ebook img

Exciton-phonon information flow in the energy transfer process of photosynthetic complexes PDF

0.68 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Exciton-phonon information flow in the energy transfer process of photosynthetic complexes

Exciton-phononinformationflowintheenergytransferprocessofphotosyntheticcomplexes Patrick Rebentrost1,∗ and Ala´n Aspuru-Guzik1,† 1DepartmentofChemistryandChemicalBiology,HarvardUniversity,12OxfordSt.,Cambridge,MA02138 (Dated: January25,2011) Non-Markovianandnon-equilibriumphononeffectsarebelievedtobekeyingredientsintheenergytransfer inphotosyntheticcomplexes,especiallyincomplexeswhichexhibitaregimeofintermediateexciton-phonon coupling. Inthiswork,weutilizearecently-developedmeasurefornon-Markovianitytoelucidatetheexciton- phonondynamicsintermsoftheinformationflowbetweenelectronicandvibrationaldegreesoffreedom. We studythemeasureinthehierarchicalequationofmotionapproachwhichcapturesstrongsystem-bathcoupling effectsandnon-equilibriummolecularreorganization.Weproposeanadditionaltrace-distancemeasureforthe informationflowthatcouldbeextendedtoothermasterequations. Wefindthatforamodeldimersystemand theFenna-Matthews-Olsoncomplexthatnon-Markovianityissignificantunderphysiologicalconditions. 1 1 The initial step in photosynthesis involves highly efficient answerishowmuchinformationisexchangedbetweenexci- 0 excitonic transport of the energy captured from photons to a tonic and phononic degrees of freedom in that process and, 2 reactioncenter[1]. Inmosthigherplantsandotherorganisms specifically,howmuchinformationreturnsfromthephonons n suchasgreensulphurandpurplebacteriathisprocessoccurs totheexciton. a inlight-harvestingcomplexeswhichconsistofelectronically Measurefornon-Markovianity−Arecentareaofresearch J coupled chlorophyll molecules embedded in a solvent and a isthestudyofmeasurestocharacterizenon-Markovianity[13, 4 proteinenvironment[2].Severalrecentexperimentsshowthat 14]. We utilize the readily applicable measure developed by 2 excitonic coherence can persist for several hundreds of fem- Breuerandco-workers[13]. Itisbasedonthequantumstate tosecondsevenatphysiologicaltemperature[3].Theseexper- tracedistance: ] h imentssuggestthehypothesisthatquantumcoherencemaybe 1 p biologicallyrelevantforphotosynthesis. D(ρ (t),ρ (t))= Tr{|ρ (t)−ρ (t)|}, (1) - 1 2 2 1 2 t The challenging regime of intermediate coupling of the √ n electronictothevibrationaldegreesoffreedommotivatesthe where|A|= A†A.Thismeasurequantifiesthedistinguish- a study of sophisticated master equations with non-Markovian ablility of two quantum states ρ and ρ . For a completely u 1 2 q effects. Several approaches have been taken, ranging from a positivetrace-preservingmapE thetracedistanceiscontrac- [ polarontransformation[4], quantumstatediffusion[5], gen- tive, i.e. D(E(ρ ),E(ρ )) ≤ D(ρ ,ρ ) [15]. Time in- 1 2 1 2 eralized Bloch-Redfield [6], non-Markovian quantum jumps tervals in which D increases indicate non-Markovian infor- 2 [7,8],quantumpathintegrals(QUAPI)[9],todensitymatrix mationflow[13], inourcasefromthevibrationaldegreesof v 9 renormalization group (DMRG) [10]. After photoexcitation, freedombacktotheelectronicdegreesoffreedom.Intermsof 0 thenuclearcoordinatesofamoleculewillrelaxtonewequi- theslopeofD,i.e. σ(ρ (t),ρ (t)) = dD(ρ (t),ρ (t)), 1 2 dt 1 2 8 libriumpositions,aphenomenonthatisborneoutbythetime- this implies that σ > 0 for these time intervals. Formally, 3 dependentStokesshift,thatisthefrequencyshiftbetweenab- a measure for non-Markovianity is defined by the following 1. sorption and emission spectra. Redfield theory assumes that [13]: 1 thephononbathisalwaysinthermalequilibriumandthuscan- (cid:90) ∞ 0 not capture this effect [11]. Ishizaki and Fleming employed NM-ity= max dtI(σ(t)) σ(ρ (t),ρ (t)). 1 the hierarchical equation of motion (HEOM) approach [12], ρ1(0),ρ2(0) 0 1 2 v: which interpolates between the usual weak and strong (sin- (2) i gular)exciton-phononcouplinglimitsandtakesintoaccount Here, the indicator function I(x>0) = 1 (I(x<0)=0) X non-equilibriummolecularreorganizationeffects. monitors only the increasing part of the trace distance time r Inthiswork,westudythenon-Markovianityoftheexciton evolutioni.e. theinformationbackflow. Theoptimizationof a transferprocessbymeansofnumericalsimulation. Quantum theinitialstatesinEq.(2)obtainsthemaximallypossiblenon- mechanical time evolution under decoherence leads to trans- Markovianityofaparticularquantumevolution.Inthecaseof fer of information encoded in the electronic excited state to photosynthetic energy transfer, initial states are given by the the vibrational degrees of freedom. Non-Markovianity can particularphysicalsituationandleadtosmallervaluesforthe becharacterizedasthereturnofthisinformationtotheelec- non-Markovianity.Weusebothphysicalandoptimizedinitial tronic degrees of freedom. To quantify the exciton-phonon statesinthiswork. informationflow,weemploythestate-of-theartmasterequa- Hierarchy equation of motion− The Hamiltonian tionapproachbyIshizakiandFlemingandanewly-developed describing a single exciton in a complex with N measure for non-Markovianity. The central question we will (cid:80)molecules is given by He = (cid:80)Nm=1((cid:15)m + λ)|m(cid:105)(cid:104)m| + J (|m(cid:105)(cid:104)n|+|n(cid:105)(cid:104)m|). The site energies (cid:15) , and m<n mn m couplingsJ areobtainedfromdetailedquantumchemistry mn studies and/or fitting of experimental data. The set of states ∗[email protected] |m(cid:105)denotesthesitebasis. Thereorganizationenergyλisthe †[email protected] energy difference of the non-equilibrium phonon state after 2 Franck-Condon excitation and the equilibrium phonon state 1.0 a andisassumedtobethesameforeachsite. Thesuperopera- e 0.8 c tor corresponding to H is L ρ = [H ,ρ]. The Hamiltonian n for the phonon environement ies H =e(cid:80) (cid:126)ω (cid:0)p2+q2(cid:1)/2, sta 0.6 ph i i i i di where ωi, pi, and qi are the frequency, dimensionless mo- ce 0.4 (cid:76) mentum and position operators of the phonon mode i. The Tra 0.2 couplingoftheelectronicdegreesoffreedomtothephonons (cid:80) (cid:80) 0.0 isgivenbytheHamiltonianH = V ( g q ) , ex−ph m m i i i m 0 200 400 600 800 1000 with V = |m(cid:105)(cid:104)m| and where we assume that site-energy m fluctuationsdominate,thebathdegreesoffreedomateachsite Time fs areuncorrelated,andthecouplingconstantstotherespective e modes are given by the constants gi. The spectral density, anc 2.0 b wphhoicnhondemscordibeess,thisecgoivuepnlinbgystJre(nωg)tho=fex2cλitγoωn/to(cid:0)ωp2ar+ticγu2la(cid:1)r. dist 1.5 (cid:64) (cid:68) O Perhapsthemostrelevantparameter,thebathdissipationrate D 1.0 (cid:76) A γ, is related to the bath correlation time by τc = 1/γ. The al 0.5 equation of motion for the reduced single-exciton density ot T 0.0 matrix ρ is obtained by tracing out the less relevant phonon 0 200 400 600 800 1000 degrees of freedom and utilizing Wick’s theorem for the Gaussianfluctuations,leadingtoanon-perturbativehierarchy Time fs ofsystemandauxilliarydensityoperators(ADOs)[12]: ∂ (cid:32) (cid:88)N (cid:33) FIG.1. (a)Tracedistanceofthestatesρ1 =|1(cid:105)(cid:104)1|andρ2 =|2(cid:105)(cid:104)2| ∂tσn(t)=− iLe+ nmγ σn(t) (3) aesquaatfiuonnctoiofnmooftitoimnemfoodreal.twToh-esittreacsyes(cid:64)dteism(cid:68)tan(dciemeevro)livnesthferohmiermaracxhiy- m=1 mallydistinguishable(=1)fortheinitialstatestoindistinguishable N N (cid:88) (cid:88) (= 0)forthethermalequilibriumstate. Atintermediatetimes, the + φ σnm+1(t)+ n θ σnm−1(t). m m m trace distance increases, which is due to a reversal of the informa- m=1 m=1 tion flow. Various bath correlation times are shown, 150 fs (blue), The system density matrix is the first member of the hierar- 100fs(red),and50fs(yellow). Forlongcorrelationtimes,thatis, chy ρ(t) = σ0(t). The other members of the hierarchy are a bath with more memory, the regions of increasing trace distance arranged in tiers and indexed by n = (n1,.....,nN) ≥ 0, aremorepronounced. (b)TheADOdistanceDAtoDtO illustratesthe where a single tier is given by all elements where (cid:80) n informationcontentinthenon-Markoviandegreesoffreedomofthis m m modelforthesamesystem,initialstates,andbathcorrelationtimes is constant. The notation n = (n ...,n ±1,...,n ) m±1 1, m N as in (a). The anticorrelated oscillations of the two figures clearly is introduced. The superoperators in the high temperature showtheinformationflowbetweenthesystemandtheNMdegrees regime (cid:126)γβ < 1 are φ σn = i[V ,σn] and θ σn = i(cid:0)2λ/β(cid:126)2[V ,σn]−iλγm/(cid:126){V ,σn}(cid:1)mand act onmsystem offreedom. m m andADOs,where{,}istheanticommutator. Initially,allthe hierarchy members are zero, which corresponds to the elec- describeperturbationsonthetime-evolvedexcitonicstatedue tronicgroundstatephononequilibriumconfiguration.Fornu- to the phonon environment. This separation into system and merical propagation, the hierarchy is truncated based on the auxiliary degrees of freedom implies a quantification of the criterion (cid:80)mnm (cid:29) ωγe, where ωe is a characteristic fre- information content of the auxiliary systems at a given point quencyofL . Weassumethatthisconditionissatisfiedwhen intime: e theT(cid:80)hemrnepmreissebnytaatiofanctoorf5tlhaergehriethraarnchωγye.equation of mo- DAtoDtO(t)= (cid:88)D(σ˜n1 (t),σ˜n2 (t)). (4) tion in Eq. (3) is not unique. It can be advan- n(cid:54)=0 tageous to expand the hierarchy in a set of normal- Thismeasuredependsontheelectronicinitialstatesand,im- ized auxiliary systems [16]. Redefining the ADOs as portantly, uses the normalized ADOs. Although the σ˜n(t) σ˜n(t) = ((cid:81)mnm|c0|−nm)−1/2σn(t) and rescaling the are not quantum states for n (cid:54)= 0, the trace distance never- superoperators as φmσnm+1 = (cid:112)(nm+1)|c0|φmσ˜nm+1 theless measures differences of these operators arising from and nmθmσnm−1 = (cid:112)nm/|c0|θmσ˜nm−1, with c0 = thedifferentinitialstates. Thismeasurecouldinprinciplebe (cid:0)2λ/β(cid:126)2−iλγ/(cid:126)(cid:1) in the high temperature regime, leads to extended to other families of master equations that employ amorebalancedEOMandcanleadtoalowerrequirementin auxiliarydegreesoffreedom. termsofthenumberofADOs. Therescaledrepresentationis Results for a dimer− In this section, a two-molecule sys- usefulforsimulatinglargesystemssuchastheFMOcomplex tem, or dimer, is studied in terms of the measure for non- andforstudyingtheADOsthemselves,asfollows. Markovianity, using, if not otherwise mentioned, the regu- Tocharacterizetheinformationflowfromthepointofview lar hierarchy equation of motion approach Eq. (3) and scan- ofthenon-Markoviandegreesoffreedom,weproposeanother ning over the parameters of the model. As standard pa- measure based on the trace distance. The auxiliary systems rameters, we use the site energies (cid:15) = 0, (cid:15) = 120/cm, 1 2 3 astnrdontghley-ccoouupplliendgbJact=erio−c8h7lo.7ro/pcmhy.llTshiitse c1oarrnedsp2onsudbsstyosttehme vianity 000...233505 a 0.15 b of the Fenna-Matthews-Olson complex. Along the lines of ko 0.20 0.10 ar 0.15 the discussion in [12], the standard bath correlation time is M 0.10 (cid:76) 0.05 taken from 50 fs to 150 fs. We assume ambient temperature n(cid:45) 0.05 (cid:76) No 0.00 0.00 T = 288 K (200/cm). The main results use 40 tiers (819 20 40 60 80100120140 0 50 100150200250300 ADOs),andEq. (3)isintegrateduptomaximally20ps. Coupling 1cm Siteenergydifference 1cm First, in Fig. 1 (a), we investigate the time evolution of y the trace distance in Eq. (1) for the dimer system at reor- nit 0.6 c 0.20 d ganization energy λ = 20/cm. We choose the two initial via 0.5 (cid:64) (cid:144) (cid:68) 0.15 (cid:64) (cid:144) (cid:68) o 0.4 k statesρ1 = |1(cid:105)(cid:104)1|andρ2 = |2(cid:105)(cid:104)2|andthestandardparame- Mar 00..23 (cid:76) 0.10 (cid:76) tersgivenabove,whilevaryingthebathdissipationrate. One n(cid:45) 0.1 0.05 can see clear non-Markovian revivals in the time intervals at No 0.0 0.00 20 40 60 80 100120140 0.1 1 10 100 around 150 fs and around 300 fs, borne out by increases in the trace distance. For larger correlation time of the bath of Bathdissipationrate 1cm Reorganizationenergy 1cm cdrτeiictlsaIas=nttiiipooFa1nnitg5eit.0dsim1mfasew(obtτarh)eyc,ewls=rieakepe5riieln0dyvvlfityevso,s.atarlisesgtaauotrrceenctumhtoreostrthiienmeptserhyoeesnvtcoeoamulsuneticinooesdnft.esoamAfdathobllefaetbrAhecDieonxOrg-- NonMarkovianity(cid:45) 00000.....02468(cid:42)e(cid:42)(cid:76)(cid:42)(cid:42)F(cid:42)M(cid:42)(cid:42)O(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:64)(cid:42)(cid:42)(cid:144)(cid:42)(cid:42)(cid:42)(cid:42)(cid:68) 000000......001122050505(cid:42)(cid:42)(cid:42)f(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:76)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)F(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)M(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)O(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:64)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:144)(cid:42)(cid:42)(cid:42)(cid:42)(cid:68) distance measure in Eq. (4) for the same system, using the 20 40 60 80 100120140 0 20 40 60 80 100120 normalizedauxiliarysystems. Atsmalltimes, theADOsare Bathdissipationrate 1cm Reorganizationenergy 1cm all zero, thus Dtot = 0, while at long times the system ADO andADOsconvergetothethermalequilibriumandallinfor- FIG.2. Non-Markovianityasafunctionoftheparametersofadimer mation about the initial states is dissipated. At intermediate system,a)-d),andtheFenn(cid:64)a(cid:144)-Ma(cid:68)tthews-Olsoncomplex,e)and(cid:64) f(cid:144)),i(cid:68)n times,onefindsstronginformationflowbetweensystemand thehierarchyequationofmotionapproach. Forthedimer: a)cou- thenon-Markoviandegreesoffreedom,whichisborneoutby plingJ12,b)siteenergydifference(cid:15)2−(cid:15)1,c)bathdissipationrate γ(whichisrelatedtothebathcorrelationtimebyγ =1/τ ,)andd) theanticorrelatedoscillationsin(a)and(b),respectively. For c reorganizationenergyλ. Thesolidlinesarecalculationsperformed this, notethe dips at around 150 fs and around 300 fs in (b). withtheinitialstatesbeingρ = |1(cid:105)(cid:104)1|andρ = |2(cid:105)(cid:104)2|whilethe Additionally,theinformationcontentintheADOsissmaller 1 2 dots are calculations performed with optimized initial states. The whenthebathdissipationrateislarger. dashedpartofthelinesindicatesthataparameterwasscannedbe- The computation of the non-Markovianity measure in Eq. yondthevalidityoftheequationbasedonthetruncationcondition. (2) involves an optimization of the initial states. On the one FortheFMOcomplex:e)bathdissipationrateandf)reorganization hand, the following results use the two initial states ρ = energy. Inallfigures,exceptinc)ande),weusethedifferentbath 1 |1(cid:105)(cid:104)1| and ρ = |2(cid:105)(cid:104)2| as above, but one the other hand, correlationtimes:50fs(blue),100fs(purple),and150fs(red). 2 compare to a systematically-optimized pair of initial states. Oneinitialstateischosenoutof50purestatesontheBloch sphere.Thisleadstoatotalnumberof1225independentpairs sure as a function of the inverse bath correlation time, i.e. ofstatesintheoptimization. (Thestateoptimizationitselfis the bath dissipation rate. A longer τ leads to more non- c performedwith20tiersofADOs.) Markovianity, because a sluggish bath keeps the memory of We now proceed to scan the NM-ity measure over the pa- excitations much longer and the information is able to re- rameters of the model, beginning with the system parame- turn back to the electronic degrees of freedom. Second, the ters,thesiteenergydifferenceandthechromophoriccoupling. othersignificantbathparameter,thereorganizationenergy,is First, theNM-ityisstronglydependentonthechromophoric ameasureofthenon-equilibriumcharacterofthephononbath coupling,seeFig. 2(a). Atzerocoupling,themoleculesare intheexcitedstate. InFig. 2(d), weshowtheNMmeasure independentandtheNM-ityiszero; thetwoinitialstatesre- as a function of the reorganization energy. At zero λ, which mainperfectlydistinguishable. Atnon-zerocoupling,thedy- essentiallymeansnocouplingtothephonons,theunitarydy- namicsshowsincreasingNMrevivals,whilebothinitialstates namicsobviouslyshowszeronon-Markovianity. Atweakλ, convergetothesamethermalequilibriumstate. Second,with we observe a NM-ity of around 0.1 at t = 150 fs, which is c respect to the site energy difference, the dependence of the completelyneglectedbyRedfieldtheory.Atintermediateλof NM-ity weakly slopes downward, see Fig 2 (b). As the en- around40/cm,closetothephysiologicalvaluesoftheFenna- ergy difference increases the coupling becomes less signifi- Matthews-Olson complex, the NM-ity is maximal, showing cantandthemoleculesbecomemoreindependent. Thisleads a value of around 0.2. At large λ, the regime of incoherent todecreasedNM-ity. transport[12],theNM-ityvanishes. Next,weinvestigatetheroleofthebathparameters. First, Results for the Fenna-Matthews-Olson complex− We now as mentioned before, the bath correlation time crucially af- investigatetheexciton-phononinformationflowintheFenna- fects the memory of the bath and the information back flow Matthews-Olson complex. The FMO complex is found in to the system. In Fig. 2 (c), we show the NM-ity mea- greensulphurbacteria,whereitconnectstheantennacomplex 4 with the reaction center during the energy transfer process. [13,14],canleadtoagreaterunderstandingoftheexcitondy- TheFMOcomplexisatrimerwithsevenbacteriochlorophyll namics in these systems. In principle, the recently proposed (BChl) molecules in each subunit and with one additional ultrafastquantumprocesstomographyprotocolextractsafull BChl molecule shared between the units. We implement the characterization of the quantum map [18], and could thus be hierarchy equation of motion for the seven sites (N = 7), usedfortheexperimentalsideofthistask. However, experi- using the method for rescaling the auxilliary systems as dis- mentsspecificallydesignedtoextractaparticularobservable, cussed above and in [16]. As was shown recently [17], with suchasinourcasetheNM-itymeasure,couldbecarriedout fourtiers(329ADOs)thecoherentpopulationdynamicscan withareducednumberofexperimentalrequirements. Future be accurately simulated, but due to the reduced number of workwillinvestigateanalyticallyandnumericallyhowtoeffi- ADOs,weexpecttominimallyoverestimatetheNM-ity. We cientlyextractthenon-Markovianityfromthephase-matched use the initial states ρ = |1(cid:105)(cid:104)1| and ρ = |2(cid:105)(cid:104)2|. First, the signalobservedinfour-wavemixingexperiments. 1 2 scan of γ obtains a strong dependence similar to the dimer To summarize, we have shown numerically that there is a system,seeFig. 2(e). Second,thescanofthereorganization considerable non-Markovian information flow between elec- energy obtains a maximum at around λ = 55/cm with the tronic and phononic degrees of freedom of light-harvesting NM-ity being 0.2 at λ = 35/cm and τ = 150 fs, see Fig. chromophoricsystemsunderphysiologicalconditions,utiliz- c 2 (f). The results suggest that non-Markovian effects should ingarealisticmodelforsystemssuchastheFenna-Matthews- playasignificantroleinthefunctionoftheFenna-Matthews- Olson complex. The results suggest that non-Markovianity Olsoncomplex. playsasignificantroleinphotosyntheticenergytransfer. The authors are grateful to J. Piilo, C. Rodriguez-Rosario, Conclusion− The theoretical and experimental characteri- S. Saikin, and J. Zhu for insightful discussions. The authors zation of photosynthetic light-harvesting complexes in terms acknowledgefundingfromDOE,DARPA,andcomputational of non-Markovianity, as e.g. defined in the recent work resourcesthroughHarvardResearchComputing. [1] R. E. Blankenship, Molecular Mechanisms of Photosynthesis, ChemicalPhysicsLetters478,234(2009). 1sted.(Wiley-Blackwell,2002)p.336. [10] J.Prior,A.Chin,S.Huelga, andM.Plenio,PhysicalReview [2] Y.-C. Cheng and G. R. Fleming, Annual Review of Physical Letters105,1(2010). Chemistry60,241(2009). [11] A.IshizakiandG.R.Fleming,TheJournalofChemicalPhysics [3] G.S.Engel,T.R.Calhoun,E.L.Read,T.-K.Ahn,T.Mancal, 130,234110(2009). Y.-C. Cheng, R. E. Blankenship, and G. R. Fleming, Nature [12] A.IshizakiandG.R.Fleming,TheJournalofChemicalPhysics 446,782(2007);H.Lee,Y.-C.Cheng, andG.R.Fleming,Sci- 130,234111(2009); ProceedingsoftheNationalAcademyof ence316,1462(2007); G.Panitchayangkoon,D.Hayes,K.A. SciencesoftheUnitedStatesofAmerica106,17255(2009). Fransted,J.R.Caram,E.Harel,J.Wen,R.E.Blankenship, and [13] H.-P.Breuer,E.-M.Laine, andJ.Piilo,PhysicalReviewLetters G.S.Engel,ProceedingsoftheNationalAcademyofSciences 103,1(2009). oftheUnitedStatesofAmerica107,1(2010);E.Collini,C.Y. [14] M. Wolf, J. Eisert, T. Cubitt, and J. Cirac, Physical Review Wong,K.E.Wilk,P.M.G.Curmi,P.Brumer, andG.D.Sc- Letters 101, 1 (2008); A. K. Rajagopal, A. R. U. Devi, and holes,Nature463,644(2010). R. W. Rendell, http://arxiv.org/abs/1007.4498 (2010); A. Ri- [4] S.Jang, Y.-C.Cheng, D.R.Reichman, andJ.D.Eaves,The vas,S.Huelga, andM.Plenio,PhysicalReviewLetters105,1 JournalofChemicalPhysics129,101104(2008). (2010). [5] J.Roden,A.Eisfeld,W.Wolff, andW.Strunz,PhysicalReview [15] M. A. Nielsen and I. L. Chuang, Quantum Computation and Letters103,3(2009). Quantum Information, 1st ed. (Cambridge University Press, [6] J. Wu, F. Liu, Y. Shen, J. Cao, and R. J. Silbey, 2000). http://arxiv.org/abs/1008.2236 (2010). [16] Q.Shi,L.Chen,G.Nan,R.-X.Xu, andY.Yan,TheJournalof [7] J. Piilo, S. Maniscalco, K. Ha¨rko¨nen, and K.-A. Suominen, ChemicalPhysics130,084105(2009). PhysicalReviewLetters100,1(2008). [17] J.Zhu,S.Kais,P.Rebentrost, andA.Aspuru-Guzik,Journal [8] P.Rebentrost,R.Chakraborty, andA.Aspuru-Guzik,TheJour- ofPhysicalChemistryB(inpress) (2010). nalofChemicalPhysics131,184102(2009). [18] J. Yuen-Zhou, M. Mohseni, and A. Aspuru-Guzik, [9] M. Thorwart, J. Eckel, J. Reina, P. Nalbach, and S. Weiss, http://arxiv.org/abs/1006.4866 (2010).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.