Examples of renormalized SDEs 7 Y. Bruned, I. Chevyrev, and P. K. Friz 1 0 2 January 6, 2017 n a J Abstract 4 We demonstrate two examples of stochastic processes whose lifts to ] geometricroughpathsrequirearenormalisationproceduretoobtaincon- R vergence in rough path topologies. Our first example involves a physical P Brownian motion subject to a magnetic force which dominates over the . frictionforcesinthesmallmasslimit. Oursecondexampleinvolvesalead- h lag process of discretised fractional Brownian motion with Hurst param- t a eter H ∈ (1/4,1/2), in which the stochastic area captures the quadratic m variationoftheprocess. Inbothexamples,arenormalisationofthesecond [ iterated integralisneededtoensureconvergenceoftheprocesses, andwe comment on how this procedure mimics negative renormalisation arising 1 in thestudy of singular SPDEs and regularity structures. v 8 5 1 Introduction 1 1 0 Inrecentyears,the theoryofregularitystructures[7]hasbeenproposedtogive . meaning to a wide class of singular SPDEs. A central feature of the theory is 1 0 the notionofrenormalisation,specifically “negativerenormalisation”[2], which 7 is required to obtain convergence of random models to a meaningful limit. It 1 is well-knownthat this procedure is inherit to the problem since naive approxi- : v mations of such equations typically fail to converge (with a number of notable i exceptions, including a special variant of gKPZ [8]). The same feature thus X naturally appears in other solution theories which have been proposed to solve r suchequations,includingthetheoriesofparacontrolleddistributions[6]andthe a Wilsonian renormalisationgroup [9]. Viewingregularitystructuresasamultidimensionalgeneralisationofthethe- oryof roughpaths [10], it is naturalto askhow renormalisationmanifests itself inthe latter. As solutiontheoriesto singularS(P)DEs, bothsharethe common feature that one must give meaning to often analytically ill-posed higher order terms(iteratedintegrals)ofdistributions,whichistypicallydonethroughsome stochastic means. However, a key difference in applications of rough paths to SDEs and rough SPDEs [5] is that one can usually give meaning to such terms as limits of iterated integralsof mollifications of the irregularnoise without the need of renormalisation. 1 The purpose of this note is to demonstrate situations in roughpaths theory whichfalloutsidethisusualsettingandforwhichrenormalisationisanecessary feature. Specifically, we construct two stochastic processes whose lifts to geo- metric rough paths fail to converge without a renormalisation procedure akin to the one encountered in the theory of regularity structures. The first is a physical Brownian motion subject to a magnetic force which dominates over the friction forces in the small mass limit. This example builds onthe work[4],where a similarsituationwasconsideringwith a constantmag- netic field. The second is a lead-lag process of a discretized path, which we take to be fractional Brownian motion with Hurst parameter H ∈ (1/4,1/2]. The stochastic area of this lead-lag process captures the quadratic variation of the discretized path, and thus, as one can expect, the second iterated integral fails toconvergeasthemeshofthediscretisationgoestozero(unlessH =1/2). This exampleismotivatedfromasimilarHoffprocessconsideredforsemi-martinagles in [3]. In both examples we demonstrate an explicit renormalisation procedure of the second iterated integral under which the processes converge in rough path topologies. These(diverging)counter-termsservepreciselythesamere-centring role encountered in regularity structures (for a direct comparison, consider the renormalisation of PAM [7, 6] where only one diverging term needs to be con- sidered). In turn, rough differential equations driven by the renormalised and unrenormalisedroughpathsarerelatedtooneanotherbytheadditionofdiverg- ingterms,whichagainmimicsthesituationencounteredinsingularSPDEs. We refer to the upcoming work [1] for a much more detailed study of this relation. Acknowledgements. P.K.F. is partially supported by the European Re- search Council through CoG-683166 and DFG research unit FOR2402. I.C., affiliated to TU Berlin when this project was commenced, was supported by DFG researchunit FOR2402. 2 Magnetic field blow-up Consider a physical Brownian motion in a magnetic field with dynamics given by mx¨=−Ax˙ +Bx˙ +ξ, x(t)∈Rd, where A is a symmetric matrix with strictly positive spectrum (representing friction), B is an anti-symmetric matrix (representing the Lorentz force due to a magnetic field), and ξ is an Rd-valued white noise in time. We shall consider the situation that A is constant whereas B is a function of the mass m. We rewrite these dynamics as 1 dX = P dt, X =0, t t 0 m 1 dP =− MP dt+dW , P =0, t t t 0 m 2 where M = A−B, and we have chosen the starting point as zero simply for convenience. Wefurthermoreintroducetheparameterε2 =mandwriteXε,Pε, t t and Mε =A−Bε to denote the dependence on ε. WeareinterestedintheconvergenceoftheprocessesPε andMεXεinrough path topologies. Let G2(Rd) and g2(Rd) denote the step-2 free nilpotent Lie groupandLiealgebrarespectively. Letusalsowriteg2(Rd)=Rd⊕g(2)(Rd)for the decomposition of g2(Rd) into the first and second levels, where we identify g(2)(Rd) with the space of anti-symmetric d×d matrices. For every ε>0, define the matrix ∞ Cε = e−Mεse−(Mε)∗sds, Z0 and the element 1 vε =− (MεCε−Cε(Mε)∗)∈g(2)(Rd). 2 For any v ∈ g(2)(Rd), p ∈ [1,3), and p-rough path (Z ,Z ) ∈ G2(Rd) s,t s,t (where we ignore zeroth component 1), we define the translated rough path T (Z ,Z ) by v s,t s,t T (Z ,Z )=(Z ,Z +(t−s)vε). (1) v s,t s,t s,t s,t Consider the G2(Rd)-valued processes t (Pε ,Pε )= Pε , Pε ⊗◦dPε , s,t s,t s,t s,r r (cid:18) Zs (cid:19) t (Zε ,Zε )= MεXε , MεX ⊗d(MεXε) , s,t s,t s,t s,r r (cid:18) Zs (cid:19) and the canonical lift of the Brownianmotion W t (W ,W )= W , W ⊗◦dW , s,t s,t s,t s,r r (cid:18) Zs (cid:19) where the integrals in the definition of Pε and W are in the Stratonovich s,t s,t sense. The following propositionestablishes the convergenceof the “renormalised” paths Tvε(Psε,t,Pεs,t) and Tvε(Zsε,t,Zεs,t). Theorem 1. Suppose that lim|Mε|εκ =0 for some κ∈[0,1]. (2) ε→0 Thenforanyα∈[0,1/2−κ/4)andq <∞,itholdsthatTvε(Pε,Pε)→(0,0)and Tvε(Zε,Zε) → (W,W) in Lq and α-Ho¨lder topology as ε → 0. More precisely, as ε→0, in Lq |Pε | |Pε +(t−s)vε| sup s,t + sup s,t →0. |t−s|α |t−s|2α s,t∈[0,T] s,t∈[0,T] 3 and |Zε −W | |Zε +(t−s)vε−W | s,t s,t s,t s,t sup + sup →0. |t−s|α |t−s|2α s,t∈[0,T] s,t∈[0,T] The restofthe sectionis devotedtothe proofofTheorem1whichbuildson the proof of [4] Theorem 1. We set Yε =Pε/ε and obtain that dYε =−ε2MεYεdt+ε−1dW t t t dXε =ε−1Yεdt. t t For fixed ε, we introduce the Brownian motion W˜·ε =εWε−2· and consider dY˜ε =−MεY˜εdt+dW˜ε. t t t Observe that we have the pathwise equalities Yε =Y˜ε , (3) · ε−2· and since Yε =0, we have 0 t Y˜ε = e−Mε(t−s)dW˜ε. (4) t s Z0 The dependence of Mε on ε is, by construction, only though Bε, the anti- symmetricpartofMε. Inparticular,sincethesymmetricpartAstaysconstant andhasstrictlypositivespectrum,itfollowsthatforsomeλ>0,Re(σ(Mε))⊂ (λ,∞) for all ε>0. In particular, |e−τMε| supsup <∞. (5) e−λτ τ>0ε>0 We see then that sup|Cε|<∞ ε>0 and sup sup E |Y˜ε|2 <∞. (6) t ε>00≤t<∞ h i Lemma 2. There exists C >0 such that for all ε∈(0,1] and s,t∈[0,T] 1 E Yε 2 1/2 ≤C min{ε−1|t−s|1/2,1} s,t 1 h(cid:12) (cid:12) i and (cid:12) (cid:12) t 2 1/2 E Yε⊗Yεdr−(t−s)Cε ≤C min{ε|t−s|1/2,|t−s|}. r r 1 "(cid:12)Zs (cid:12) # (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) 4 Proof. The first inequality is clear from (3), (4) and (6). For the second, from (4), we see that for every r>0, Y˜ε has distribution N(0,Cε) where r r r r Cε = e−Mε(r−u)e−(Mε)∗(r−u)du= e−Mεue−(Mε)∗udu. r Z0 Z0 Hence Yrε =Y˜ε−2r has distribution N(0,Cεε−2r). Thus t t t ε−2r E Yε⊗Yεdr = Cε dr = e−Mεue−(Mε)∗ududr =:µε . r r ε−2r s,t (cid:20)Zs (cid:21) Zs Zs Z0 Observe that from (5) t ∞ |µε −(t−s)Cε|≤ |e−Mεue−(Mε)∗u|dudr s,t Zs Zε−2r t ∞ ≤C e−2λududr 2 Zs Zε−2r t ≤C e−2λε−2rdr 3 Zs ≤C min{ε2,|t−s|} 4 ≤C min{ε|t−s|1/2,|t−s|}. 4 We now claim that t 2 E Yε⊗Yεdr−µε ≤C min{ε2|t−s|,|t−s|2}, r r s,t 5 "(cid:12)Zs (cid:12) # (cid:12) (cid:12) (cid:12) (cid:12) from which the(cid:12) conclusion follows. I(cid:12)ndeed, by Fubini and Wick’s formula t 2 E Yε,iYε,jdr = E Yε,iYε,jYε,iYε,j drdu r r r r u u "(cid:18)Zs (cid:19) # Z[s,t]2 (cid:2) (cid:3) = E Yε,iYε,j E Yε,iYε,j drdu r r u u Z[s,t]2 (cid:2) (cid:3) (cid:2) (cid:3) + E Yε,iYε,i E Yε,jYε,j drdu r u r u Z[s,t]2 (cid:2) (cid:3) (cid:2) (cid:3) + E Yε,iYε,j E Yε,jYε,i drdu r u r u Z[s,t]2 (cid:2) (cid:3) (cid:2) (cid:3) ≤(µε )2 +4 |E[Yε⊗Yε]|21{r≤u}drdu. i,j s,t u r Z[s,t]2 Observe that for r ≤u E[Yε |Yε]=e−ε−2Mε(u−r)Yε. u r r 5 and so |E[Yε⊗Yε]|21{r≤u}≤C e−ε−22λ(u−r)|Cε |≤C e−ε−22λ(u−r). u r 6 ε−2r 7 Thus t 2 t 2 E Yε,iYε,jdr−(µε ) =E Yε,iYε,jdr −(µε )2 r r i,j s,t r r i,j s,t "(cid:18)Zs (cid:19) # "(cid:18)Zs (cid:19) # t t ≤C e−ε−22λ(u−r)dudr 8 Zs Zr ≤C min{ε2|t−s|,|t−s|2} 9 as claimed. Lemma 3. There exists C >0 such that for all ε∈(0,1] and s,t∈[0,T] 10 Pε ≤C min{ε,|t−s|1/2} s,t L2 10 and (cid:12)(cid:12) (cid:12)(cid:12) (cid:12)(cid:12) (cid:12)(cid:12) Pε +(t−s)vε ≤C |Mε|min{ε|t−s|1/2,|t−s|} s,t L2 10 Proof. The (cid:12)fi(cid:12)rst inequality i(cid:12)s(cid:12)immediate from Lemma 2. For the second, we (cid:12)(cid:12) (cid:12)(cid:12) have t Pε =ε2 Yε ⊗◦dYε s,t s,r r Zs t t 1 =− Yε ⊗MεYεdr+ε Yε ⊗dW + (t−s)I. s,r r s,r r 2 Zs Zs Since Yε ⊗MεYε = (Yε ⊗Yε)(Mε)∗ and we can directly verify that vε = s,r r s,r r Cε(Mε)∗− 1I, we have 2 t t Pε +(t−s)vε =− Yε ⊗Yεdr−(t−s)Cε (Mε)∗+ε Yε ⊗dW . s,t s,r r s,r r (cid:18)Zs (cid:19) Zs From Lemma 2, we see that t ε Yε ⊗dW ≤C min{ε|t−s|1/2,|t−s|}. s,r r 11 (cid:12)(cid:12) Zs (cid:12)(cid:12)L2 (cid:12)(cid:12) (cid:12)(cid:12) Furthermore,(cid:12)b(cid:12)y Fubini and W(cid:12)ic(cid:12)k’s formula, we can readily show (cid:12)(cid:12) (cid:12)(cid:12) t Yε⊗Yεdr ≤C min{ε|t−s|1/2,|t−s|}. s r 12 (cid:12)(cid:12)Zs (cid:12)(cid:12)L2 (cid:12)(cid:12) (cid:12)(cid:12) It now follows(cid:12)f(cid:12)rom Lemma 2(cid:12)t(cid:12)hat (cid:12)(cid:12) (cid:12)(cid:12) Pε +(t−s)vε ≤C |Mε|min{ε|t−s|1/2,|t−s|}. s,t L2 13 (cid:12)(cid:12) (cid:12)(cid:12) (cid:12)(cid:12) (cid:12)(cid:12) 6 Lemma 4. There exists C >0 such that for all ε∈(0,1] and s,t∈[0,T] 14 E |Zε −W |2 1/2 ≤C min{ε,|t−s|1/2} s,t s,t 14 and (cid:2) (cid:3) E Zε +(t−s)vε−W 2 1/2 ≤C |Mε|min{ε|t−s|1/2,|t−s|}. s,t s,t 14 h(cid:12) (cid:12) i Proof. T(cid:12)he first inequality follow(cid:12)s from Zε = W −εYε and Lemma 2. For s,t s,t s,t the second, we have t t t Zε ⊗dZε = Zε ⊗dW −ε Zε⊗dYε−Zε⊗Yε s,r r s,r r r r s s,t Zs Zs (cid:18)Zs (cid:19) t t = Zε ⊗dW −ε Zε⊗Yε− dZ ⊗Yε−Zε⊗Yε s,r r t t r r s t Zs (cid:18) Zs (cid:19) t t = Zε ⊗dW −εZε ⊗Yε+ MεYε⊗Yεdr. s,r r s,t t r r Zs Zs We see that t t 2 Zε ⊗dW − W ⊗dW ≤C min{ε2|t−s|,|t−s|2}. s,r r s,r r 15 (cid:12)(cid:12)Zs Zs (cid:12)(cid:12)L2 (cid:12)(cid:12) (cid:12)(cid:12) Furth(cid:12)e(cid:12)rmore, by Fubini and Wick’s form(cid:12)(cid:12)ula, we can readily show (cid:12)(cid:12) (cid:12)(cid:12) t 2 εZε ⊗Yε 2 = MεYε⊗Yεdr ≤C |Mε|min{ε2|t−s|,|t−s|2}. s,t t L2 r t 16 (cid:12)(cid:12)Zs (cid:12)(cid:12)L2 (cid:12)(cid:12) (cid:12)(cid:12) (cid:12)(cid:12) (cid:12)(cid:12) F(cid:12)i(cid:12)nally, by Le(cid:12)m(cid:12) ma 2(cid:12)(cid:12) (cid:12)(cid:12) (cid:12)(cid:12) (cid:12)(cid:12) t MεYε⊗Yεdr−(t−s)MεCε| ≤C |Mε|min{ε|t−s|1/2,|t−s|}. r r 17 (cid:12)(cid:12)Zs (cid:12)(cid:12)L2 (cid:12)(cid:12) (cid:12)(cid:12) It(cid:12)f(cid:12)ollows that (cid:12)(cid:12) (cid:12)(cid:12) (cid:12)(cid:12) 1 Zε −W −(t−s)(MεCε− I) ≤C |Mε|min{ε|t−s|1/2,|t−s|}. s,r s,t 2 18 (cid:12)(cid:12) (cid:12)(cid:12)L2 (cid:12)(cid:12) (cid:12)(cid:12) W(cid:12)(cid:12)e(cid:12)(cid:12)candirectlyverifyvε =−MεCε+1(cid:12)(cid:12)(cid:12)(cid:12)I,fromwhichtheconclusionfollows. 2 Proof of Theorem 1. Observe that condition (2) implies that lim|Mε|ε=0. ε→0 FromLemmas3and4,alongwithGaussianchaos,wethusobtainthepointwise convergence as ε→0 for any q <∞ and s,t∈[0,T] in Lq |Pε |+|Pε +(t−s)vε|1/2 →0 s,t s,t 7 and |Zε −W |+|Zε +(t−s)vε−W |1/2 →0. s,t s,t s,t s,t Furthermore, since min{ε|t−s|1/2,|t−s|} ≤ εκ|t−s|1−κ/2 for all κ ∈ [0,1], condition (2), Lemmas 3 and 4, and Gaussian chaos imply that for any q <∞ there exists C >0 such that for all s,t∈[0,T] and q sup E |Pε |q ≤C |t−s|q/2, s,t q ε∈(0,1] (cid:2) (cid:3) sup E |Zε −W |q ≤C |t−s|q/2 s,t s,t q ε∈(0,1] (cid:2) (cid:3) and sup E |Pε +(t−s)vε|q ≤C |t−s|q(1−κ/2), s,t q ε∈(0,1] (cid:2) (cid:3) sup E |Zε +(t−s)vε−W |q ≤C |t−s|q(1−κ/2). s,t s,t q ε∈(0,1] (cid:2) (cid:3) Applying Theorem A.13 of [5] completes the proof. 3 Rough lead-lag process Consider a path X :[0,1]7→Rd. Let n ≥1 be an integer and write for brevity Xn =X . Consider the piecewise linear path X˜n :[0,1]7→R2d defined by i i/n X˜n =(Xn,Xn), 2i/2n i i X˜n =(Xn,Xn ), (2i+1)/2n i i+1 and linear on the intervals 2i,2i+1 and 2i+1,2i+2 for all i = 0,...,n−1. 2n 2n 2n 2n Note that this is a variant of the Hoff process considered in [3]. Denote by X˜n = exp(X˜(cid:2)n +An(cid:3)) the(cid:2)level-2 lift(cid:3)of X˜n, where An is the s,t s,t s,t s,t (2d)×(2d) anti-symmetric L´evy area matrix given by 1 t t An = X˜n ⊗dX˜n− X˜n ⊗dX˜n . s,t 2 s,r r s,r r (cid:18)Zs Zs (cid:19) Let H ∈ (0,1) and consider a fractional Brownian motion BH with covari- ance R(s,t) = 1(t2H +s2H −|t−s|2H). Let X : [0,1]7→ Rd be d independent 2 copies of BH. Recallthe definition of T from(1). We areinterestedin the convergencein v roughpathtopologiesofTv˜n(X˜n)wherev˜n ∈g(2)(R2d)isappropriatelychosen. Define the (diagonal) d×d matrix 1 n−1 n1−2H vn = E (Xn −Xn)⊗(Xn −Xn) = I, 2 k+1 k k+1 k 2 " # k=0 X 8 and the anti-symmetric (2d)×(2d) matrix 0 −vn v˜n = ∈g(2)(R2d). vn 0 (cid:18) (cid:19) Finally, consider the path X˜ = (X,X) : [0,1] 7→ R2d, its canonically defined L´evyareaA(whichexistsfor1/4<H ≤1),anditslevel-2liftX˜ =exp(X˜+A). The following is the main result of this subsection. Theorem 5. Suppose 1/4 < H ≤ 1/2. Then for all α ∈ [0,H) and q < ∞, it holds that Tv˜n(X˜n) → X˜ in Lq and α-Ho¨lder topology. More precisely, as n→∞, in Lq |X˜n −X˜ | |An +(t−s)v˜n−A | s,t s,t s,t s,t sup + sup →0. |t−s|α |t−s|2α s,t∈[0,T] s,t∈[0,T] The rest of the section is devoted to the proof of Theorem 5. We first state two lemmas which are purely deterministic. Let Yn : [0,1] 7→ Rd be the piecewise linear interpolation of X over the partition 0, 1,...,n−1,1 , let Y˜n =(Yn,Yn):[0,1]7→R2d, andlet Yn be the n n L´evy area of Y˜n. (cid:0) (cid:1) Lemma 6. Let s∈[m,m+1] and t∈[k,k+1] with s<t, and define n n n n m+1 ∆ =n ∧t−s |Xn −Xn|, 1 n m+1 m (cid:18) (cid:19) ∆ =|Xn−Xn | if k >m, 0 if k =m 2 k m+1 k ∆ =n t− ∨s |Xn −Xn|. 3 n k+1 k (cid:18) (cid:19) There exists a constant C > 0 such that for all n ≥ 1 and 0 ≤ s < t ≤ 1, it 1 holds that |X˜n −Y˜n|≤C (∆ +∆ ). s,t s,t 1 1 3 and, if k >m, |An −An | and |Yn −Yn | are bounded above by s,t mn+1,nk s,t mn+1,nk C ∆2+(∆ +∆ +∆ )∆ +∆ ∆ . 1 1 1 2 3 3 1 2 (cid:0) (cid:1) Proof. Direct calculation and triangle inequality. The second part of the above lemma essentially allows us to work over the partition 0, 1,...,n−1,1 , on which computations are easier. n n Lemma 7(cid:0). Suppose 0≤m(cid:1) ≤k ≤n. 1) For all pairs 1≤i,j ≤d and d+1≤i,j ≤2d i,j i,j An = Yn . mn,nk mn,nk (cid:16) (cid:17) (cid:16) (cid:17) 9 2) For all 1≤i≤d<j ≤2d k−1 i,j i,j 1 An = Yn − (Xn,i −Xn,i)(Xn,j −Xn,j) mn,nk mn,nk 2 r+1 r r+1 r (cid:16) (cid:17) (cid:16) (cid:17) rX=m Proof. DenoteX˜n =(Mn,Nn),sothatMnisthelagcomponent,andNnisthe lead. ThefirstequalityisclearsinceMn andNn aresimplyreparametrisations of Yn over the interval [m, k]. For the second, observe that n n k/n k−1 Mn,i dNn,j = (Xn,i−Xn,i)(Xn,j −Xn,j) m/n,r r r m r+1 r Zm/n r=m X and k/n k−1 Nn,j dMn,i = (Xn,j −Xn,j)(Xn,i −Xn,i). m/n,r r r+1 m r+1 r Zm/n r=m X Remark now that the signature of Yn over [m, k] is n n eXm+1−Xm...eXk−Xk−1, so that a calculation with the CBH formula gives k−1 i,j 1 Yn = (Xn,i−Xn,i)(Xn,j −Xn,j)−(Xn,j−Xn,j)(Xn,i −Xn,i). m/n,k/n 2 r m r+1 r r m r+1 r (cid:16) (cid:17) rX=m Using the fact that i,j 1 k/n k/n An = Mn,i dNn,j − Nn,j dMn,i , m/n,k/n 2 m/n,r r m/n,r r (cid:16) (cid:17) Zm/n Zm/n ! the conclusion readily follows. We now return to the specific case that X : [0,1] 7→ Rd is given by d- independent copies of a fractionalBrownianmotion with Hurst parameter H ∈ (0,1). In particular, this implies that for all s,t,a,b∈[0,1] 1 E (Xi−Xi)(Xj −Xj) =δ (|t−a|2H+|s−b|2H−|t−b|2H−|s−a|2H). (7) t s b a i,j2 h i Consider the (2d)×(2d) anti-symmetric matrix Pn =An −Yn +(t−s)v˜n. s,t s,t s,t Lemma 8. There exists C >0 such that for all H ≤1/2, n≥1, and 0≤m≤ 2 k ≤n (k−m)1/2 Pn ≤C . m/n,k/n L2 2 n2H (cid:12)(cid:12) (cid:12)(cid:12) (cid:12)(cid:12) (cid:12)(cid:12) (cid:12)(cid:12) (cid:12)(cid:12) 10