Exciton-phononinformationflowintheenergytransferprocessofphotosyntheticcomplexes Patrick Rebentrost1,∗ and Ala´n Aspuru-Guzik1,† 1DepartmentofChemistryandChemicalBiology,HarvardUniversity,12OxfordSt.,Cambridge,MA02138 (Dated: January25,2011) Non-Markovianandnon-equilibriumphononeffectsarebelievedtobekeyingredientsintheenergytransfer inphotosyntheticcomplexes,especiallyincomplexeswhichexhibitaregimeofintermediateexciton-phonon coupling. Inthiswork,weutilizearecently-developedmeasurefornon-Markovianitytoelucidatetheexciton- phonondynamicsintermsoftheinformationflowbetweenelectronicandvibrationaldegreesoffreedom. We studythemeasureinthehierarchicalequationofmotionapproachwhichcapturesstrongsystem-bathcoupling effectsandnon-equilibriummolecularreorganization.Weproposeanadditionaltrace-distancemeasureforthe informationflowthatcouldbeextendedtoothermasterequations. Wefindthatforamodeldimersystemand theFenna-Matthews-Olsoncomplexthatnon-Markovianityissignificantunderphysiologicalconditions. 1 1 The initial step in photosynthesis involves highly efficient answerishowmuchinformationisexchangedbetweenexci- 0 excitonic transport of the energy captured from photons to a tonic and phononic degrees of freedom in that process and, 2 reactioncenter[1]. Inmosthigherplantsandotherorganisms specifically,howmuchinformationreturnsfromthephonons n suchasgreensulphurandpurplebacteriathisprocessoccurs totheexciton. a inlight-harvestingcomplexeswhichconsistofelectronically Measurefornon-Markovianity−Arecentareaofresearch J coupled chlorophyll molecules embedded in a solvent and a isthestudyofmeasurestocharacterizenon-Markovianity[13, 4 proteinenvironment[2].Severalrecentexperimentsshowthat 14]. We utilize the readily applicable measure developed by 2 excitonic coherence can persist for several hundreds of fem- Breuerandco-workers[13]. Itisbasedonthequantumstate tosecondsevenatphysiologicaltemperature[3].Theseexper- tracedistance: ] h imentssuggestthehypothesisthatquantumcoherencemaybe 1 p biologicallyrelevantforphotosynthesis. D(ρ (t),ρ (t))= Tr{|ρ (t)−ρ (t)|}, (1) - 1 2 2 1 2 t The challenging regime of intermediate coupling of the √ n electronictothevibrationaldegreesoffreedommotivatesthe where|A|= A†A.Thismeasurequantifiesthedistinguish- a study of sophisticated master equations with non-Markovian ablility of two quantum states ρ and ρ . For a completely u 1 2 q effects. Several approaches have been taken, ranging from a positivetrace-preservingmapE thetracedistanceiscontrac- [ polarontransformation[4], quantumstatediffusion[5], gen- tive, i.e. D(E(ρ ),E(ρ )) ≤ D(ρ ,ρ ) [15]. Time in- 1 2 1 2 eralized Bloch-Redfield [6], non-Markovian quantum jumps tervals in which D increases indicate non-Markovian infor- 2 [7,8],quantumpathintegrals(QUAPI)[9],todensitymatrix mationflow[13], inourcasefromthevibrationaldegreesof v 9 renormalization group (DMRG) [10]. After photoexcitation, freedombacktotheelectronicdegreesoffreedom.Intermsof 0 thenuclearcoordinatesofamoleculewillrelaxtonewequi- theslopeofD,i.e. σ(ρ (t),ρ (t)) = dD(ρ (t),ρ (t)), 1 2 dt 1 2 8 libriumpositions,aphenomenonthatisborneoutbythetime- this implies that σ > 0 for these time intervals. Formally, 3 dependentStokesshift,thatisthefrequencyshiftbetweenab- a measure for non-Markovianity is defined by the following 1. sorption and emission spectra. Redfield theory assumes that [13]: 1 thephononbathisalwaysinthermalequilibriumandthuscan- (cid:90) ∞ 0 not capture this effect [11]. Ishizaki and Fleming employed NM-ity= max dtI(σ(t)) σ(ρ (t),ρ (t)). 1 the hierarchical equation of motion (HEOM) approach [12], ρ1(0),ρ2(0) 0 1 2 v: which interpolates between the usual weak and strong (sin- (2) i gular)exciton-phononcouplinglimitsandtakesintoaccount Here, the indicator function I(x>0) = 1 (I(x<0)=0) X non-equilibriummolecularreorganizationeffects. monitors only the increasing part of the trace distance time r Inthiswork,westudythenon-Markovianityoftheexciton evolutioni.e. theinformationbackflow. Theoptimizationof a transferprocessbymeansofnumericalsimulation. Quantum theinitialstatesinEq.(2)obtainsthemaximallypossiblenon- mechanical time evolution under decoherence leads to trans- Markovianityofaparticularquantumevolution.Inthecaseof fer of information encoded in the electronic excited state to photosynthetic energy transfer, initial states are given by the the vibrational degrees of freedom. Non-Markovianity can particularphysicalsituationandleadtosmallervaluesforthe becharacterizedasthereturnofthisinformationtotheelec- non-Markovianity.Weusebothphysicalandoptimizedinitial tronic degrees of freedom. To quantify the exciton-phonon statesinthiswork. informationflow,weemploythestate-of-theartmasterequa- Hierarchy equation of motion− The Hamiltonian tionapproachbyIshizakiandFlemingandanewly-developed describing a single exciton in a complex with N measure for non-Markovianity. The central question we will (cid:80)molecules is given by He = (cid:80)Nm=1((cid:15)m + λ)|m(cid:105)(cid:104)m| + J (|m(cid:105)(cid:104)n|+|n(cid:105)(cid:104)m|). The site energies (cid:15) , and m<n mn m couplingsJ areobtainedfromdetailedquantumchemistry mn studies and/or fitting of experimental data. The set of states ∗[email protected] |m(cid:105)denotesthesitebasis. Thereorganizationenergyλisthe †[email protected] energy difference of the non-equilibrium phonon state after 2 Franck-Condon excitation and the equilibrium phonon state 1.0 a andisassumedtobethesameforeachsite. Thesuperopera- e 0.8 c tor corresponding to H is L ρ = [H ,ρ]. The Hamiltonian n for the phonon environement ies H =e(cid:80) (cid:126)ω (cid:0)p2+q2(cid:1)/2, sta 0.6 ph i i i i di where ωi, pi, and qi are the frequency, dimensionless mo- ce 0.4 (cid:76) mentum and position operators of the phonon mode i. The Tra 0.2 couplingoftheelectronicdegreesoffreedomtothephonons (cid:80) (cid:80) 0.0 isgivenbytheHamiltonianH = V ( g q ) , ex−ph m m i i i m 0 200 400 600 800 1000 with V = |m(cid:105)(cid:104)m| and where we assume that site-energy m fluctuationsdominate,thebathdegreesoffreedomateachsite Time fs areuncorrelated,andthecouplingconstantstotherespective e modes are given by the constants gi. The spectral density, anc 2.0 b wphhoicnhondemscordibeess,thisecgoivuepnlinbgystJre(nωg)tho=fex2cλitγoωn/to(cid:0)ωp2ar+ticγu2la(cid:1)r. dist 1.5 (cid:64) (cid:68) O Perhapsthemostrelevantparameter,thebathdissipationrate D 1.0 (cid:76) A γ, is related to the bath correlation time by τc = 1/γ. The al 0.5 equation of motion for the reduced single-exciton density ot T 0.0 matrix ρ is obtained by tracing out the less relevant phonon 0 200 400 600 800 1000 degrees of freedom and utilizing Wick’s theorem for the Gaussianfluctuations,leadingtoanon-perturbativehierarchy Time fs ofsystemandauxilliarydensityoperators(ADOs)[12]: ∂ (cid:32) (cid:88)N (cid:33) FIG.1. (a)Tracedistanceofthestatesρ1 =|1(cid:105)(cid:104)1|andρ2 =|2(cid:105)(cid:104)2| ∂tσn(t)=− iLe+ nmγ σn(t) (3) aesquaatfiuonnctoiofnmooftitoimnemfoodreal.twToh-esittreacsyes(cid:64)dteism(cid:68)tan(dciemeevro)livnesthferohmiermaracxhiy- m=1 mallydistinguishable(=1)fortheinitialstatestoindistinguishable N N (cid:88) (cid:88) (= 0)forthethermalequilibriumstate. Atintermediatetimes, the + φ σnm+1(t)+ n θ σnm−1(t). m m m trace distance increases, which is due to a reversal of the informa- m=1 m=1 tion flow. Various bath correlation times are shown, 150 fs (blue), The system density matrix is the first member of the hierar- 100fs(red),and50fs(yellow). Forlongcorrelationtimes,thatis, chy ρ(t) = σ0(t). The other members of the hierarchy are a bath with more memory, the regions of increasing trace distance arranged in tiers and indexed by n = (n1,.....,nN) ≥ 0, aremorepronounced. (b)TheADOdistanceDAtoDtO illustratesthe where a single tier is given by all elements where (cid:80) n informationcontentinthenon-Markoviandegreesoffreedomofthis m m modelforthesamesystem,initialstates,andbathcorrelationtimes is constant. The notation n = (n ...,n ±1,...,n ) m±1 1, m N as in (a). The anticorrelated oscillations of the two figures clearly is introduced. The superoperators in the high temperature showtheinformationflowbetweenthesystemandtheNMdegrees regime (cid:126)γβ < 1 are φ σn = i[V ,σn] and θ σn = i(cid:0)2λ/β(cid:126)2[V ,σn]−iλγm/(cid:126){V ,σn}(cid:1)mand act onmsystem offreedom. m m andADOs,where{,}istheanticommutator. Initially,allthe hierarchy members are zero, which corresponds to the elec- describeperturbationsonthetime-evolvedexcitonicstatedue tronicgroundstatephononequilibriumconfiguration.Fornu- to the phonon environment. This separation into system and merical propagation, the hierarchy is truncated based on the auxiliary degrees of freedom implies a quantification of the criterion (cid:80)mnm (cid:29) ωγe, where ωe is a characteristic fre- information content of the auxiliary systems at a given point quencyofL . Weassumethatthisconditionissatisfiedwhen intime: e theT(cid:80)hemrnepmreissebnytaatiofanctoorf5tlhaergehriethraarnchωγye.equation of mo- DAtoDtO(t)= (cid:88)D(σ˜n1 (t),σ˜n2 (t)). (4) tion in Eq. (3) is not unique. It can be advan- n(cid:54)=0 tageous to expand the hierarchy in a set of normal- Thismeasuredependsontheelectronicinitialstatesand,im- ized auxiliary systems [16]. Redefining the ADOs as portantly, uses the normalized ADOs. Although the σ˜n(t) σ˜n(t) = ((cid:81)mnm|c0|−nm)−1/2σn(t) and rescaling the are not quantum states for n (cid:54)= 0, the trace distance never- superoperators as φmσnm+1 = (cid:112)(nm+1)|c0|φmσ˜nm+1 theless measures differences of these operators arising from and nmθmσnm−1 = (cid:112)nm/|c0|θmσ˜nm−1, with c0 = thedifferentinitialstates. Thismeasurecouldinprinciplebe (cid:0)2λ/β(cid:126)2−iλγ/(cid:126)(cid:1) in the high temperature regime, leads to extended to other families of master equations that employ amorebalancedEOMandcanleadtoalowerrequirementin auxiliarydegreesoffreedom. termsofthenumberofADOs. Therescaledrepresentationis Results for a dimer− In this section, a two-molecule sys- usefulforsimulatinglargesystemssuchastheFMOcomplex tem, or dimer, is studied in terms of the measure for non- andforstudyingtheADOsthemselves,asfollows. Markovianity, using, if not otherwise mentioned, the regu- Tocharacterizetheinformationflowfromthepointofview lar hierarchy equation of motion approach Eq. (3) and scan- ofthenon-Markoviandegreesoffreedom,weproposeanother ning over the parameters of the model. As standard pa- measure based on the trace distance. The auxiliary systems rameters, we use the site energies (cid:15) = 0, (cid:15) = 120/cm, 1 2 3 astnrdontghley-ccoouupplliendgbJact=erio−c8h7lo.7ro/pcmhy.llTshiitse c1oarrnedsp2onsudbsstyosttehme vianity 000...233505 a 0.15 b of the Fenna-Matthews-Olson complex. Along the lines of ko 0.20 0.10 ar 0.15 the discussion in [12], the standard bath correlation time is M 0.10 (cid:76) 0.05 taken from 50 fs to 150 fs. We assume ambient temperature n(cid:45) 0.05 (cid:76) No 0.00 0.00 T = 288 K (200/cm). The main results use 40 tiers (819 20 40 60 80100120140 0 50 100150200250300 ADOs),andEq. (3)isintegrateduptomaximally20ps. Coupling 1cm Siteenergydifference 1cm First, in Fig. 1 (a), we investigate the time evolution of y the trace distance in Eq. (1) for the dimer system at reor- nit 0.6 c 0.20 d ganization energy λ = 20/cm. We choose the two initial via 0.5 (cid:64) (cid:144) (cid:68) 0.15 (cid:64) (cid:144) (cid:68) o 0.4 k statesρ1 = |1(cid:105)(cid:104)1|andρ2 = |2(cid:105)(cid:104)2|andthestandardparame- Mar 00..23 (cid:76) 0.10 (cid:76) tersgivenabove,whilevaryingthebathdissipationrate. One n(cid:45) 0.1 0.05 can see clear non-Markovian revivals in the time intervals at No 0.0 0.00 20 40 60 80 100120140 0.1 1 10 100 around 150 fs and around 300 fs, borne out by increases in the trace distance. For larger correlation time of the bath of Bathdissipationrate 1cm Reorganizationenergy 1cm cdrτeiictlsaIas=nttiiipooFa1nnitg5eit.0dsim1mfasew(obtτarh)eyc,ewls=rieakepe5riieln0dyvvlfityevso,s.atarlisesgtaauotrrceenctumhtoreostrthiienmeptserhyoeesnvtcoeoamulsuneticinooesdnft.esoamAfdathobllefaetbrAhecDieonxOrg-- NonMarkovianity(cid:45) 00000.....02468(cid:42)e(cid:42)(cid:76)(cid:42)(cid:42)F(cid:42)M(cid:42)(cid:42)O(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:64)(cid:42)(cid:42)(cid:144)(cid:42)(cid:42)(cid:42)(cid:42)(cid:68) 000000......001122050505(cid:42)(cid:42)(cid:42)f(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:76)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)F(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)M(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)O(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:64)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:144)(cid:42)(cid:42)(cid:42)(cid:42)(cid:68) distance measure in Eq. (4) for the same system, using the 20 40 60 80 100120140 0 20 40 60 80 100120 normalizedauxiliarysystems. Atsmalltimes, theADOsare Bathdissipationrate 1cm Reorganizationenergy 1cm all zero, thus Dtot = 0, while at long times the system ADO andADOsconvergetothethermalequilibriumandallinfor- FIG.2. Non-Markovianityasafunctionoftheparametersofadimer mation about the initial states is dissipated. At intermediate system,a)-d),andtheFenn(cid:64)a(cid:144)-Ma(cid:68)tthews-Olsoncomplex,e)and(cid:64) f(cid:144)),i(cid:68)n times,onefindsstronginformationflowbetweensystemand thehierarchyequationofmotionapproach. Forthedimer: a)cou- thenon-Markoviandegreesoffreedom,whichisborneoutby plingJ12,b)siteenergydifference(cid:15)2−(cid:15)1,c)bathdissipationrate γ(whichisrelatedtothebathcorrelationtimebyγ =1/τ ,)andd) theanticorrelatedoscillationsin(a)and(b),respectively. For c reorganizationenergyλ. Thesolidlinesarecalculationsperformed this, notethe dips at around 150 fs and around 300 fs in (b). withtheinitialstatesbeingρ = |1(cid:105)(cid:104)1|andρ = |2(cid:105)(cid:104)2|whilethe Additionally,theinformationcontentintheADOsissmaller 1 2 dots are calculations performed with optimized initial states. The whenthebathdissipationrateislarger. dashedpartofthelinesindicatesthataparameterwasscannedbe- The computation of the non-Markovianity measure in Eq. yondthevalidityoftheequationbasedonthetruncationcondition. (2) involves an optimization of the initial states. On the one FortheFMOcomplex:e)bathdissipationrateandf)reorganization hand, the following results use the two initial states ρ = energy. Inallfigures,exceptinc)ande),weusethedifferentbath 1 |1(cid:105)(cid:104)1| and ρ = |2(cid:105)(cid:104)2| as above, but one the other hand, correlationtimes:50fs(blue),100fs(purple),and150fs(red). 2 compare to a systematically-optimized pair of initial states. Oneinitialstateischosenoutof50purestatesontheBloch sphere.Thisleadstoatotalnumberof1225independentpairs sure as a function of the inverse bath correlation time, i.e. ofstatesintheoptimization. (Thestateoptimizationitselfis the bath dissipation rate. A longer τ leads to more non- c performedwith20tiersofADOs.) Markovianity, because a sluggish bath keeps the memory of We now proceed to scan the NM-ity measure over the pa- excitations much longer and the information is able to re- rameters of the model, beginning with the system parame- turn back to the electronic degrees of freedom. Second, the ters,thesiteenergydifferenceandthechromophoriccoupling. othersignificantbathparameter,thereorganizationenergy,is First, theNM-ityisstronglydependentonthechromophoric ameasureofthenon-equilibriumcharacterofthephononbath coupling,seeFig. 2(a). Atzerocoupling,themoleculesare intheexcitedstate. InFig. 2(d), weshowtheNMmeasure independentandtheNM-ityiszero; thetwoinitialstatesre- as a function of the reorganization energy. At zero λ, which mainperfectlydistinguishable. Atnon-zerocoupling,thedy- essentiallymeansnocouplingtothephonons,theunitarydy- namicsshowsincreasingNMrevivals,whilebothinitialstates namicsobviouslyshowszeronon-Markovianity. Atweakλ, convergetothesamethermalequilibriumstate. Second,with we observe a NM-ity of around 0.1 at t = 150 fs, which is c respect to the site energy difference, the dependence of the completelyneglectedbyRedfieldtheory.Atintermediateλof NM-ity weakly slopes downward, see Fig 2 (b). As the en- around40/cm,closetothephysiologicalvaluesoftheFenna- ergy difference increases the coupling becomes less signifi- Matthews-Olson complex, the NM-ity is maximal, showing cantandthemoleculesbecomemoreindependent. Thisleads a value of around 0.2. At large λ, the regime of incoherent todecreasedNM-ity. transport[12],theNM-ityvanishes. Next,weinvestigatetheroleofthebathparameters. First, Results for the Fenna-Matthews-Olson complex− We now as mentioned before, the bath correlation time crucially af- investigatetheexciton-phononinformationflowintheFenna- fects the memory of the bath and the information back flow Matthews-Olson complex. The FMO complex is found in to the system. In Fig. 2 (c), we show the NM-ity mea- greensulphurbacteria,whereitconnectstheantennacomplex 4 with the reaction center during the energy transfer process. [13,14],canleadtoagreaterunderstandingoftheexcitondy- TheFMOcomplexisatrimerwithsevenbacteriochlorophyll namics in these systems. In principle, the recently proposed (BChl) molecules in each subunit and with one additional ultrafastquantumprocesstomographyprotocolextractsafull BChl molecule shared between the units. We implement the characterization of the quantum map [18], and could thus be hierarchy equation of motion for the seven sites (N = 7), usedfortheexperimentalsideofthistask. However, experi- using the method for rescaling the auxilliary systems as dis- mentsspecificallydesignedtoextractaparticularobservable, cussed above and in [16]. As was shown recently [17], with suchasinourcasetheNM-itymeasure,couldbecarriedout fourtiers(329ADOs)thecoherentpopulationdynamicscan withareducednumberofexperimentalrequirements. Future be accurately simulated, but due to the reduced number of workwillinvestigateanalyticallyandnumericallyhowtoeffi- ADOs,weexpecttominimallyoverestimatetheNM-ity. We cientlyextractthenon-Markovianityfromthephase-matched use the initial states ρ = |1(cid:105)(cid:104)1| and ρ = |2(cid:105)(cid:104)2|. First, the signalobservedinfour-wavemixingexperiments. 1 2 scan of γ obtains a strong dependence similar to the dimer To summarize, we have shown numerically that there is a system,seeFig. 2(e). Second,thescanofthereorganization considerable non-Markovian information flow between elec- energy obtains a maximum at around λ = 55/cm with the tronic and phononic degrees of freedom of light-harvesting NM-ity being 0.2 at λ = 35/cm and τ = 150 fs, see Fig. chromophoricsystemsunderphysiologicalconditions,utiliz- c 2 (f). The results suggest that non-Markovian effects should ingarealisticmodelforsystemssuchastheFenna-Matthews- playasignificantroleinthefunctionoftheFenna-Matthews- Olson complex. The results suggest that non-Markovianity Olsoncomplex. playsasignificantroleinphotosyntheticenergytransfer. The authors are grateful to J. Piilo, C. Rodriguez-Rosario, Conclusion− The theoretical and experimental characteri- S. Saikin, and J. Zhu for insightful discussions. The authors zation of photosynthetic light-harvesting complexes in terms acknowledgefundingfromDOE,DARPA,andcomputational of non-Markovianity, as e.g. defined in the recent work resourcesthroughHarvardResearchComputing. [1] R. E. Blankenship, Molecular Mechanisms of Photosynthesis, ChemicalPhysicsLetters478,234(2009). 1sted.(Wiley-Blackwell,2002)p.336. [10] J.Prior,A.Chin,S.Huelga, andM.Plenio,PhysicalReview [2] Y.-C. Cheng and G. R. Fleming, Annual Review of Physical Letters105,1(2010). Chemistry60,241(2009). [11] A.IshizakiandG.R.Fleming,TheJournalofChemicalPhysics [3] G.S.Engel,T.R.Calhoun,E.L.Read,T.-K.Ahn,T.Mancal, 130,234110(2009). Y.-C. Cheng, R. E. Blankenship, and G. R. Fleming, Nature [12] A.IshizakiandG.R.Fleming,TheJournalofChemicalPhysics 446,782(2007);H.Lee,Y.-C.Cheng, andG.R.Fleming,Sci- 130,234111(2009); ProceedingsoftheNationalAcademyof ence316,1462(2007); G.Panitchayangkoon,D.Hayes,K.A. SciencesoftheUnitedStatesofAmerica106,17255(2009). Fransted,J.R.Caram,E.Harel,J.Wen,R.E.Blankenship, and [13] H.-P.Breuer,E.-M.Laine, andJ.Piilo,PhysicalReviewLetters G.S.Engel,ProceedingsoftheNationalAcademyofSciences 103,1(2009). oftheUnitedStatesofAmerica107,1(2010);E.Collini,C.Y. [14] M. Wolf, J. Eisert, T. Cubitt, and J. Cirac, Physical Review Wong,K.E.Wilk,P.M.G.Curmi,P.Brumer, andG.D.Sc- Letters 101, 1 (2008); A. K. Rajagopal, A. R. U. Devi, and holes,Nature463,644(2010). R. W. Rendell, http://arxiv.org/abs/1007.4498 (2010); A. Ri- [4] S.Jang, Y.-C.Cheng, D.R.Reichman, andJ.D.Eaves,The vas,S.Huelga, andM.Plenio,PhysicalReviewLetters105,1 JournalofChemicalPhysics129,101104(2008). (2010). [5] J.Roden,A.Eisfeld,W.Wolff, andW.Strunz,PhysicalReview [15] M. A. Nielsen and I. L. Chuang, Quantum Computation and Letters103,3(2009). Quantum Information, 1st ed. (Cambridge University Press, [6] J. Wu, F. Liu, Y. Shen, J. Cao, and R. J. Silbey, 2000). http://arxiv.org/abs/1008.2236 (2010). [16] Q.Shi,L.Chen,G.Nan,R.-X.Xu, andY.Yan,TheJournalof [7] J. Piilo, S. Maniscalco, K. Ha¨rko¨nen, and K.-A. Suominen, ChemicalPhysics130,084105(2009). PhysicalReviewLetters100,1(2008). [17] J.Zhu,S.Kais,P.Rebentrost, andA.Aspuru-Guzik,Journal [8] P.Rebentrost,R.Chakraborty, andA.Aspuru-Guzik,TheJour- ofPhysicalChemistryB(inpress) (2010). nalofChemicalPhysics131,184102(2009). [18] J. Yuen-Zhou, M. Mohseni, and A. Aspuru-Guzik, [9] M. Thorwart, J. Eckel, J. Reina, P. Nalbach, and S. Weiss, http://arxiv.org/abs/1006.4866 (2010).