ebook img

Examination of the Antibacterial and Immunostimulatory Activity of a Wasp Venom Peptide PDF

170 Pages·2013·2.83 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Examination of the Antibacterial and Immunostimulatory Activity of a Wasp Venom Peptide

Examination of the Antibacterial and Immunostimulatory Activity of a Wasp Venom Peptide by Yuvon R. Mobley Department of Molecular Genetics and Microbiology Duke University Date: ___ _______ Approved: ___________________________ Soman Abraham, Supervisor ___________________________ Kenneth Kreuzer ___________________________ Margarethe Kuehn ___________________________ Herman Staats ___________________________ Raphael Valdivia Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Molecular Genetics and Microbiology in the Graduate School of Duke University 2013 i v ABSTRACT Examination of the Antibacterial and Immunostimulatory Activity of a Wasp Venom Peptide by Yuvon R. Mobley Department of Molecular Genetics and Microbiology Duke University Date: __ _ _______ Approved: ___________________________ Soman Abraham, Supervisor ___________________________ Kenneth Kreuzer ___________________________ Margarethe Kuehn ___________________________ Herman Staats ___________________________ Raphael Valdivia An abstract of a dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Molecular Genetics and Microbiology in the Graduate School of Duke University 2013 Copyright by Yuvon R. Mobley 2013 Abstract Antimicrobial peptides (AMPs) are part of the innate immune system that is widely distributed in nature, acting as a defense mechanism against invading microorganisms. AMPs have potent antimicrobial activity against a range of microorganisms including fungi, bacteria, and viruses. In view of growing multidrug resistance, AMPs are increasingly being viewed as potential therapeutic agents with a novel mechanism of action. Mastoparan is a natural, highly positively charged AMP derived from the venom of wasps. It was originally of interest based on its inherent mast cell degranulation activity. Previously, mastoparan has been shown to exhibit antimicrobial activity in vitro; however, these studies have been limited in scope. Here we hypothesize that mastoparan possess the capacity to be a potent broad-spectrum antibacterial agent including activity against multidrug resistant bacteria. We examined the scope of antibacterial activity exhibited by mastoparan using a variety of antimicrobial susceptibility tests and have utilized a bacterial skin infection (Staphylococcus aureus) model to determine the potential of mastoparan to serve as a therapeutic agent. We tested mastoparan against four iv Gram-positive clinical isolates (e.g., Staphylococcus aureus, and Enterococcus faecium), nine Gram-negative clinical isolates (e.g., Escherichia coli, Pseudomonas aeruginosa, and Burkholderia cepacia), and four multidrug resistant clinical isolates (e.g., MRSA, ESBL Escherichia coli, and ESBL Klebsiella pneumonia). These studies reveal that mastoparan exhibits broad-spectrum activity against both Gram- negative (MIC: 1.9 – 125 μg/ml) and Gram-positive (MIC: 15.6 – 125 μg/ml) bacteria and against multidrug resistant bacteria (MIC: 7.8 – 125 μg/ml). We also demonstrated that mastoparan disrupts the bacterial membrane, exhibits fast acting antibacterial activity, and is highly effective against both multiplying and non-multiplying bacteria. Furthermore, we have shown that mastoparan demonstrates efficacy as a topical antimicrobial agent reducing lesion size by up to 79% and the amount of bacteria recovered from skin lesions by up to a 98% reduction. Based on these results we conclude that mastoparan is a highly effective antibacterial agent and is therefore a potential alternative to currently antibiotics. Mastoparan offers a promising new therapeutic option for treating bacterial infections. . v Table of Contents Abstract............................................................................................................................. iv List of Tables ..................................................................................................................... x List of Figures .................................................................................................................. xi Acknowledgements ...................................................................................................... xiii Chapter 1: Introduction .................................................................................................. 1 1.1 Bacterial Infections ............................................................................................... 1 1.1.1 Bacterial host-pathogen interaction in humans .......................................... 4 1.1.2 Bacterial skin infections .................................................................................. 8 1.2 Antimicrobial Agents .......................................................................................... 9 1.2.1 Antimicrobial agents’ mechanism of action .............................................. 13 1.2.2 Bacterial resistance to antimicrobial agents .............................................. 17 1.2.3 Factors contributing to antimicrobial resistance ...................................... 21 1.2.4 Limitations of current antimicrobial agents .............................................. 26 1.2.5 Current perspectives on antimicrobial agent development ................... 28 1.2.5.1 Natural antimicrobial compounds ...................................................... 29 1.2.5.2 Immune stimulatory compounds ........................................................ 29 1.3 Antimicrobial Peptides ...................................................................................... 30 1.3.1 Immunomodulatory roles of antimicrobial peptides .............................. 34 1.3.2 Antimicrobial peptides in wasp venom..................................................... 35 vi 1.3.3 Mastoparans ................................................................................................... 37 1.4 Impetus for This Work ...................................................................................... 39 1.4.1 Evaluation of the antibacterial properties of mastoparan ....................... 40 1.4.2 Evaluation of the immunostimulatory properties of mastoparan ......... 41 1.4.3 Evaluation of the therapeutic potential of mastoparan ........................... 43 Chapter 2: Dual Action Immunomodulatory and Broad-Spectrum Antibacterial Activity of Wasp Venom Peptide ................................................................................ 46 2.1 Introduction ........................................................................................................ 46 2.2 Materials and Methods ..................................................................................... 50 2.2.1 Bacteria strains and growth conditions ..................................................... 50 2.2.2 Antimicrobial agents .................................................................................... 50 2.2.3 Mice ................................................................................................................. 51 2.2.4 Broth microdilution bacteria susceptibility test ........................................ 51 2.2.5 Time-kill kinetic assay .................................................................................. 52 2.2.6 Fluorescence microscopy assay to measure cell membrane permeability ................................................................................................................................... 53 2.2.7 Election microscopy ...................................................................................... 54 2.2.8 Lactate dehydrogenase (LDH) cytotoxicity assay .................................... 54 2.2.9 β-Hexosaminidase assay for in vitro mast cell degranulation ................ 55 2.2.10 Mastoparan treatment of mice intraperitoneally.................................... 56 2.2.10.1 Microscopic analysis of peritoneal lavage ........................................ 56 vii 2.2.10.2 Microscopic analysis of mesenteric mast cells ................................. 57 2.2.10.3 Myeloperoxidase assay for neutrophils ............................................ 58 2.2.11 Superficial skin colonization and infection models ............................... 59 2.2.12 Dermal toxicity study ................................................................................. 61 2.3 Results .................................................................................................................. 62 2.3.1 Mastoparan exhibits broad-spectrum antibacterial activity against Gram-negative and Gram-positive bacteria ....................................................... 62 2.3.2 Mastoparan has a broader range of activity against bacteria in comparison to selected marketed antibiotics ..................................................... 64 2.3.3 Mastoparan exhibits antibacterial activity against resistant clinical isolates ..................................................................................................................... 67 2.3.4 Mastoparan disrupts bacterial membrane integrity ................................ 68 2.3.5 Mastoparan does not elicit cytotoxicity at the concentrations necessary for its antibacterial activity ................................................................................... 74 2.3.6 Mastoparan exhibits a kinetically rapid mechanism of bacteria growth inhibition ................................................................................................................. 77 2.3.7 Mastoparan is a potent mast cell activator in vitro and in vivo ............... 81 2.3.8 Mastoparan treatment elicits the recruitment of neutrophils ................. 85 2.3.9 Mastoparan is effective as a topical antibacterial agent utilizing its dual action direct antibacterial and immunomodulatory activities ........................ 88 2.3.10 Mastoparan does not exhibit dermal toxicity ......................................... 93 2.3.11 Mastoparan promotes mast cell-dependent wound healing in mice .. 93 2.4 Discussion ......................................................................................................... 100 viii Chapter 3: Perspectives and Conclusion .................................................................. 105 3.1 Broad-spectrum antibacterial and immunomodulatory activity exhibited by mastoparan ........................................................................................................ 106 3.2 Mastoparan is a highly effective therapeutic agent against bacterial skin infections ................................................................................................................. 111 3.3 Mastoparan promotes wound healing .......................................................... 114 3.4 Conclusions ....................................................................................................... 116 References ..................................................................................................................... 118 Biography ...................................................................................................................... 155 ix List of Tables Table 1: Mastoparan peptides identified from wasps. ............................................. 38 Table 2: Mastoparan exhibits broad-spectrum antibacterial activity against Gram- positive and Gram-negative bacteria. . ....................................................................... 63 Table 3: Mastoparan is more active against bacteria (both Gram-negative and Gram-positive) than selected marketed antibiotics.. ................................................ 65 Table 4: Mastoparan exhibits antibacterial activity against multidrug resistant bacteria.. ........................................................................................................................... 68 x

Description:
Biography Figure 13: Pictorial representation of mice treated with mastoparan during a S. aureus intradermal skin infection. The bacterial cell wall is critical for the life and survival of bacteria. Human and . Salmonella, Escherichia coli, and Listeria), Toxoplasma or norovirus typically cause
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.