Exact results for two-color QCD at low and high density∗ 1 Takuya Kanazawa 1 0 DepartmentofPhysics,TheUniversityofTokyo,Tokyo113-0033,Japan 2 E-mail: [email protected] n a Tilo Wettig† J DepartmentofPhysics,UniversityofRegensburg,93040Regensburg,Germany 3 E-mail: [email protected] ] t Naoki Yamamoto a l InstituteforNuclearTheory,UniversityofWashington,Seattle,WA98195-1550,USA - p E-mail: [email protected] e h [ Wediscussarandommatrixtheorythatwasoriginallyconstructedtodescribetwo-colorQCDat 1 lowdensityinthephasewithanonzerochiralcondensate.Withaparticularchoiceofaparameter, v thesamerandommatrixtheoryalsodescribesthehigh-densityphaseoftwo-colorQCD.Inthis 9 8 phaseaBCSsuperfluidofdiquarkpairsisformed, andthepatternofchiralsymmetrybreaking 5 isverydifferentfromthatatlowdensity. Analyticalresultsforthespectraldensityobtainedfrom 0 . thisrandommatrixtheoryallowfortheextractionoftheBCSgapfromlatticedata. 1 0 1 1 : v i X r a TheXXVIIIInternationalSymposiumonLatticeFieldTheory,Lattice2010 June14-19,2010 Villasimius,Italy ∗SupportedbytheGermanResearchFoundation(DFG)andbyJSPS. †Speaker. (cid:13)c Copyrightownedbytheauthor(s)underthetermsoftheCreativeCommonsAttribution-NonCommercial-ShareAlikeLicence. http://pos.sissa.it/ Exactresultsfortwo-colorQCDatlowandhighdensity TiloWettig 1. Introduction Lattice studies of QCD at nonzero quark chemical potential µ are hindered by the infamous sign problem, see [1] for a review. Two-color QCD with an even number of pairwise degenerate quarks does not have a sign problem and can therefore be simulated on the lattice [2]. It shares many qualitative features, such as confinement and chiral symmetry breaking, with three-color QCD, but the detailed features of both theories are rather different, such as the pattern of chiral symmetry breaking, the particle spectrum, or the phase diagram. Nevertheless, two-color QCD is an interesting theory in its own right. It has been studied in great detail at zero and low density, see, e.g., [3]. In this contribution, we also address the region of high density in which the pattern ofchiralsymmetrybreakingisdifferentfromthatatlowdensityandinwhichaBCSsuperfluidof diquark pairs is expected to be formed because there is an attractive channel between quarks near theFermisurface. Inearlierwork[4],wehavederivedthelow-energyeffectivechiralLagrangian for µ (cid:29)Λ , identified the corresponding ε-regime, and derived Leutwyler-Smilga-type sum SU(2) rulesfortheeigenvaluesoftheDiracoperator. ThisworkhasbeensummarizedatLattice2009[5]. In the lowest order of the ε-regime, sometimes also called “microscopic domain”, the theory becomeszero-dimensional. Thiszero-dimensionallimitofthetheorycanalternativelybedescribed by a random matrix theory (RMT). Many examples of such an exact mapping are known, in par- ticular for two- and three-color QCD at zero and low density, see [6, 7] for reviews. Therefore thenaturalquestioniswhatrandommatrixtheorydescribesthemicroscopicdomainoftwo-color QCDathighdensity. Theanswertothisquestionwasgivenin[8]andwillbereviewedinSec.2. Theadvantageofhavingarandommatrixtheoryisthatitallowsustocomputealargenumberof analyticalresults characterizingtheDirac eigenvalues, seeSec.3. Thistask wouldbemuch more difficultintheeffectivetheory. TheanalyticalresultsathighdensitycontaintheBCSgap∆,which wascomputedforasymptoticallyhighdensityinaweak-couplingapproachin[9,10],asaparam- eter. Therefore,∆canbeextractedfromlatticedatafortheDiraceigenvaluesbymatchingthemto theanalyticalresultsfromrandommatrixtheory. Anotherinterestingfeatureoftwo-colorQCDis thatitallowsustostudythesignproblem,eitherforanoddnumberN offlavorsbyturningonµ, f orforevenN bydetuningthequarkmassesfromtheirdegeneratevalues,seeSec.4. f 2. Randommatrixtheoryatlowandhighdensity Thepertinentrandommatrixtheoryfortwo-colorQCDatlowdensityhasbeenformulatedin [11],withpartitionfunction (cid:32) (cid:33) (cid:90) Nf m P+µQ ZRMT(µ)= dPdQe−12tr(PPT+QQT)∏det −PT +fµQT m , (2.1) f=1 f where the m are the quark masses, P and Q are real matrices of dimension N×(N+ν), dP and f dQ are Cartesian integration measures, N is assumed to be proportional to the Euclidean space- time volumeV , and ν can be identified with the topological charge. Note that sometimes other 4 conventions for the width of the Gaussian distribution of P and Q are used in the literature. The RMTDiracoperatorD(µ)isthematrixin(2.1)withthemasssettozero. 2 Exactresultsfortwo-colorQCDatlowandhighdensity TiloWettig Itwasshownin[8]thatintheN →∞limitthisRMTpartitionfunctionisidenticaltothepar- tition function obtained from the static (or zero-dimensional) effective Lagrangian for two-color QCD at low density1 given in [3]. More precisely, the two partition functions have the same de- pendenceonthequarkmassesandonthechemicalpotential. Themappingbetweendimensionless RMTquantitiesandphysicalquantitiesisgivenby √ Nm=m GV =m2F2V , (2.2a) phys 4 π 4 1 Nµ2=µ2 F2V , (2.2b) 2 phys 4 whereGandF arelow-energyconstantsintheeffectiveLagrangianinthenotationof[3]. Both the random matrix theory (2.1) and the corresponding effective Lagrangian explicitly depend on the chemical potential µ. In contrast, the effective Lagrangian at high density derived in [4] does not explicitly depend on µ. It only depends on the quark masses, which appear in the combinationm2∆2V . Ahintastowhatthecorrectrandommatrixtheoryathighdensityshouldbe 4 can be obtained by noting that (2.1) is basically symmetric under µ →1/µ (except that real and imaginary parts are interchanged). Maximum non-Hermiticity, which is expected at high density, corresponds to µ =1. We therefore conjecture that at high density the random matrix theory is, afteraredefinitionoftherandommatrices,givenby (cid:32) (cid:33) (cid:90) Nf m A ZRMT= dAdBe−14tr(AAT+BBT)∏det BTf m , (2.3) f=1 f where the dimension of A and B is again N×(N+ν).2 In the high-density phase, we restrict ourselvestoanevennumberofflavors. Letusfirstcheckthatweobtainthecorrectpatternofchiralsymmetrybreaking. Tothisend, werewritetheN -flavordeterminantresultingfrom(2.3)inthechirallimitintheform f (cid:32) (cid:33) (cid:32) (cid:33) (cid:32) (cid:33) 0 A 0 A 0 B detNf =detNf/2 detNf/2 . (2.4) BT 0 −AT 0 −BT 0 ThematricesinthetwofactorsontheRHSofthisequationhavetheformofthechiralorthogonal ensembleofrandommatrixtheory. Itwasshownin[12]thatthesymmetrybreakingpatterninthat ensemble with N /2 flavors is U(N )→Sp(N ). Since we have two such factors, (2.3) with N f f f f flavors has the symmetry breaking pattern U(N )×U(N )→Sp(N )×Sp(N ). This agrees with f f f f thesymmetrybreakingpatternintheeffectivetheoryduetotheformationofadiquarkcondensate, whichisgivenbySU(N ) ×SU(N ) ×U(1) ×U(1) →Sp(N ) ×Sp(N ) [4]. f L f R B A f L f R We have also shown [8] that in the N →∞ limit the RMT partition function (2.3) is identical tothepartitionfunctionofthehigh-densityeffectivetheoryinthezero-dimensionallimit,i.e.,the twopartitionfunctionshavethesamemassdependence. Themappingbetweenthedimensionless RMTmassandthephysicalmassisnowquitedifferentfrom(2.2a)andgivenby √ 3 √ m= m ∆ V . (2.5) phys 4 π 1Bylowdensityweheremeantheregimeofweaknon-Hermiticity,seeSec.3forthedefinitionofthisregime. 2Onlythecaseν=0isphysicallyrelevantsincetopologyisstronglysuppressedathighdensity. 3 Exactresultsfortwo-colorQCDatlowandhighdensity TiloWettig The arguments presented so far, while giving overwhelming evidence in favor of the equiva- lence of the random matrix theory (2.3) and the effective theory at high density, do not constitute a full proof. For such a proof one would have to show that all spectral correlation functions are identical in both theories, which requires studying the partially quenched version of the theory. Suchastudyhasnotbeendoneyet,butwehavenodoubtthattheoutcomewouldbepositive. 3. Exactresultsfromrandommatrixtheory Wecannowproceedtocomputespectralcorrelationfunctionsfromtherandommatrixtheory in the N → ∞ limit. At µ = 0 the RMT eigenvalues λ are purely imaginary, while at µ (cid:54)= 0 they are either purely real, purely imaginary, or come in complex conjugate pairs. We are mainly interestedintheso-calledmicroscopicspectraldensityofthesmalleigenvalues,i.e.,werescaleall eigenvalues by a quantity δ that is, up to a numerical prefactor, equal to the mean level spacing near zero. This results in complex numbers z=λ/δ of order O(1). To see an effect of the quark massesonthesmalleigenvaluesweneedtorescaletheminthesameway,resultinginmˆ =m /δ. f f Therandommatrixtheorycanbesolvedintwodifferentregimes: • In the regime of weak non-Hermiticity, the combination µˆ2 =2Nµ2 =4µ2 F2V is kept phys 4 fixedinthelimitN →∞. Whilethisregimemightappeartobemainlyofacademicinterest since µ →0inthethermodynamiclimit,ithasanimportantphenomenologicalapplication, i.e.,theextractionofthelow-energyconstantsGandF fromlatticedata. Inourconventions √ √ √ wehaveδ =1/2 N inthisregime,i.e.,z=2 Nλ andmˆ =2 Nm. • Intheregimeofstrongnon-Hermiticity,µ iskeptnonzerointhelimitN→∞. Theanalytical resultsinthisregimearetheµˆ →∞limitsofthecorrespondingweaknon-Hermiticityresults. Theirfunctionalformisidenticalforall0<µ≤1,andtheµ-dependenceonlyentersthrough a rescaling of the eigenvalues. In our conventions we have δ =1 in this regime so that no N-dependentrescalingoftheeigenvaluesandthemassesisnecessary. In [13] analytical results for the microscopic spectral “density” (which we put in quotation markssincethisquantitycanbecomenegativeifthereisasignproblem)wereobtainedinbothof the above-mentioned regimes in the quenched case, i.e., for N =0 flavors. In the meantime, the f generalization to the unquenched case has been worked out [14]. Since the analytical results are rather cumbersome we will not present them here. Important features of the results are exhibited inFigs.1through4. Commentsonthesefeaturesaregiveninthefigurecaptions. 4. Thesignproblem Asagoodmeasureofthesignproblemintwo-colorQCDwedefinethequantity (cid:68) (cid:69) sgndet(D+m)∏Nf=f 1|det(D+mf)| (cid:104)sgndet(D+m)(cid:105) ≡ Nf=0, (4.1) ||Nf|| (cid:68)∏Nf=f 1|det(D+mf)|(cid:69) Nf=0 see[14]foramoredetaileddiscussion. 4 Exactresultsfortwo-colorQCDatlowandhighdensity TiloWettig 0.08 0.05 ρwIm(y) ρwRe(x) 0.06 0 0.04 mˆ=0.1 −0.05 mˆ=12 mˆ=2 mˆ=15 0.02 mˆ=3 mˆ=20 −0.1 quenched quenched 0 0 2 4 6 8 y 10 0 5 10 15 20 25 x 30 Figure1: Microscopicspectral“density”ofthepurelyimaginary(left)andpurelyreal(right)eigenvalues intheregimeofweaknon-HermiticityforN =1, µˆ =3,ν =0,anddifferentvaluesofmˆ. Thedensityof f therealeigenvaluesgoesthroughzeroforx=mˆ . f ρC(z) w Imz ρC(z) w Imz Rez Rez Figure2:Microscopicspectral“density”ofthecomplexeigenvaluesintheregimeofweaknon-Hermiticity for N =1 and ν =0. Left: µˆ =1.8 and mˆ =0. The massless quark causes a depletion of the density f neartheorigin. Right: µˆ =6andmˆ =20. Forlarge µˆ thereisanellipticaldomaininwhichthe“density” oscillatesstrongly. 0.4 0.4 ρs(z) ρs(z) 0.2 0.2 Im Im Re Re 0 0 0 1 2 3 4 z 5 0 1 2 3 4 z 5 Figure3: Microscopicspectral“density”ofthepurelyimaginary(solid)andpurelyreal(dashed)eigenval- uesintheregimeofstrongnon-HermiticityforN =2,mˆ =2,mˆ =3,ν =0(left),andν =2(right). The f 1 2 densityoftherealeigenvaluesgoesthroughzeroforx=mˆ . f ρC(z) ρC(z) s s Imz Imz Rez Rez Figure4:Microscopicspectral“density”ofthecomplexeigenvaluesintheregimeofstrongnon-Hermiticity forN =2andν=0.Left:mˆ =mˆ =2.Degeneratemassesgenerateadipinthespectrumatz=mˆ.Right: f 1 2 mˆ =2,mˆ =8. Unequalmassesresultinadomainofstrongoscillations,indicativeofthesignproblem. 1 2 5 Exactresultsfortwo-colorQCDatlowandhighdensity TiloWettig 1 mˆ=0 1 ν=0 mˆ=6 ν=10 (cid:104)sgn(cid:105) mˆ=15 (cid:104)sgn(cid:105) ν=20 0.5 0.5 0 0 0 1 2 3 4 5 µˆ 0 1 2 3 4 5 µˆ Figure5: Averagesignatweaknon-HermiticityforN =1asafunctionofµˆ. Left: ν=0iskeptfixedand f mˆ isvaried. Right: mˆ =0iskeptfixedandν isvaried. 1 ν=0 ν=1 (cid:104)sgn(cid:105) ν=2 0.5 0 1 2 3 4 5 6 mˆ2 Figure6: Averagesignatstrongnon-HermiticityforN =2,mˆ =1,andν =0,1,2asafunctionofmˆ . f 1 2 We first consider the regime of weak non-Hermiticity. We choose N =1 and turn on µˆ to f study its effect on the average sign, see Fig. 5. It is evident from the plots that the sign problem (i)increaseswithincreasingµˆ,(ii)decreaseswithincreasingmˆ,and(iii)decreaseswithincreasing ν (in agreement with [15]). A quantitative analysis [14] reveals that in the thermodynamic limit (cid:112) the average sign makes a first-order transition from 1 to 0 at µˆ = mˆ/2, which in physical units correspondstoacriticalchemicalpotentialµ =m /2. phys π Next we consider the regime of strong non-Hermiticity. We choose N =2 and detune the f quark masses. The effect on the average sign is shown in Fig. 6. The sign problem is absent for mˆ =mˆ andincreasesas|mˆ −mˆ |increases. Itagaindecreaseswithincreasingν. 1 2 1 2 5. Conclusions We have shown that a single random matrix theory describes two-color QCD at low density in the regime of weak-Hermiticity and at high density in the BCS superfluid phase, depending on the choice of the RMT parameter µ and on the rescaling factors in (2.2) and (2.5). These two regimes have very different symmetry breaking patterns. It would be interesting to investigate theapplicabilityofrandommatrixtheoryintheregionofintermediatedensities,whereintriguing phenomenasuchasaBEC-BCScrossoverhavebeenconjectured[16]. The analytical RMT results can be used to extract physical parameters such as ∆ from lat- tice data. Two-color lattice simulations with adjoint staggered fermions, which are in the same symmetryclassascontinuumfundamentalfermions[17],arecurrentlyunderwaytotestourRMT predictions. 6 Exactresultsfortwo-colorQCDatlowandhighdensity TiloWettig References [1] P.deForcrand,SimulatingQCDatfinitedensity,PoSLAT2009(2009)010,[arXiv:1005.0539]. [2] J.B.Kogut,D.K.Sinclair,S.J.Hands,andS.E.Morrison,Two-colourQCDatnon-zero quark-numberdensity,Phys.Rev.D64(2001)094505,[hep-lat/0105026]. [3] J.B.Kogut,M.A.Stephanov,D.Toublan,J.J.M.Verbaarschot,andA.Zhitnitsky,QCD-liketheories atfinitebaryondensity,Nucl.Phys.B582(2000)477–513,[hep-ph/0001171]. [4] T.Kanazawa,T.Wettig,andN.Yamamoto,ChiralLagrangianandspectralsumrulesfordense two-colorQCD,JHEP08(2009)003,[arXiv:0906.3579]. [5] T.Kanazawa,T.Wettig,andN.Yamamoto,ChiralLagrangianandspectralsumrulesfortwo-color QCDathighdensity,PoSLAT2009(2009)195,[arXiv:0910.2300]. [6] J.J.M.VerbaarschotandT.Wettig,RandommatrixtheoryandchiralsymmetryinQCD,Ann.Rev. Nucl.Part.Sci.50(2000)343–410,[hep-ph/0003017]. [7] G.Akemann,MatrixmodelsandQCDwithchemicalpotential,Int.J.Mod.Phys.A22(2007) 1077–1122,[hep-th/0701175]. [8] T.Kanazawa,T.Wettig,andN.Yamamoto,Chiralrandommatrixtheoryfortwo-colorQCDathigh density,Phys.Rev.D81(2010)081701,[arXiv:0912.4999]. [9] D.T.Son,Superconductivitybylong-rangecolormagneticinteractioninhigh-densityquarkmatter, Phys.Rev.D59(1999)094019,[hep-ph/9812287]. [10] T.Schafer,QCDandtheeta’mass: Instantonsorconfinement?,Phys.Rev.D67(2003)074502, [hep-lat/0211035]. [11] G.Akemann,M.J.Phillips,andH.J.Sommers,CharacteristicpolynomialsinrealGinibre ensembles,J.Phys.A42(2008)012001,[arXiv:0810.1458]. [12] A.M.HalaszandJ.J.M.Verbaarschot,EffectiveLagrangiansandchiralrandommatrixtheory, Phys.Rev.D52(1995)2563–2573,[hep-th/9502096]. [13] G.Akemann,M.J.Phillips,andH.J.Sommers,ThechiralGaussiantwo-matrixensembleofreal asymmetricmatrices,J.Phys.A43(2010)085211,[arXiv:0911.1276]. [14] G.Akemann,T.Kanazawa,M.Phillips,andT.Wettig,Randommatrixtheoryofunquenched two-colourQCDwithnonzerochemicalpotential,[arXiv:1012.4461]. [15] J.C.R.BlochandT.Wettig,RandommatrixanalysisoftheQCDsignproblemforgeneraltopology, JHEP03(2009)100,[arXiv:0812.0324]. [16] K.Splittorff,D.T.Son,andM.A.Stephanov,QCD-likeTheoriesatFiniteBaryonandIsospin Density,Phys.Rev.D64(2001)016003,[hep-ph/0012274]. [17] S.Handsetal.,NumericalstudyofdenseadjointmatterintwocolorQCD,Eur.Phys.J.C17(2000) 285–302,[hep-lat/0006018]. 7