-fieldcorrec- tion,anamorphismcorrection,truenorthalignment,framecen- tering,compensationforspectraltransmission,frameselection, andfluxnormalization.Theoutputsofthesefirststepsaretem- poralsequencesofcoronagraphicimages(organizedindatasets with three dimensions hereafter), and of the associated off-axis PSF.Figure1showsanexampleofascienceframederivedfrom VLT/SPHERE-IRDIS data and a view of two spatio-temporal slices extracted at two different locations (along the solid line: farfromthehoststar,alongthedashedline:nearthehoststar). Withinthecentralregion(angularseparationsbelow1arcsecat thewavelengthλ =2.110µm),thesignalisdominatedbystel- Fig.1.SamplefromaVLT/SPHERE-IRDISdataset(HIP72192dataset larspecklesduet1othediffractioninpresenceofaberrations.At at λ1=2.110µm). Two spatio-temporal slices cut along the solid and dashedlinearedisplayedatthebottomofthefigure,emphasizingthe fartherangularseparations,thenoisecomesmainlyfromacom- spatialvariationsofthestructureofthesignal. binationofphotonnoisefromthermalbackgroundfluxandde- tector readout. Observation of the temporal fluctuations in the wavelengths are available, they can be split and processed in- spatio-temporalcutsrevealsspatialvariationsofthevarianceof dependentlyfromeachother.Jointprocessingofmulti-spectral thefluctuationsbutalsoanevolutionoftheirspatialcorrelations. datacanbebeneficialbutrequiressomerefinementsthatarebe- Beyondaccountingfortheaverageintensityofstellarspeckles, yond the scope of this paper and that will be covered by a fol- webaseourexoplanetdetectionmethodonanonstationarymod- lowingpaper. eling of short-range spatial covariances. To ease the statistical Science images obtained by high-contrast imaging within learning of these covariances directly from the data and to ob- ADI have two components: (i) the signal of interest, due to the tainadetectionmethodbasedonlocalprocessing,weconsider presence of exoplanets or background sources in the field of a decomposition of the field of view into small patches whose size covers the core of the off-axis PSF. Our detection method view, and (ii) a very strong background, produced by the stel- lar speckles and other sources of noise, that displays temporal accountsforthe(spatial)covarianceofthesepatches,hencethe fluctuations. The motion of the background sources/exoplanets namePACOforPAtchCOvariance.Inthefollowingparagraphs, due to the rotation of the field of view is precisely known. An wedescribeintomoredetailstheproposedmodel,deriveadetec- exoplanetatsomebidimensionalangularlocationφ atachosen tion criterion and characterize the photometric and astrometric 0 initial time t is seen at location φ = F(φ ) at time t, where accuracies. 0 t t 0 F is the geometrical transform (e.g., a rotation) modeling the t apparent motion of the field of view between the observation 3.1. Statisticalmodelforsourcedetectionand configurations at time t and time t. We note that a reminder 0 characterization of the main notations used throughout the paper is given in Table1. To simplify the notations and the discussion, we have consid- Since very few sources are within the field of view and ered datasets at a single wavelength. If observations at several these sources are faint, we have modeled locally the observed 1 In practice, some bad pixels displaying large fluctuations only on data as the super-imposition of a background (stellar speckles a few frames remain after this processing. These can be attributed to and noise) and at most one other source, unresolved and lo- eithertooconservativeselectioncriteriaorevolvingtemporalbehavior catedintheimmediatevincinity(nooverlappingofseveralfaint ofthedetectorbadpixels. sources). A138,page3of27 A&A618,A138(2018) Table1.Reminderofthemainnotations. ByreplacingαinH withthemaximumlikelihoodestimate 1 (cid:98)αobtainedfrom(3)foranassumedinitialpositionφ0,the(gen- Not. Definitions eralized)likelihoodofeachhypothesiscanbecomparedtoform the generalized likelihood ratio test (GLRT, see for example Constants Kay1998a): T numberoftemporalframes N numberofpixelsinatemporalframe logpf({rθk,t(cid:96) −(cid:98)αhθk(φt(cid:96))}k=1:N,(cid:96)=1:T) H≷1 η· (5) K numberofpixelsinapatch pf({rθk,t(cid:96)}k=1:N,(cid:96)=1:T) H0 Dataquantities InordertoapplyEqs.(3)and(5)tothedetectionandphoto- r observedintensity metricorastrometricestimations,itisnecessarytospecifythesta- f background h off-axisPSF tisticalmodelofthebackground.Inmostoftheexistingmethods forexoplanetdetectionbyADI,somedatapreprocessingisap- Positions pliedinordertoreducetheamplitudeofthebackgroundtermand φ0 2Dangularlocationatachoseninitialtimet0 whitenit(i.e.,lessenitsspatialcorrelations).Suchpreprocessing Ft(φ0) fieldofviewmotionmodelbetweentandt0 takestheformof(weighted)temporaldifferencesinADI,TLOCI φt 2Dangularlocationattimetwithφt =Ft(φ0) andANDROMEDA,ahigh-passfiltering,ortheprojectiononto (cid:98)φt(cid:101) closeston-gridlocationtoφt the subspace orthogonal to the dominant modes identified by a θk a2Don-gridpixellocation PCA in KLIP and its variations. ANDROMEDA distinguishes itselfinthatbothitsdetectionandestimationproceduresarede- rivedfromastatisticalframework(Eqs.(3)and(5)appliedun- The observed intensity r at the 2D pixel location θ and dertheassumptionofuncorrelatedGaussiannoise).Ratherthan θk,t(cid:96) k time t , corresponding to the spatio-temporal index (k,(cid:96)) in the transformingthedatasothatasimplestatisticalmodelcanbeas- (cid:96) dataset,canthenbedecomposedintothetwocomponents: sumed(uncorrelatedobservations),weperformednopreprocess- ingbutaccountforthespatialcorrelationsinourmodel.Given r =αh (φ )+ f , (1) θk,t(cid:96) θk t(cid:96) θk,t(cid:96) thatmorethanafewtensofphotonsarecollectedateachdetec- withα≥0thefluxoftheunresolvedsource(α=0intheabsence torpixel,thePoissondetectionstatisticscanbeapproximatedby of such source), h (φ )=h(θ −φ ) the off-axis PSF, centered aGaussiandistribution.Theothercontributionsforthetemporal onthelocationφ θkoftt(cid:96)hesourkceatt(cid:96)timet andsampledatpixel fluctuations(thermalbackgroundnoise,evolutionofthespeckle location θ , and tf(cid:96) the background at(cid:96)spatio-temporal index patternsduetoevolvingphaseaberrationsorthedecenteringof (k,(cid:96))whickhaccounθkt,st(cid:96)forstellarspecklesandnoise. thestaronthecoronagraph)willbeconsidered,intheabsenceof Themajordifficultyinthedetectionofexoplanetsliesinthe amoreprecisemodel,tobeGaussiandistributed.ThisGaussian fact that the amplitude of the background f is much larger approximation gives closed-form expressions that have a prac- than the exoplanet contribution αh (φ ) anθdk,tt(cid:96)hat it fluctuates ticalinterestfortheimplementation.Thespatialstructureofthe fromonetimet toanother.Itisnecθekssatr(cid:96)ytofollowastatistical backgroundismainlyduetothatofthespeckles(relatedtothean- approachtoaccountforthesefluctuations.Thecollectionofall gularresolution)andtheinterpolationstepsinthedatareduction otibaslleyrvlaotciaotnesd{arθtk,φt(cid:96)}kw=1i:tNh,(cid:96)a=1fl:Tuixnαthiesptrheesnendceescorfibanedexaospalarnaentdionmi- pthipeeolffin-ea.xMisoPsStFofht(hφe)sheacsoarrceolarteio(nalssaordeeafitnsemdabllyscthaelea.nMguolraerorveesr-, 0 realization with a distribution given by the probability density olution)thatisonlyafewpixelswide.Hence,inEqs.(3)and(5), function pf ofthebackground: onlypixels(k,(cid:96))ofthedatasetsuchthathθk(φt(cid:96))isnonnegligible haveanimpactontheestimationordetection.Thesepixelsare pr({rθk,t(cid:96)}k=1:N,(cid:96)=1:T|α, φt(cid:96))= representedingreeninFig.2. pf({rθk,t(cid:96) −αhθk(φt(cid:96))}k=1:N,(cid:96)=1:T). (2) We denote the set of the K spatial pixels that form an ex- tended spatial neighborhood centered at pixel θ , at time t , as k (cid:96) Basedonthismodelandunderthehypothesisthatthereare thepatch2 r ∈ RK.Inthefollowing,patchesaresetsofpix- few sources within the field of view (so that each source can θk,t(cid:96) elswiththeshapeofadiscretedisk.Iftheradiusofthisdiskis be considered separately), an unbiased estimation of the flux α chosenlargeenoughtoencompassthecoreoftheoff-axisPSF, knowingtheinitialangularlocationφ isprovidedbythemaxi- mumlikelihoodestimator: 0 thecollectionofallpixelvalues{rθk,t(cid:96)}k=1:N,(cid:96)=1:T usedinEqs.(5) and (3) to detect or estimate the flux of an exoplanet located (cid:98)α= argαmaxpf({rθk,t(cid:96) −αhθk(Ft(cid:96)(φ0))}k=1:N,(cid:96)=1:T). (3) a(wt iφth0 (cid:98)cφatn(cid:101)tbheercelodsuecsetdpitxoelthteotchoellseucbtipoinxeolflopcaattcihoensφ{tr)(cid:98)φtht(cid:101),at(cid:96)t}(cid:96)c=o1n:T- tains the exoplanet. Only the joint distribution of these obser- Wenotethat(cid:98)αimplicitlydependsontheassumedpositionφ0of vations need be modeled. Since the background is different in thesource.Thedetectionofapointsourceatagivenlocationφ 0 each patch (and possibly varies differently according to time), canbeformalizedasahypothesistest: weusedadifferentmodelforeachpatch(localadaptivityofthe  H0 : {rθk,t(cid:96)}(cid:96)=1:T,k=1:N ={fθk,t(cid:96)}(cid:96)=1:T,k=1:N mgrooduenld),psaetechFeisga.t2a.gTivheenrespdautcieadlloncuamtiboenr(Ttypoifcaalvlya,ilfarbolme baafcekw- H1 : {rθk,t(cid:96)}(cid:96)=1:T,k=1:N =α{+hθ{kf(θφk,tt(cid:96)(cid:96))}}(cid:96)(cid:96)==11:T:T,,kk==11:N:N. (4) tcleaantnisobnteos3aacacnhoduuntnodteruedsdefotaer.mmWupleotricvahalorfisraeatmetoGeasac)uclsoismuianinttsomtnholeydefclootrrorsepdlaeatstiicaorlnibcsoetrhtrheae-t Literally,thismeansthatunderhypothesisH0 thecollectionof 2 Weuseboldfontstodenotepatcheswhilenormalfontsarereserved allobservationscorrespondstopurebackground(stellarspeck- toscalarsandangularpositions. lesandnoise)whileunderhypothesisH1 itisthesuperimposi- 3 Generalizationtospatio-temporalcorrelationsisstraightforwardbut tionoftheoff-axisPSFwithafluxαandsomebackground. raisesdifficultiesinpracticeduetothelackofsamples. A138,page4of27 O.Flasseuretal.:PACO:ExoplanetdetectionbasedonPAtchCOvariances where(cid:98)ρistheshrinkageweight.Thetwoestimators(cid:98)Sand(cid:98)Fare chosen such that one estimator has very little bias (but a large variance)andtheotheronehasfewerdegreesoffreedom,hence amuchsmallervariance,atthecostofanincreasedbias.Thepa- rameter(cid:98)ρissetinordertoachieveabias–variancetrade-off.As detailedinAppendixA,wedefined(cid:98)Sasthesamplecovariance matrixcomputedatlocationθ : k (cid:98)Sθk = T1 (cid:88)T (cid:0)rθk,t(cid:96) −(cid:98)mθk(cid:1)·(cid:0)rθk,t(cid:96) −(cid:98)mθk(cid:1)t (8) (cid:96)=1 with 1 (cid:88)T (cid:98)mθk = T rθk,t(cid:96), (9) (cid:96)=1 thesamplemean.Thechosenestimator(cid:98)Fisthediagonalmatrix formedfromthesamplecovariance: (cid:2)(cid:98)Fθk(cid:3)ii = T1 (cid:88)T (cid:2)rθk,t(cid:96) −(cid:98)mθk(cid:3)2ii =(cid:2)(cid:98)Sθk(cid:3)ii (10) (cid:96)=1 and(cid:2)(cid:98)F (cid:3) =0 if i(cid:44) j. (11) θk ij Fig. 2. Apparent motion of an exoplanet in an ADI stack of frames. DiagonalelementsoftheshrinkageestimatorC(cid:98)thencorrespond Green patches contain, in each frame, the exoplanet (i.e., the off-axis to the empirical variance while off-diagonal elements (i.e., co- PSF) superimposed with the background. The statistical model of a varianceterms)areshrunktoward0byafactor1−(cid:98)ρ,hencethe backgroundpatchisbuiltlocallybasedonobservedpatchesatthesame name. locationbutatdifferenttimes(setofredpatches). Theshrinkagefactor(cid:98)ρislocallyadaptedinanunsupervised data-drivenway.InAppendixAwederiveitsexpression4: aidnriegstrcthiobenudstiiidostenrrioebdfuettioaocnbhepbsfataoctkfigsatrlilocbuaanllcdykpginardotceuhpn.edPnpaditexcnhetle.ssR,awattehdteihffreetnhreamnntodtdieemfileends- (cid:98)ρ(cid:16)(cid:98)Sθk(cid:17)= tr(cid:16)(cid:16)T(cid:98)S2θ+k(cid:17)1+(cid:17)(cid:16)ttrr2(cid:16)(cid:16)(cid:98)S(cid:98)S2θ(cid:17)k(cid:17)−−(cid:80)2K(cid:80)iK(cid:104)=(cid:98)S1(cid:104)(cid:98)S(cid:105)2θk(cid:17)(cid:105)2ii · (12) onlythedistributionofbackgroundpixelsinthepatchesofinter- θk i=1 θk ii est.Thisdistribution pf({f(cid:98)φt(cid:101),t(cid:96)}(cid:96)=1:T)ismodeledasaproductof Remaining bad pixels after the prereduction (see introduc- Gaussian distributions defined over each patch that would con- torydiscussioninSect.3)takeverylargevaluesatsomedates. tainanexoplanetifthatexoplanetwasinitiallylocatedatφ These aberrant values often impact exoplanet detection algo- 0 rithms. By learning the local covariance of the patches, these (cid:89)T largefluctuationsareaccountedforwithinourmodel(largepixel pf({f(cid:98)φt(cid:101),t(cid:96)}(cid:96)=1:T)= N(f(cid:98)φt(cid:101),t(cid:96) |m(cid:98)φt(cid:101),C(cid:98)φt(cid:101)), (6) variance). We show in Sect. 5 that these bad pixels do not lead (cid:96)=1 tofalsealarms. withN(·|m ,C )theprobabilitydensityfunctionofthemul- (cid:98)φt(cid:101) (cid:98)φt(cid:101) tivariate Gaussian (mean m and covariance C) that describes 3.3. Unbiasedestimationofthebackgroundstatistics backgroundpatchescenteredatpixel(cid:98)φ(cid:101). t To account for the fact that observed patches {rθk,t(cid:96)}(cid:96)=1:T do not contain pure background but also, in the presence of an exo- 3.2. Statisticallearningofthebackground planet, the signal due to the exoplanet, estimation of the back- Inourmodel,wehaveconsideredacommonmean m andco- ground statistics and of the exoplanet flux can be alternated, θk avtaraiagnivceenCpθikxfeolrloaclaltTionbaθckk.gBraocukngdropuantcdhpeastc{hfeθks,t(cid:96)a}r(cid:96)e=1n:Totcdeinrteecrteldy isttearratitniogn,fraofmteraanflinuixtia(cid:98)αl(ng)uheasss boefepnuerestibmacaktegdrofuonrdt.heAetxtohpelann-teht available, only observed patches {rθk,t(cid:96)}(cid:96)=1:T can be used to es- assuming background statistics C(cid:98)(n) (as explained in Sect. 3.4), timate the mean mθk and covariance Cθk. Moreover, the limited thebackgroundstatisticscanbeimprovedbycomputing number T of temporal frames makes a direct estimation of C bneWdltsehhryoamaaertilanistnhf-yskdodket.sururaSaesingtvtoaotdeeemomgntcthiipheoeteslsavsfehtoacacrcararbiainmopsnaskveanhbaanbocrergcifieilneeacirektneoyfosagcnatfgtieucsomeialtedaonbaaireryattpirhozlwpeaetradrunartoC(cid:98)incs(orasieancnitenshlhgeomkedc(ApeKudbaafipsleearlptnfisayyeettmchtnd&iahueeddebnstiEaexytrbprle.(AdtetgiheaIfueednarlTnnac2atfdroo0<oinnz0rFoKcvua8iueegtt))isrdx.ohwo.npcAerSiroltao.ltehm1,onvbθ)odaa---k.  (cid:2)(cid:98)F(θ(cid:98)mC(cid:98)(cid:98)(cid:98)Snρk+(θ(θ((nnnnkk1++++)(cid:3)1111i))))i=====(cid:98)ρ((cid:2)TT11(cid:98)1S(cid:0)(cid:98)S(cid:80)(cid:80)θ(−nk(θ+nT(cid:96)T(cid:96)k(cid:98)ρ==+1·(11)n1(cid:3)(cid:0)(cid:0)(cid:0))i+rrr(cid:1)iθθθ1kkk),,,)ttt(cid:96)(cid:96)(cid:96)(cid:98)S−−−(n(cid:98)(cid:98)(cid:98)ααα+(((1nnn))))+hhhθθθ(cid:98)ρkkk((((nφφφ+ttt(cid:96)(cid:96)(cid:96)1))))(cid:1)−−(cid:98)F((cid:98)(cid:98)mmn+(θ(θnnkk1++).11))(cid:1)(cid:1)t (13) binationoftwoestimators(cid:98)Sand(cid:98)F C(cid:98)=(1−(cid:98)ρ)(cid:98)S+(cid:98)ρ(cid:98)F (7) 4orlWaregeernftohracneo(cid:98)ρnθek.tobeintherange[0,1]byclippingvaluesbelowzero A138,page5of27 A&A618,A138(2018) Thisiterativeprocedureisappliedtoprovideunbiasedestimates Ourassumptionsamounttoapproximatingthedistributionofthe ocofntthreibfluutixonooffatnheexeoxpolpalnaente,tanfotetrbdeesteucbttiroanc.teIdndpereiodr,tsohocoumldptuhte- tTehrmevra(cid:98)rφita(cid:96)(cid:101)n,t(cid:96)ce−o(cid:98)mf(cid:98)bφt(cid:96)(cid:101)thbeyreafocreentseirmedpliGfiaeusstsoi:anofcovarianceC(cid:98)(cid:98)φt(cid:96)(cid:101). (cid:96) ing the statistics of the background, the mean would contain a fraction of the PSF of the exoplanet (1/Tth of the flux of the Var{b }≈ h (φ )t·C(cid:98)−1 ·h (φ )=a . (19) exoplanet if the exoplanet is visible only in one of the patches (cid:96) (cid:98)φt(cid:96)(cid:101) t(cid:96) (cid:98)φt(cid:96)(cid:101) (cid:98)φt(cid:96)(cid:101) t(cid:96) (cid:96) centered on pixel θk). The covariance would then encode that Thus an estimator of the variance of b= (cid:80)T(cid:96)=1b(cid:96) is (cid:80)T(cid:96)=1a(cid:96)=a therearesignificantvariationsinthebackgroundintheformof andthestandarddeviationof(cid:98)α=b/acanbeestimatedby: an appearing and disappearing PSF. The subsequent estimation √ ofthesourcefluxwouldbepenalizedbytheseerrorsonthemean (cid:98)σα=1/ a. (20) and covariance of the background. A few iterations of Eq. (13) and exoplanet flux re-estimations corrects the statistics of the Obviously,thefluxofthesourceisnecessarilypositive,we backgroundandpreventsfrombiasingtheestimationofthepho- denoteby(cid:98)α+thefluxobtainedunderapositivityconstraint5(see tometrybyanerroneousstatisticalmodelofthebackground. Thiébaut&Mugnier2005;Mugnieretal.2009): Experimentshaveshownthattheunbiasedestimationofthe fluxoftheexoplanetisnotbeneficialintheexoplanetdetection (cid:98)α+ d=efargmaxpf({rθk,t(cid:96) −αhθk(Ft(cid:96)(φ0))}k=1:N,(cid:96)=1:T) α≥0 ptmhheaaksdeeis.stWtrhibheuiltseieoitnttiinmogfptrohofeveatsedsthteetienscittgihonenalatobhfsreethnsheceoelxdoofp(eslaxeneoeptAlsa,pnipetetc,nhdwainhxgiceAhs =max((cid:98)α,0)=max(cid:80)(cid:16)(cid:80)TT(cid:96)=1ab(cid:96),0(cid:17), (21) for details) more difficult. Therefore, we computed the back- (cid:96)=1 (cid:96) groundstatistics(cid:98)mθk andC(cid:98)θk basedonEqs.(7)–(12)tocompute We assume that, if positivity is imposed, the covariance of (cid:98)α+ a detection map (see Sect. 3.5), and alternate Eq. (13) with a canbeapproximatedby(cid:98)σα,inEq.(20). re-estimationofthefluxforthephotometricandastrometrices- timationsofadetectedsource(seeSects.3.4and3.6). 3.5. Detectionofexoplanets Under our multivariate Gaussian model of the background, the 3.4. Estimationofthefluxofanexoplanet generalized likelihood ratio test (Eq. (5)) takes the simplified Under our multivariate Gaussian model of the background, the form minaitxiaiml ulomcaltiikoenlihφo0odhaesstaimsaimtoprlgeiveexnprinesEsiqo.n(3()sefeorfaonr aesxsaummpelde (GLRT) (cid:16)(cid:80)T(cid:96)=1b(cid:96)(cid:17)2 H≷1 η, (22) Kay1998b): (cid:80)T(cid:96)=1a(cid:96) H0 (cid:80)T b witha andb definedaccordingtoEqs.(15)and(16). (cid:98)α= (cid:80)T(cid:96)=1a(cid:96) , (14) As(cid:96) discus(cid:96)sed in Thiébaut&Mugnier (2005), Smithetal. (cid:96)=1 (cid:96) (2009) and Mugnieretal. (2009), it is beneficial to enforce a positivity constraint on the flux α in the detection test, in other with words, to use the estimate (cid:98)α+ to derive the GLRT expression, leadingto a = h (φ )t·C(cid:98)−1 ·h (φ ) (15) (cid:96) (cid:98)φt(cid:96)(cid:101) t(cid:96) (cid:98)φt(cid:96)(cid:101) (cid:98)φt(cid:96)(cid:101) t(cid:96) (cid:16)max(cid:16)(cid:80)T b ,0(cid:17)(cid:17)2 (GLRT+) (cid:96)=1 (cid:96) H≷1 η. (23) and (cid:80)T(cid:96)=1a(cid:96) H0 (cid:16) (cid:17) b(cid:96) = h(cid:98)φt(cid:96)(cid:101)(φt(cid:96))t·C(cid:98)−(cid:98)φ1t(cid:96)(cid:101)· r(cid:98)φt(cid:96)(cid:101),t(cid:96) −(cid:98)m(cid:98)φt(cid:96)(cid:101) , (16) AlesntntootethdeintesMtugnieretal. (2009), the test (Eq. (23)) is equiva- wsaonhuderrwceehawotse(esruceebcnpatilexlretlih)sal(cid:98)toφcha(cid:101)(cid:98)tφ,itot(cid:96)(cid:101)hn(eφφtn(cid:96)t(cid:96))esadareemnsptolpteeidxseotlhvteeoroφaffp-.aatxcihsoPfSKFpfioxrelas (S/Ntest) (cid:113)(cid:80)(cid:80)T(cid:96)=T1ba(cid:96) =(cid:98)σ(cid:98)αα HH≷10 τ (24) t(cid:96) t(cid:96) (cid:96)=1 (cid:96) The maximum likelihood estimator(cid:98)α given in Eq. (14) de- √ pends linearly on the data, hence its variance can be easily de- whenη≥0andwithτ= η.Thistestcanbeinterpretedasthe rived.Notingthat(cid:98)α=a/bwitha=(cid:80)T(cid:96)=1a(cid:96) andb= (cid:80)T(cid:96)=1b(cid:96),we S/N (cid:98)α/(cid:98)σα of the estimation of the (unconstrained) flux of the obtain: source α. We note that with our definition, the S/N is a signed quantitythatisnegativewhenever(cid:98)α<0. Var{(cid:98)α}=Var{b}/a2 (17) The test (S/Ntest) in Eq. (24) is attractive because the test value (cid:98)α/(cid:98)σα linearly depends on the data. Under our Gaus- sinceaisdeterministic.Thevarianceofbisthesumofthevari- sian model for the data, the S/N (cid:98)α/(cid:98)σα is thus also Gaussian ancesoftheb(cid:96) termssincetheyaremutuallyindependent(cor- distributed (with unit variance) which simplifies the statistical respondingtodifferenttemporalframes).Fromitsexpressionin analysis of the test in terms of false alarm rate or detection Eq.(16),thevarianceofb(cid:96) isgivenby: probability.Thisanalysisiscarriedoutinthefollowing. Inthehypothesistest(Eq.(4)),weconsideredanhypotheti- Var{b(cid:96)}=h(cid:98)φt(cid:96)(cid:101)(φt(cid:96))t·C(cid:98)−(cid:98)φ1t(cid:96)(cid:101)·Cov{r(cid:98)φt(cid:96)(cid:101),t(cid:96) −(cid:98)m(cid:98)φt(cid:96)(cid:101)} calinitiallocationofthesourceφ0.Todetectallsourceswithin ×C(cid:98)−1 ·h (φ ). (18) 5 The neg-log-likelihood is a quadratic function of α, the minimum (cid:98)φt(cid:96)(cid:101) (cid:98)φt(cid:96)(cid:101) t(cid:96) underpositivityconstraintisthusobtainedbysimplethresholding. A138,page6of27 O.Flasseuretal.:PACO:ExoplanetdetectionbasedonPAtchCOvariances the field of view and locate their positions, the test (S/Ntest) should be evaluated at locations φ sampled over the field of 0 view.Byrefiningthesamplingofthefieldofview,theoff-axis aPcScFusraht(cid:98)eφ,t(cid:96)(cid:101)a(tφtth(cid:96))ebceottsetromfaatclhaergsethrecodmatapuatnadtitohneaelsetiffmoartt.eS(cid:98)αaimspmlionrge ofthefieldofviewisdiscussedinSect.4.3. 3.6. Statisticalguarantees 3.6.1. Distributionofthedetectioncriterion Figure3illustratesaS/Nmap(cid:98)α/(cid:98)σα computedusingthePACO method on a VLT/SPHERE-IRDIS dataset (obtained on the HIP 72192 star as described in more detail in Sect. 5) consist- ing of 96 temporal frames in which the two real known faint pointsourcesaremasked.VisualinspectionoftheS/Nmap(top ofFig. 3)indicatesthatthedetectioncriterionisstationaryover thefieldofview,evenclosetothecoronagraphicmask.Theem- pirical distribution of the S/N values (bottom of Fig. 3) shows thattheS/Ndistributioncanbeconsideredascentered(sincethe empirical mean is 0.01) and approximately reduced (since the empiricalstandarddeviationis0.93)Gaussian.Thisdistribution passessuccessfullytheLillieforsnormalitytest(Lilliefors1967) atthe5%significancelevel.Thesmalldiscrepancywiththeoret- icalmodelmaybeduetothecorrelationsinthedata.However, the hypothesis that the variance of the S/N under H is equal 0 to one is conservative in the sense that the probability of false alarmisslightlyoverestimated.Owingtothehomogeneousdis- tributionoftheS/Ncriterionacrossthefieldofview,thissmall biascouldbeeasilyfixedbyrescalingtheS/Nbyasinglefactor thatisempiricallyestimated6. UnderthehypothesisH ,theS/Nfollowsacenteredandre- 0 duced Gaussian law whatever the angular separation. It is thus possibletoapplyauniquethresholdτtotheS/Nmapsandob- tainaconsistentdetectionperformanceatallangularseparations (i.e.,aconstantfalsealarmrate).TheaccordancebetweentheS/N and a Gaussian distribution makes it possible to directly assess thefalsealarmrate,probabilityofdetection,photometricandas- trometricaccuracieswithoutpost-processingand/orresortingto Monte Carlo methods (injection of fake exoplanets in the data) in contrast to several state-of-the-art methods (Lafreniereetal. 2007;Cantalloubeetal.2015;Ruffioetal.2017). 3.6.2. Probabilitiesoffalsealarmandoftruedetection The probability of false alarm (PFA) is the probability that the test(Eq.(24))yieldsH whileH isactuallytrue: Fig. 3. S/N map in absence of object (the two real known faint point 1 0 sourcesdenotedFPS1andFPS2aremasked)anditscorrespondingem- PFA(τ)=Pr((cid:98)α/(cid:98)σα >τ|H0) piricaldistributionusingtheHIP72192datasetdescribedinSect.5at (cid:90) +∞ 1 (cid:32) x2(cid:33) λ2=2.251µm. = √ exp − dx=1−Φ(τ), (25) τ 2π 2 The minimum amplitude α such that the probability of de- where Φ is the cumulative distribution function of the standard tection be at least equal to some prescribed value PD when the normal distribution. The conventional contrast at 5σ ensures a detection threshold τ is set according to a given PFA level can probabilityoffalsealarmequaltoPFA(5)=2.87×10−7. becomputedbyinvertingandcombiningEqs.(25)and(26): The probability of detection (PD) is the probability that the test(Eq.(24))decidescorrectlyforadetection PD(τ,α)=Pr((cid:98)α/(cid:98)σα >τ|H1) α=(cid:0)Φ−1(1−PFA)−Φ−1(1−PD)(cid:1)×(cid:98)σα. (27) =(cid:90) +∞ √1 exp−(cid:2)x−α/(cid:98)σα(cid:3)2 dx For example, at τ=5, a probability of detection of 50% is τ 2π 2 achievedforα=5(cid:98)σα andaprobabilityofdetectionof80%for =1−Φ(τ−α/(cid:98)σα). (26) α=5.84(cid:98)σα. Figure 4 illustrates the S/N distribution under the twohypothesisaswellastheprobabilitiesoffalsealarmandof 6 Nosuchcorrectionwasperformedinthefollowingresults. detection. A138,page7of27 A&A618,A138(2018) has little impact on the estimation of the other two parameters (low absolute correlation coefficients) except for certain local- izedareasofthefieldofview.TheresultingCramér-Raobounds can be usefully considered to evaluate the error on the esti- mated parameters. For example, for the two real faint point sources located around the HIP 72192 star (their positions are symbolized by a circle in Fig. 5, the products α · δ and x0 α·δ areclosedto0.7×10−5 pixel.Itmeansthatatacontrast y0 α=10−5, the sources can be located with an accuracy of about 0.7pixel. Fig.4.S/NdistributionunderH (inblue)andH (inred).Thehatched 0 1 4. ImplementationdetailsofPACO areaisequaltotheprobabilityoffalsealarm(PFA)whilethefilledarea isequaltotheprobabilityofdetection(PD). This section is devoted to the description of the implementa- tion of the PACO algorithm presented in Sect. 3. A simpli- fied and faster version for the detection step is also described. 3.6.3. Astrometricaccuracy Thisfastversioncanbeusefultoconductpre-analysesinlarge An (asymptotically) unbiased estimator of the position of the surveys. source is provided by the maximum likelihood position which is the solution of a non-convex optimization problem. In prac- tice,thisproblemcanbesolvedbyexhaustivesearchatafinite 4.1. Optimalpatchessize resolution refined by a local optimization as for example pro- The patches considered in the PACO algorithm define the posed by Soulezetal. (2007) in digital lensless microscopy for characteristic size of the areas in which the statistics of the thedetectionofparametricobjectsspreadinavolume.Theas- backgroundfluctuationsaremodeled.Sincethecoreoftheoff- trometric accuracy, that is, the accuracy on the spatial location axis PSF is close to circular symmetry, circular patches are of the detected objects can be statistically predicted using the used. Their size obeys a trade-off: on the one hand, the larger Cramér-Rao lower bounds (CRLBs) which represents the min- thepatches,themoreenergyfromthesourceiscontainedinthe imal variance of any unbiased estimator. The CRLBs are ob- patcheswhichimprovestheS/N;ontheotherhand,learningthe tained from the diagonal of the inverse of Fisher information covariance of larger patches requires more samples (i.e., more matrix (Kendalletal. 1948). Using a parametric model of the temporalframes). off-axis PSF h and noting again that the collection of patches In practice, since the sources to be detected are faint com- {r } located at the angular position θ is described by a θk,tl l=1:T k paredtothelevelofstellarspecklesandtheirtemporalfluctua- multi-variate Gaussian process N(·|mθk,Cθk), it is possible to tions, only the core of the off-axis PSF is necessary to perform derive the CRLBs from the observed intensity model given in the detection and a patch size corresponding to twice the off- Eq. (1). In the following, Ω={α,x ,y } (with φ ={x ,y } the 0 0 0 0 0 axis PSF full width at half maximum (FWHM) appears to be a angularpositionofanexoplanetattimet )denotesthevectorof 0 good compromise. A more precise (and automatic) determina- parameters from which the CRLBs are computed. For a given tion of the optimal size of the patches with respect to number angular position θ , the Fisher information matrix IF can be k θk oftimeframesandthestructureofthebackgroundcorrelations expressedas canbecarriedoutbyMonteCarlosimulations.Falseplanetsare randomly injected into the data and receiver operating charac- ∂αh (Ω)t ∂αh (Ω) [IF(Ω)] = θk ·C−1· θk , (28) teristic(ROC)curvesrepresentingthedetectionprobabilitiesas θk i,j ∂Ωi θk ∂Ωj a function of the false alarm rate are constructed for different inwhichthetermαh representstheoff-axisPSF(anisotropic patchsizes.ThepatchsizemaximizingtheareaundertheROC θk curveisthenadopted.Figure6givesROCcurvesforthreepatch Gaussian can typically be used as a continuous model to sizes and shows that the choice K=49 pixels per patch maxi- compute the derivatives). It follows that the standard devi- ation δ on the estimation of the parameter vector Ω is mizes the area under the curve and is therefore the best com- θk promise for performing the detection on the HIP 7192 dataset givenby (with 4.5 pixels FWHM) for fake injected exoplanets of flux (cid:113) (cid:104) (cid:105) [δ ] = [IF(Ω)−1] (29) α ∈ 10−6;10−5 .ThenumberofpixelsperpatchK needstobe θk i θk i,i determined only once for a given instrument since the FWHM For simplicity, we denote by δ={δ ,δ ,δ } the spatial oftheoff-axisPSFvariesonlymarginallyfromoneobservation maps(obtainedforallangularpositionsθα ofx0they0fieldofview) toanother. k representing the accuracy on the parameters Ω={α,x ,y }. 0 0 AppendixBgivestheanalyticalexpressionofδasafunctionof 4.2. ThePACOalgorithm:detailedimplementation the Fisher information matrix terms. We note that δ is not de- α pendentonαwhileδ andδ areproportionaltoα−1.Figure5 AsexplainedinSect.3,withinthePACOpipeline,thedetection x0 y0 gives a view of δ , δ and δ as well as the correlation coef- andestimationstepsareperformedbytwoverysimilarschemes. α x0 y0 ficients ρ , ρ and ρ between estimated parameters ob- First, the detection is performed on the whole field of view us- tainedonαtxh0eHαIyP0 72192xd0ya0tasetatλ =2.110µm.Asexpected, ingthePACO detectionprocedure.Thisstepproducesamap 1 the estimation error of Ω = {α,x ,y } increases near the host ofS/Nwhichisstatisticallygroundedandwhichcanbedirectly 0 0 star. The figure also emphasizes that the Cramér-Rao bounds thresholded at a controlled false alarm rate. The estimated flux {δ ,δ ,δ }decreasequicklywiththeangularseparation.More- ishoweverbiasedbythepresenceoftheexoplanetinthecollec- α x0 y0 over, a small estimation error on one of the three parameters tionofpatchesusedtomodelthebackgroundfluctuations.Thus, A138,page8of27 O.Flasseuretal.:PACO:ExoplanetdetectionbasedonPAtchCOvariances Fig.5.Upperline:minimalstandarddeviation(Cramér-Raolowerbounds)δ={δ ,δ ,δ }ontheestimatedparametersΩ={α,x ,y }(δ and α x0 y0 0 0 x0 δ arenormalizedbytheinverseofthefluxαoftheexoplanetandexpressedinpixelsunit).Middleline:magnificationoftheareanearthehost stya0r.Lowerline:coefficientsofcorrelationρ={ρ ,ρ ,ρ }betweentheestimatedparametersΩ={α,x ,y }.Thecomputationisperformed ontheHIP72192datasetatλ =2.110µm.Thepαox0sitiαoyn0soxf0yt0hetworealfaintpointsourcesinthedataset(0wh0icharenotvisibleonthesemaps 1 becauseitdoesnotactofdetectionmaps)arerepresentedbyacircle. a different procedure named PACO estimation is launched in motionoftheexoplanetovertimeislimitedandthesourcefluxis asecondsteponeachdetectedsourceinordertorefinetheflux large. estimation. This latter procedure provides unbiased flux esti- Since the data analysis of large surveys is a crucial issue mates(i.e.,noaposterioriMonteCarlo-basedbiascorrectionis in astronomy, we also propose a simplified and faster version necessary). of the PACO detection procedure which is summarized by Algorithm1summarizesthePACO detectionprocedureas Algorithm 2. Compared to applying Algorithm 1 to a given set described more formally in Sect. 3. Step 1 consists of form- ofassumedinitialsourcepositionstocomputeamapofthede- ing the collection of patches P(cid:96) on which the statistics of the tectioncriterion,thefastversionhasacomputationalburdenre- background must be learned. These patches are all centered at duced by a factor at least equal to the number T of temporal the same position φt(cid:96) where the source would be at time t(cid:96), frames. The acceleration relies on the precomputation of terms assuming it was initially at position φ0. In Step 2, the back- that appear multiple times in the sums of Eqs. (15) and (16) ground statistics, i.e. the empirical mean (cid:98)m and the regular- when considering all possible source locations. Computations ized covariance C(cid:98), are computed based on Eqs. (7)–(12). Step of the background statistics are thus recycled. The S/N map 3 then forms the numerator and denominator of the test statis- is obtained in a second step by interpolating the precomputed tics by accumulating values a and b defined by Eqs. (15) terms denoted by c and d in Algorithm 2 in order to align the (cid:96) (cid:96) and (16). In Algorithm 1, the background statistics are com- field of view at all times according to the transform F which t(cid:96) putedassumingnoexoplanetispresent(i.e.,hypothesisH )and is, in general, a rotation. Such interpolations result in a low- 0 are thus biased. This is especially notable when the apparent pass filtering of the criterion map which slightly degrades the A138,page9of27 A&A618,A138(2018) the S/N map at level τ should be photometrically characterized using the statistically unbiased PACO estimation procedure summarizedinAlgorithm3.AsdiscussedinSect.3.2,thiscan be done by alternating between an estimation of the flux of the exoplanet and of the statistics of the background7. The result- itng((cid:96)e=sti1m:Ta)tec(cid:98)αorfroerspaosnodusrctoeltohceamteidniamtφumt(cid:96)=oFftt(cid:96)h(φe0f)oollnowthiengfracmoset (cid:96) function: Algorithm2:fast PACO detection–Fastcomputation of the S/N values at initial 2D angular positions G of an unresolvedsource. Input:UniformgridGof2Dangularpositions. Input:Spatio-temporaldataset{rθk,t(cid:96)}k=1:N,(cid:96)=1:T. Output:S/NmapatallinitialpositionsinG. (cid:46)Step1.Precomputeterms: forallφ ∈Gdo 0 Fig.6.Influenceofpatchsize:ROCcurvesforK={13,49,113}pixels (cid:46)Step1a.Buildthecollectionofpatchescentered ineachpatch.TheROCcurvesareobtainedbyinsertingfakeexoplanets atφ0: offluxα∈(cid:104)10−6;10−5(cid:105)ontheHIP72192datasetatλ1=2.110µm. P ←{r(cid:98)φ0(cid:101),t(cid:96)}(cid:96)=1:T (cid:46)Step1b.Learnthecorrespondingbackground Algorithm1:PACO detection–ComputationoftheS/N s(cid:110)tatisticsan(cid:111)dpre-computeterms: values at initial 2D angular positions G of an unresolved (cid:98)m(cid:98)φ0(cid:101),C(cid:98)(cid:98)φ0(cid:101) (Eqs.(7)–(12)) source. w ←C(cid:98)−1 ·h (φ ) Input:SetGofinitial2Dangularpositions. c(cid:98)φ0(cid:101)←wt(cid:98)φ0(cid:101)·h(cid:98)φ0(cid:101)(φ0) Input:Spatio-temporaldataset{rθk,t(cid:96)}k=1:N,(cid:96)=1:T. fo(cid:98)φr0(cid:101)(cid:96)=1:(cid:98)φT0(cid:101)do(cid:98)φ0(cid:101) 0 Output:S/NmapatallinitialpositionsinG. forallφ ∈Gdo d(cid:98)φ0(cid:101),t(cid:96) ←wt(cid:98)φ0(cid:101)·(r(cid:98)φ0(cid:101),t(cid:96) −(cid:98)m(cid:98)φ0(cid:101)) 0 a←0 (cid:46)Step2.ComputetheS/Nvalues: b←0 forallφ ∈Gdo for(cid:96)=1:T do a←00 (cid:46)Step1.Extracttherelevantpatches: b←0 P(cid:46)pφatS(cid:96)t(cid:96)ct=e←hpFest2{(cid:96)(ir.nφ(cid:98)Lφ0Pte(cid:96))(cid:101)a,t(cid:96)(cid:96)r(cid:48)n:}(cid:96)t(cid:48)h=1e:Tbackgroundstatisticsfromthe for(cid:96)φabt=(cid:96)←←=1abF:++t(cid:96)T(cdφd(cid:98)(cid:98)0φφo)√tt(cid:96)(cid:96)(cid:101)(cid:101)(,tφ(cid:96)(tφ(cid:96))t(cid:96)) ((iinntteerrppoollaattiioonnooffdc)) {(cid:98)m(cid:98)φt(cid:96)(cid:101),C(cid:98)(cid:98)φt(cid:96)(cid:101)} (Eqs.(7)–(12)) S/N(φ0)←b/ a (Eq.(24)) (cid:46)Step3.Updateaandb: w←C(cid:98)−1 ·h (φ ) a←a+(cid:98)φtw(cid:96)(cid:101)t·h(cid:98)φt(cid:96)(cid:101) (φt(cid:96) ) (Eq.(15)) C(α)=(cid:88)T (cid:26)T log(det(C(cid:98) (α))) S/Nb(φ←0)b←+bw/t√·(ar(cid:98)(cid:98)φφtt(cid:96)(cid:96)(cid:101)(cid:101),t(cid:96)t−(cid:96) (cid:98)m(cid:98)φt(cid:96)(cid:101)) ((EEqq..((1264)))) +(cid:96)=1tr(cid:18)C(cid:98)−1(α)·(cid:18)Wφ(cid:12)t(cid:96) (cid:88)T u (α)·ut (α)(cid:19)(cid:19)(cid:27), (30) φt(cid:96) φt(cid:96),t(cid:96)(cid:48) φt(cid:96),t(cid:96)(cid:48) (cid:96)(cid:48)=1 detection performance of PACO (see Sect. 5). The complexity inwhichWi,j=1ifi= j,Wi,j=1−(cid:98)ρelsewhere,{i, j}∈J1;KK2,(cid:12) standsforentrywisemultiplication(i.e.,Hadamardproduct),and opfret-hcealcfauslattvioenrssiotenpg(Sivteenpi1n).ADlegnoorittihnmgb2yiNs dthoemniunmatebderboyfathne- uθk,t(cid:96)(α) = rθk,t(cid:96) − α · hθk,t(cid:96) − (cid:98)mθk(α). The expression of C(α) in Eq. (30) comes from the co-log-likelihood under a Gaussian gular positions φ to process, this step requires N×T products 0 assumption, where matrix W is introduced in order to bias the of vectors with K elements as well as the resolution of N lin- covarianceestimatetowardadiagonalcovariance(i.e.,inorder ear systems of size K×K. For example, the application of this toreplacethemaximumlikelihoodcovarianceestimategivenby fastalgorithmrequiresapproximatelytwominutestoprocessa thesamplecovariancewiththeshrinkageestimatordescribedin dataset made of 96 temporal frames of size 1024×1024 pixels Sect.3.2). versusapproximatelythreehoursforthecompletealgorithmus- Figure 7 illustrates the cost function C(α) that is mini- ing a basic parallelization done in MatlabTM on 24 cores (pro- mizedbyouralternatingestimationscheme.Thiscostfunctionis cessorIntelXeonE5–46170at2.90GHzand K=49pixelsper unimodalinthetestedrangeofcontrasts(from5×10−6to10−1) patch). Once the detection step is performed by Algorithm 1 or 7 Ajointestimationofthefluxoftheexoplanetandofthebackground Algorithm 2, the potential detections obtained by thresholding statisticscouldalsobeperformedbyhierarchicaloptimization. A138,page10of27

Description:
A fast approximate version of the method is also described that can be used to process large amounts of data from exoplanets search surveys. Key words. Techniques: image processing - Techniques: high angular resolution - Methods: statistical - Methods: data analysis. 1. Introduction. Direct imaging
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.