ebook img

Examples of renormalized SDEs PDF

0.15 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Examples of renormalized SDEs

Examples of renormalized SDEs 7 Y. Bruned, I. Chevyrev, and P. K. Friz 1 0 2 January 6, 2017 n a J Abstract 4 We demonstrate two examples of stochastic processes whose lifts to ] geometricroughpathsrequirearenormalisationproceduretoobtaincon- R vergence in rough path topologies. Our first example involves a physical P Brownian motion subject to a magnetic force which dominates over the . frictionforcesinthesmallmasslimit. Oursecondexampleinvolvesalead- h lag process of discretised fractional Brownian motion with Hurst param- t a eter H ∈ (1/4,1/2), in which the stochastic area captures the quadratic m variationoftheprocess. Inbothexamples,arenormalisationofthesecond [ iterated integralisneededtoensureconvergenceoftheprocesses, andwe comment on how this procedure mimics negative renormalisation arising 1 in thestudy of singular SPDEs and regularity structures. v 8 5 1 Introduction 1 1 0 Inrecentyears,the theoryofregularitystructures[7]hasbeenproposedtogive . meaning to a wide class of singular SPDEs. A central feature of the theory is 1 0 the notionofrenormalisation,specifically “negativerenormalisation”[2], which 7 is required to obtain convergence of random models to a meaningful limit. It 1 is well-knownthat this procedure is inherit to the problem since naive approxi- : v mations of such equations typically fail to converge (with a number of notable i exceptions, including a special variant of gKPZ [8]). The same feature thus X naturally appears in other solution theories which have been proposed to solve r suchequations,includingthetheoriesofparacontrolleddistributions[6]andthe a Wilsonian renormalisationgroup [9]. Viewingregularitystructuresasamultidimensionalgeneralisationofthethe- oryof roughpaths [10], it is naturalto askhow renormalisationmanifests itself inthe latter. As solutiontheoriesto singularS(P)DEs, bothsharethe common feature that one must give meaning to often analytically ill-posed higher order terms(iteratedintegrals)ofdistributions,whichistypicallydonethroughsome stochastic means. However, a key difference in applications of rough paths to SDEs and rough SPDEs [5] is that one can usually give meaning to such terms as limits of iterated integralsof mollifications of the irregularnoise without the need of renormalisation. 1 The purpose of this note is to demonstrate situations in roughpaths theory whichfalloutsidethisusualsettingandforwhichrenormalisationisanecessary feature. Specifically, we construct two stochastic processes whose lifts to geo- metric rough paths fail to converge without a renormalisation procedure akin to the one encountered in the theory of regularity structures. The first is a physical Brownian motion subject to a magnetic force which dominates over the friction forces in the small mass limit. This example builds onthe work[4],where a similarsituationwasconsideringwith a constantmag- netic field. The second is a lead-lag process of a discretized path, which we take to be fractional Brownian motion with Hurst parameter H ∈ (1/4,1/2]. The stochastic area of this lead-lag process captures the quadratic variation of the discretized path, and thus, as one can expect, the second iterated integral fails toconvergeasthemeshofthediscretisationgoestozero(unlessH =1/2). This exampleismotivatedfromasimilarHoffprocessconsideredforsemi-martinagles in [3]. In both examples we demonstrate an explicit renormalisation procedure of the second iterated integral under which the processes converge in rough path topologies. These(diverging)counter-termsservepreciselythesamere-centring role encountered in regularity structures (for a direct comparison, consider the renormalisation of PAM [7, 6] where only one diverging term needs to be con- sidered). In turn, rough differential equations driven by the renormalised and unrenormalisedroughpathsarerelatedtooneanotherbytheadditionofdiverg- ingterms,whichagainmimicsthesituationencounteredinsingularSPDEs. We refer to the upcoming work [1] for a much more detailed study of this relation. Acknowledgements. P.K.F. is partially supported by the European Re- search Council through CoG-683166 and DFG research unit FOR2402. I.C., affiliated to TU Berlin when this project was commenced, was supported by DFG researchunit FOR2402. 2 Magnetic field blow-up Consider a physical Brownian motion in a magnetic field with dynamics given by mx¨=−Ax˙ +Bx˙ +ξ, x(t)∈Rd, where A is a symmetric matrix with strictly positive spectrum (representing friction), B is an anti-symmetric matrix (representing the Lorentz force due to a magnetic field), and ξ is an Rd-valued white noise in time. We shall consider the situation that A is constant whereas B is a function of the mass m. We rewrite these dynamics as 1 dX = P dt, X =0, t t 0 m 1 dP =− MP dt+dW , P =0, t t t 0 m 2 where M = A−B, and we have chosen the starting point as zero simply for convenience. Wefurthermoreintroducetheparameterε2 =mandwriteXε,Pε, t t and Mε =A−Bε to denote the dependence on ε. WeareinterestedintheconvergenceoftheprocessesPε andMεXεinrough path topologies. Let G2(Rd) and g2(Rd) denote the step-2 free nilpotent Lie groupandLiealgebrarespectively. Letusalsowriteg2(Rd)=Rd⊕g(2)(Rd)for the decomposition of g2(Rd) into the first and second levels, where we identify g(2)(Rd) with the space of anti-symmetric d×d matrices. For every ε>0, define the matrix ∞ Cε = e−Mεse−(Mε)∗sds, Z0 and the element 1 vε =− (MεCε−Cε(Mε)∗)∈g(2)(Rd). 2 For any v ∈ g(2)(Rd), p ∈ [1,3), and p-rough path (Z ,Z ) ∈ G2(Rd) s,t s,t (where we ignore zeroth component 1), we define the translated rough path T (Z ,Z ) by v s,t s,t T (Z ,Z )=(Z ,Z +(t−s)vε). (1) v s,t s,t s,t s,t Consider the G2(Rd)-valued processes t (Pε ,Pε )= Pε , Pε ⊗◦dPε , s,t s,t s,t s,r r (cid:18) Zs (cid:19) t (Zε ,Zε )= MεXε , MεX ⊗d(MεXε) , s,t s,t s,t s,r r (cid:18) Zs (cid:19) and the canonical lift of the Brownianmotion W t (W ,W )= W , W ⊗◦dW , s,t s,t s,t s,r r (cid:18) Zs (cid:19) where the integrals in the definition of Pε and W are in the Stratonovich s,t s,t sense. The following propositionestablishes the convergenceof the “renormalised” paths Tvε(Psε,t,Pεs,t) and Tvε(Zsε,t,Zεs,t). Theorem 1. Suppose that lim|Mε|εκ =0 for some κ∈[0,1]. (2) ε→0 Thenforanyα∈[0,1/2−κ/4)andq <∞,itholdsthatTvε(Pε,Pε)→(0,0)and Tvε(Zε,Zε) → (W,W) in Lq and α-Ho¨lder topology as ε → 0. More precisely, as ε→0, in Lq |Pε | |Pε +(t−s)vε| sup s,t + sup s,t →0. |t−s|α |t−s|2α s,t∈[0,T] s,t∈[0,T] 3 and |Zε −W | |Zε +(t−s)vε−W | s,t s,t s,t s,t sup + sup →0. |t−s|α |t−s|2α s,t∈[0,T] s,t∈[0,T] The restofthe sectionis devotedtothe proofofTheorem1whichbuildson the proof of [4] Theorem 1. We set Yε =Pε/ε and obtain that dYε =−ε2MεYεdt+ε−1dW t t t dXε =ε−1Yεdt. t t For fixed ε, we introduce the Brownian motion W˜·ε =εWε−2· and consider dY˜ε =−MεY˜εdt+dW˜ε. t t t Observe that we have the pathwise equalities Yε =Y˜ε , (3) · ε−2· and since Yε =0, we have 0 t Y˜ε = e−Mε(t−s)dW˜ε. (4) t s Z0 The dependence of Mε on ε is, by construction, only though Bε, the anti- symmetricpartofMε. Inparticular,sincethesymmetricpartAstaysconstant andhasstrictlypositivespectrum,itfollowsthatforsomeλ>0,Re(σ(Mε))⊂ (λ,∞) for all ε>0. In particular, |e−τMε| supsup <∞. (5) e−λτ τ>0ε>0 We see then that sup|Cε|<∞ ε>0 and sup sup E |Y˜ε|2 <∞. (6) t ε>00≤t<∞ h i Lemma 2. There exists C >0 such that for all ε∈(0,1] and s,t∈[0,T] 1 E Yε 2 1/2 ≤C min{ε−1|t−s|1/2,1} s,t 1 h(cid:12) (cid:12) i and (cid:12) (cid:12) t 2 1/2 E Yε⊗Yεdr−(t−s)Cε ≤C min{ε|t−s|1/2,|t−s|}. r r 1 "(cid:12)Zs (cid:12) # (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) 4 Proof. The first inequality is clear from (3), (4) and (6). For the second, from (4), we see that for every r>0, Y˜ε has distribution N(0,Cε) where r r r r Cε = e−Mε(r−u)e−(Mε)∗(r−u)du= e−Mεue−(Mε)∗udu. r Z0 Z0 Hence Yrε =Y˜ε−2r has distribution N(0,Cεε−2r). Thus t t t ε−2r E Yε⊗Yεdr = Cε dr = e−Mεue−(Mε)∗ududr =:µε . r r ε−2r s,t (cid:20)Zs (cid:21) Zs Zs Z0 Observe that from (5) t ∞ |µε −(t−s)Cε|≤ |e−Mεue−(Mε)∗u|dudr s,t Zs Zε−2r t ∞ ≤C e−2λududr 2 Zs Zε−2r t ≤C e−2λε−2rdr 3 Zs ≤C min{ε2,|t−s|} 4 ≤C min{ε|t−s|1/2,|t−s|}. 4 We now claim that t 2 E Yε⊗Yεdr−µε ≤C min{ε2|t−s|,|t−s|2}, r r s,t 5 "(cid:12)Zs (cid:12) # (cid:12) (cid:12) (cid:12) (cid:12) from which the(cid:12) conclusion follows. I(cid:12)ndeed, by Fubini and Wick’s formula t 2 E Yε,iYε,jdr = E Yε,iYε,jYε,iYε,j drdu r r r r u u "(cid:18)Zs (cid:19) # Z[s,t]2 (cid:2) (cid:3) = E Yε,iYε,j E Yε,iYε,j drdu r r u u Z[s,t]2 (cid:2) (cid:3) (cid:2) (cid:3) + E Yε,iYε,i E Yε,jYε,j drdu r u r u Z[s,t]2 (cid:2) (cid:3) (cid:2) (cid:3) + E Yε,iYε,j E Yε,jYε,i drdu r u r u Z[s,t]2 (cid:2) (cid:3) (cid:2) (cid:3) ≤(µε )2 +4 |E[Yε⊗Yε]|21{r≤u}drdu. i,j s,t u r Z[s,t]2 Observe that for r ≤u E[Yε |Yε]=e−ε−2Mε(u−r)Yε. u r r 5 and so |E[Yε⊗Yε]|21{r≤u}≤C e−ε−22λ(u−r)|Cε |≤C e−ε−22λ(u−r). u r 6 ε−2r 7 Thus t 2 t 2 E Yε,iYε,jdr−(µε ) =E Yε,iYε,jdr −(µε )2 r r i,j s,t r r i,j s,t "(cid:18)Zs (cid:19) # "(cid:18)Zs (cid:19) # t t ≤C e−ε−22λ(u−r)dudr 8 Zs Zr ≤C min{ε2|t−s|,|t−s|2} 9 as claimed. Lemma 3. There exists C >0 such that for all ε∈(0,1] and s,t∈[0,T] 10 Pε ≤C min{ε,|t−s|1/2} s,t L2 10 and (cid:12)(cid:12) (cid:12)(cid:12) (cid:12)(cid:12) (cid:12)(cid:12) Pε +(t−s)vε ≤C |Mε|min{ε|t−s|1/2,|t−s|} s,t L2 10 Proof. The (cid:12)fi(cid:12)rst inequality i(cid:12)s(cid:12)immediate from Lemma 2. For the second, we (cid:12)(cid:12) (cid:12)(cid:12) have t Pε =ε2 Yε ⊗◦dYε s,t s,r r Zs t t 1 =− Yε ⊗MεYεdr+ε Yε ⊗dW + (t−s)I. s,r r s,r r 2 Zs Zs Since Yε ⊗MεYε = (Yε ⊗Yε)(Mε)∗ and we can directly verify that vε = s,r r s,r r Cε(Mε)∗− 1I, we have 2 t t Pε +(t−s)vε =− Yε ⊗Yεdr−(t−s)Cε (Mε)∗+ε Yε ⊗dW . s,t s,r r s,r r (cid:18)Zs (cid:19) Zs From Lemma 2, we see that t ε Yε ⊗dW ≤C min{ε|t−s|1/2,|t−s|}. s,r r 11 (cid:12)(cid:12) Zs (cid:12)(cid:12)L2 (cid:12)(cid:12) (cid:12)(cid:12) Furthermore,(cid:12)b(cid:12)y Fubini and W(cid:12)ic(cid:12)k’s formula, we can readily show (cid:12)(cid:12) (cid:12)(cid:12) t Yε⊗Yεdr ≤C min{ε|t−s|1/2,|t−s|}. s r 12 (cid:12)(cid:12)Zs (cid:12)(cid:12)L2 (cid:12)(cid:12) (cid:12)(cid:12) It now follows(cid:12)f(cid:12)rom Lemma 2(cid:12)t(cid:12)hat (cid:12)(cid:12) (cid:12)(cid:12) Pε +(t−s)vε ≤C |Mε|min{ε|t−s|1/2,|t−s|}. s,t L2 13 (cid:12)(cid:12) (cid:12)(cid:12) (cid:12)(cid:12) (cid:12)(cid:12) 6 Lemma 4. There exists C >0 such that for all ε∈(0,1] and s,t∈[0,T] 14 E |Zε −W |2 1/2 ≤C min{ε,|t−s|1/2} s,t s,t 14 and (cid:2) (cid:3) E Zε +(t−s)vε−W 2 1/2 ≤C |Mε|min{ε|t−s|1/2,|t−s|}. s,t s,t 14 h(cid:12) (cid:12) i Proof. T(cid:12)he first inequality follow(cid:12)s from Zε = W −εYε and Lemma 2. For s,t s,t s,t the second, we have t t t Zε ⊗dZε = Zε ⊗dW −ε Zε⊗dYε−Zε⊗Yε s,r r s,r r r r s s,t Zs Zs (cid:18)Zs (cid:19) t t = Zε ⊗dW −ε Zε⊗Yε− dZ ⊗Yε−Zε⊗Yε s,r r t t r r s t Zs (cid:18) Zs (cid:19) t t = Zε ⊗dW −εZε ⊗Yε+ MεYε⊗Yεdr. s,r r s,t t r r Zs Zs We see that t t 2 Zε ⊗dW − W ⊗dW ≤C min{ε2|t−s|,|t−s|2}. s,r r s,r r 15 (cid:12)(cid:12)Zs Zs (cid:12)(cid:12)L2 (cid:12)(cid:12) (cid:12)(cid:12) Furth(cid:12)e(cid:12)rmore, by Fubini and Wick’s form(cid:12)(cid:12)ula, we can readily show (cid:12)(cid:12) (cid:12)(cid:12) t 2 εZε ⊗Yε 2 = MεYε⊗Yεdr ≤C |Mε|min{ε2|t−s|,|t−s|2}. s,t t L2 r t 16 (cid:12)(cid:12)Zs (cid:12)(cid:12)L2 (cid:12)(cid:12) (cid:12)(cid:12) (cid:12)(cid:12) (cid:12)(cid:12) F(cid:12)i(cid:12)nally, by Le(cid:12)m(cid:12) ma 2(cid:12)(cid:12) (cid:12)(cid:12) (cid:12)(cid:12) (cid:12)(cid:12) t MεYε⊗Yεdr−(t−s)MεCε| ≤C |Mε|min{ε|t−s|1/2,|t−s|}. r r 17 (cid:12)(cid:12)Zs (cid:12)(cid:12)L2 (cid:12)(cid:12) (cid:12)(cid:12) It(cid:12)f(cid:12)ollows that (cid:12)(cid:12) (cid:12)(cid:12) (cid:12)(cid:12) 1 Zε −W −(t−s)(MεCε− I) ≤C |Mε|min{ε|t−s|1/2,|t−s|}. s,r s,t 2 18 (cid:12)(cid:12) (cid:12)(cid:12)L2 (cid:12)(cid:12) (cid:12)(cid:12) W(cid:12)(cid:12)e(cid:12)(cid:12)candirectlyverifyvε =−MεCε+1(cid:12)(cid:12)(cid:12)(cid:12)I,fromwhichtheconclusionfollows. 2 Proof of Theorem 1. Observe that condition (2) implies that lim|Mε|ε=0. ε→0 FromLemmas3and4,alongwithGaussianchaos,wethusobtainthepointwise convergence as ε→0 for any q <∞ and s,t∈[0,T] in Lq |Pε |+|Pε +(t−s)vε|1/2 →0 s,t s,t 7 and |Zε −W |+|Zε +(t−s)vε−W |1/2 →0. s,t s,t s,t s,t Furthermore, since min{ε|t−s|1/2,|t−s|} ≤ εκ|t−s|1−κ/2 for all κ ∈ [0,1], condition (2), Lemmas 3 and 4, and Gaussian chaos imply that for any q <∞ there exists C >0 such that for all s,t∈[0,T] and q sup E |Pε |q ≤C |t−s|q/2, s,t q ε∈(0,1] (cid:2) (cid:3) sup E |Zε −W |q ≤C |t−s|q/2 s,t s,t q ε∈(0,1] (cid:2) (cid:3) and sup E |Pε +(t−s)vε|q ≤C |t−s|q(1−κ/2), s,t q ε∈(0,1] (cid:2) (cid:3) sup E |Zε +(t−s)vε−W |q ≤C |t−s|q(1−κ/2). s,t s,t q ε∈(0,1] (cid:2) (cid:3) Applying Theorem A.13 of [5] completes the proof. 3 Rough lead-lag process Consider a path X :[0,1]7→Rd. Let n ≥1 be an integer and write for brevity Xn =X . Consider the piecewise linear path X˜n :[0,1]7→R2d defined by i i/n X˜n =(Xn,Xn), 2i/2n i i X˜n =(Xn,Xn ), (2i+1)/2n i i+1 and linear on the intervals 2i,2i+1 and 2i+1,2i+2 for all i = 0,...,n−1. 2n 2n 2n 2n Note that this is a variant of the Hoff process considered in [3]. Denote by X˜n = exp(X˜(cid:2)n +An(cid:3)) the(cid:2)level-2 lift(cid:3)of X˜n, where An is the s,t s,t s,t s,t (2d)×(2d) anti-symmetric L´evy area matrix given by 1 t t An = X˜n ⊗dX˜n− X˜n ⊗dX˜n . s,t 2 s,r r s,r r (cid:18)Zs Zs (cid:19) Let H ∈ (0,1) and consider a fractional Brownian motion BH with covari- ance R(s,t) = 1(t2H +s2H −|t−s|2H). Let X : [0,1]7→ Rd be d independent 2 copies of BH. Recallthe definition of T from(1). We areinterestedin the convergencein v roughpathtopologiesofTv˜n(X˜n)wherev˜n ∈g(2)(R2d)isappropriatelychosen. Define the (diagonal) d×d matrix 1 n−1 n1−2H vn = E (Xn −Xn)⊗(Xn −Xn) = I, 2 k+1 k k+1 k 2 " # k=0 X 8 and the anti-symmetric (2d)×(2d) matrix 0 −vn v˜n = ∈g(2)(R2d). vn 0 (cid:18) (cid:19) Finally, consider the path X˜ = (X,X) : [0,1] 7→ R2d, its canonically defined L´evyareaA(whichexistsfor1/4<H ≤1),anditslevel-2liftX˜ =exp(X˜+A). The following is the main result of this subsection. Theorem 5. Suppose 1/4 < H ≤ 1/2. Then for all α ∈ [0,H) and q < ∞, it holds that Tv˜n(X˜n) → X˜ in Lq and α-Ho¨lder topology. More precisely, as n→∞, in Lq |X˜n −X˜ | |An +(t−s)v˜n−A | s,t s,t s,t s,t sup + sup →0. |t−s|α |t−s|2α s,t∈[0,T] s,t∈[0,T] The rest of the section is devoted to the proof of Theorem 5. We first state two lemmas which are purely deterministic. Let Yn : [0,1] 7→ Rd be the piecewise linear interpolation of X over the partition 0, 1,...,n−1,1 , let Y˜n =(Yn,Yn):[0,1]7→R2d, andlet Yn be the n n L´evy area of Y˜n. (cid:0) (cid:1) Lemma 6. Let s∈[m,m+1] and t∈[k,k+1] with s<t, and define n n n n m+1 ∆ =n ∧t−s |Xn −Xn|, 1 n m+1 m (cid:18) (cid:19) ∆ =|Xn−Xn | if k >m, 0 if k =m 2 k m+1 k ∆ =n t− ∨s |Xn −Xn|. 3 n k+1 k (cid:18) (cid:19) There exists a constant C > 0 such that for all n ≥ 1 and 0 ≤ s < t ≤ 1, it 1 holds that |X˜n −Y˜n|≤C (∆ +∆ ). s,t s,t 1 1 3 and, if k >m, |An −An | and |Yn −Yn | are bounded above by s,t mn+1,nk s,t mn+1,nk C ∆2+(∆ +∆ +∆ )∆ +∆ ∆ . 1 1 1 2 3 3 1 2 (cid:0) (cid:1) Proof. Direct calculation and triangle inequality. The second part of the above lemma essentially allows us to work over the partition 0, 1,...,n−1,1 , on which computations are easier. n n Lemma 7(cid:0). Suppose 0≤m(cid:1) ≤k ≤n. 1) For all pairs 1≤i,j ≤d and d+1≤i,j ≤2d i,j i,j An = Yn . mn,nk mn,nk (cid:16) (cid:17) (cid:16) (cid:17) 9 2) For all 1≤i≤d<j ≤2d k−1 i,j i,j 1 An = Yn − (Xn,i −Xn,i)(Xn,j −Xn,j) mn,nk mn,nk 2 r+1 r r+1 r (cid:16) (cid:17) (cid:16) (cid:17) rX=m Proof. DenoteX˜n =(Mn,Nn),sothatMnisthelagcomponent,andNnisthe lead. ThefirstequalityisclearsinceMn andNn aresimplyreparametrisations of Yn over the interval [m, k]. For the second, observe that n n k/n k−1 Mn,i dNn,j = (Xn,i−Xn,i)(Xn,j −Xn,j) m/n,r r r m r+1 r Zm/n r=m X and k/n k−1 Nn,j dMn,i = (Xn,j −Xn,j)(Xn,i −Xn,i). m/n,r r r+1 m r+1 r Zm/n r=m X Remark now that the signature of Yn over [m, k] is n n eXm+1−Xm...eXk−Xk−1, so that a calculation with the CBH formula gives k−1 i,j 1 Yn = (Xn,i−Xn,i)(Xn,j −Xn,j)−(Xn,j−Xn,j)(Xn,i −Xn,i). m/n,k/n 2 r m r+1 r r m r+1 r (cid:16) (cid:17) rX=m Using the fact that i,j 1 k/n k/n An = Mn,i dNn,j − Nn,j dMn,i , m/n,k/n 2 m/n,r r m/n,r r (cid:16) (cid:17) Zm/n Zm/n ! the conclusion readily follows. We now return to the specific case that X : [0,1] 7→ Rd is given by d- independent copies of a fractionalBrownianmotion with Hurst parameter H ∈ (0,1). In particular, this implies that for all s,t,a,b∈[0,1] 1 E (Xi−Xi)(Xj −Xj) =δ (|t−a|2H+|s−b|2H−|t−b|2H−|s−a|2H). (7) t s b a i,j2 h i Consider the (2d)×(2d) anti-symmetric matrix Pn =An −Yn +(t−s)v˜n. s,t s,t s,t Lemma 8. There exists C >0 such that for all H ≤1/2, n≥1, and 0≤m≤ 2 k ≤n (k−m)1/2 Pn ≤C . m/n,k/n L2 2 n2H (cid:12)(cid:12) (cid:12)(cid:12) (cid:12)(cid:12) (cid:12)(cid:12) (cid:12)(cid:12) (cid:12)(cid:12) 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.