ebook img

Exact results for two-color QCD at low and high density PDF

0.66 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Exact results for two-color QCD at low and high density

Exact results for two-color QCD at low and high density∗ 1 Takuya Kanazawa 1 0 DepartmentofPhysics,TheUniversityofTokyo,Tokyo113-0033,Japan 2 E-mail: [email protected] n a Tilo Wettig† J DepartmentofPhysics,UniversityofRegensburg,93040Regensburg,Germany 3 E-mail: [email protected] ] t Naoki Yamamoto a l InstituteforNuclearTheory,UniversityofWashington,Seattle,WA98195-1550,USA - p E-mail: [email protected] e h [ Wediscussarandommatrixtheorythatwasoriginallyconstructedtodescribetwo-colorQCDat 1 lowdensityinthephasewithanonzerochiralcondensate.Withaparticularchoiceofaparameter, v thesamerandommatrixtheoryalsodescribesthehigh-densityphaseoftwo-colorQCD.Inthis 9 8 phaseaBCSsuperfluidofdiquarkpairsisformed, andthepatternofchiralsymmetrybreaking 5 isverydifferentfromthatatlowdensity. Analyticalresultsforthespectraldensityobtainedfrom 0 . thisrandommatrixtheoryallowfortheextractionoftheBCSgapfromlatticedata. 1 0 1 1 : v i X r a TheXXVIIIInternationalSymposiumonLatticeFieldTheory,Lattice2010 June14-19,2010 Villasimius,Italy ∗SupportedbytheGermanResearchFoundation(DFG)andbyJSPS. †Speaker. (cid:13)c Copyrightownedbytheauthor(s)underthetermsoftheCreativeCommonsAttribution-NonCommercial-ShareAlikeLicence. http://pos.sissa.it/ Exactresultsfortwo-colorQCDatlowandhighdensity TiloWettig 1. Introduction Lattice studies of QCD at nonzero quark chemical potential µ are hindered by the infamous sign problem, see [1] for a review. Two-color QCD with an even number of pairwise degenerate quarks does not have a sign problem and can therefore be simulated on the lattice [2]. It shares many qualitative features, such as confinement and chiral symmetry breaking, with three-color QCD, but the detailed features of both theories are rather different, such as the pattern of chiral symmetry breaking, the particle spectrum, or the phase diagram. Nevertheless, two-color QCD is an interesting theory in its own right. It has been studied in great detail at zero and low density, see, e.g., [3]. In this contribution, we also address the region of high density in which the pattern ofchiralsymmetrybreakingisdifferentfromthatatlowdensityandinwhichaBCSsuperfluidof diquark pairs is expected to be formed because there is an attractive channel between quarks near theFermisurface. Inearlierwork[4],wehavederivedthelow-energyeffectivechiralLagrangian for µ (cid:29)Λ , identified the corresponding ε-regime, and derived Leutwyler-Smilga-type sum SU(2) rulesfortheeigenvaluesoftheDiracoperator. ThisworkhasbeensummarizedatLattice2009[5]. In the lowest order of the ε-regime, sometimes also called “microscopic domain”, the theory becomeszero-dimensional. Thiszero-dimensionallimitofthetheorycanalternativelybedescribed by a random matrix theory (RMT). Many examples of such an exact mapping are known, in par- ticular for two- and three-color QCD at zero and low density, see [6, 7] for reviews. Therefore thenaturalquestioniswhatrandommatrixtheorydescribesthemicroscopicdomainoftwo-color QCDathighdensity. Theanswertothisquestionwasgivenin[8]andwillbereviewedinSec.2. Theadvantageofhavingarandommatrixtheoryisthatitallowsustocomputealargenumberof analyticalresults characterizingtheDirac eigenvalues, seeSec.3. Thistask wouldbemuch more difficultintheeffectivetheory. TheanalyticalresultsathighdensitycontaintheBCSgap∆,which wascomputedforasymptoticallyhighdensityinaweak-couplingapproachin[9,10],asaparam- eter. Therefore,∆canbeextractedfromlatticedatafortheDiraceigenvaluesbymatchingthemto theanalyticalresultsfromrandommatrixtheory. Anotherinterestingfeatureoftwo-colorQCDis thatitallowsustostudythesignproblem,eitherforanoddnumberN offlavorsbyturningonµ, f orforevenN bydetuningthequarkmassesfromtheirdegeneratevalues,seeSec.4. f 2. Randommatrixtheoryatlowandhighdensity Thepertinentrandommatrixtheoryfortwo-colorQCDatlowdensityhasbeenformulatedin [11],withpartitionfunction (cid:32) (cid:33) (cid:90) Nf m P+µQ ZRMT(µ)= dPdQe−12tr(PPT+QQT)∏det −PT +fµQT m , (2.1) f=1 f where the m are the quark masses, P and Q are real matrices of dimension N×(N+ν), dP and f dQ are Cartesian integration measures, N is assumed to be proportional to the Euclidean space- time volumeV , and ν can be identified with the topological charge. Note that sometimes other 4 conventions for the width of the Gaussian distribution of P and Q are used in the literature. The RMTDiracoperatorD(µ)isthematrixin(2.1)withthemasssettozero. 2 Exactresultsfortwo-colorQCDatlowandhighdensity TiloWettig Itwasshownin[8]thatintheN →∞limitthisRMTpartitionfunctionisidenticaltothepar- tition function obtained from the static (or zero-dimensional) effective Lagrangian for two-color QCD at low density1 given in [3]. More precisely, the two partition functions have the same de- pendenceonthequarkmassesandonthechemicalpotential. Themappingbetweendimensionless RMTquantitiesandphysicalquantitiesisgivenby √ Nm=m GV =m2F2V , (2.2a) phys 4 π 4 1 Nµ2=µ2 F2V , (2.2b) 2 phys 4 whereGandF arelow-energyconstantsintheeffectiveLagrangianinthenotationof[3]. Both the random matrix theory (2.1) and the corresponding effective Lagrangian explicitly depend on the chemical potential µ. In contrast, the effective Lagrangian at high density derived in [4] does not explicitly depend on µ. It only depends on the quark masses, which appear in the combinationm2∆2V . Ahintastowhatthecorrectrandommatrixtheoryathighdensityshouldbe 4 can be obtained by noting that (2.1) is basically symmetric under µ →1/µ (except that real and imaginary parts are interchanged). Maximum non-Hermiticity, which is expected at high density, corresponds to µ =1. We therefore conjecture that at high density the random matrix theory is, afteraredefinitionoftherandommatrices,givenby (cid:32) (cid:33) (cid:90) Nf m A ZRMT= dAdBe−14tr(AAT+BBT)∏det BTf m , (2.3) f=1 f where the dimension of A and B is again N×(N+ν).2 In the high-density phase, we restrict ourselvestoanevennumberofflavors. Letusfirstcheckthatweobtainthecorrectpatternofchiralsymmetrybreaking. Tothisend, werewritetheN -flavordeterminantresultingfrom(2.3)inthechirallimitintheform f (cid:32) (cid:33) (cid:32) (cid:33) (cid:32) (cid:33) 0 A 0 A 0 B detNf =detNf/2 detNf/2 . (2.4) BT 0 −AT 0 −BT 0 ThematricesinthetwofactorsontheRHSofthisequationhavetheformofthechiralorthogonal ensembleofrandommatrixtheory. Itwasshownin[12]thatthesymmetrybreakingpatterninthat ensemble with N /2 flavors is U(N )→Sp(N ). Since we have two such factors, (2.3) with N f f f f flavors has the symmetry breaking pattern U(N )×U(N )→Sp(N )×Sp(N ). This agrees with f f f f thesymmetrybreakingpatternintheeffectivetheoryduetotheformationofadiquarkcondensate, whichisgivenbySU(N ) ×SU(N ) ×U(1) ×U(1) →Sp(N ) ×Sp(N ) [4]. f L f R B A f L f R We have also shown [8] that in the N →∞ limit the RMT partition function (2.3) is identical tothepartitionfunctionofthehigh-densityeffectivetheoryinthezero-dimensionallimit,i.e.,the twopartitionfunctionshavethesamemassdependence. Themappingbetweenthedimensionless RMTmassandthephysicalmassisnowquitedifferentfrom(2.2a)andgivenby √ 3 √ m= m ∆ V . (2.5) phys 4 π 1Bylowdensityweheremeantheregimeofweaknon-Hermiticity,seeSec.3forthedefinitionofthisregime. 2Onlythecaseν=0isphysicallyrelevantsincetopologyisstronglysuppressedathighdensity. 3 Exactresultsfortwo-colorQCDatlowandhighdensity TiloWettig The arguments presented so far, while giving overwhelming evidence in favor of the equiva- lence of the random matrix theory (2.3) and the effective theory at high density, do not constitute a full proof. For such a proof one would have to show that all spectral correlation functions are identical in both theories, which requires studying the partially quenched version of the theory. Suchastudyhasnotbeendoneyet,butwehavenodoubtthattheoutcomewouldbepositive. 3. Exactresultsfromrandommatrixtheory Wecannowproceedtocomputespectralcorrelationfunctionsfromtherandommatrixtheory in the N → ∞ limit. At µ = 0 the RMT eigenvalues λ are purely imaginary, while at µ (cid:54)= 0 they are either purely real, purely imaginary, or come in complex conjugate pairs. We are mainly interestedintheso-calledmicroscopicspectraldensityofthesmalleigenvalues,i.e.,werescaleall eigenvalues by a quantity δ that is, up to a numerical prefactor, equal to the mean level spacing near zero. This results in complex numbers z=λ/δ of order O(1). To see an effect of the quark massesonthesmalleigenvaluesweneedtorescaletheminthesameway,resultinginmˆ =m /δ. f f Therandommatrixtheorycanbesolvedintwodifferentregimes: • In the regime of weak non-Hermiticity, the combination µˆ2 =2Nµ2 =4µ2 F2V is kept phys 4 fixedinthelimitN →∞. Whilethisregimemightappeartobemainlyofacademicinterest since µ →0inthethermodynamiclimit,ithasanimportantphenomenologicalapplication, i.e.,theextractionofthelow-energyconstantsGandF fromlatticedata. Inourconventions √ √ √ wehaveδ =1/2 N inthisregime,i.e.,z=2 Nλ andmˆ =2 Nm. • Intheregimeofstrongnon-Hermiticity,µ iskeptnonzerointhelimitN→∞. Theanalytical resultsinthisregimearetheµˆ →∞limitsofthecorrespondingweaknon-Hermiticityresults. Theirfunctionalformisidenticalforall0<µ≤1,andtheµ-dependenceonlyentersthrough a rescaling of the eigenvalues. In our conventions we have δ =1 in this regime so that no N-dependentrescalingoftheeigenvaluesandthemassesisnecessary. In [13] analytical results for the microscopic spectral “density” (which we put in quotation markssincethisquantitycanbecomenegativeifthereisasignproblem)wereobtainedinbothof the above-mentioned regimes in the quenched case, i.e., for N =0 flavors. In the meantime, the f generalization to the unquenched case has been worked out [14]. Since the analytical results are rather cumbersome we will not present them here. Important features of the results are exhibited inFigs.1through4. Commentsonthesefeaturesaregiveninthefigurecaptions. 4. Thesignproblem Asagoodmeasureofthesignproblemintwo-colorQCDwedefinethequantity (cid:68) (cid:69) sgndet(D+m)∏Nf=f 1|det(D+mf)| (cid:104)sgndet(D+m)(cid:105) ≡ Nf=0, (4.1) ||Nf|| (cid:68)∏Nf=f 1|det(D+mf)|(cid:69) Nf=0 see[14]foramoredetaileddiscussion. 4 Exactresultsfortwo-colorQCDatlowandhighdensity TiloWettig 0.08 0.05 ρwIm(y) ρwRe(x) 0.06 0 0.04 mˆ=0.1 −0.05 mˆ=12 mˆ=2 mˆ=15 0.02 mˆ=3 mˆ=20 −0.1 quenched quenched 0 0 2 4 6 8 y 10 0 5 10 15 20 25 x 30 Figure1: Microscopicspectral“density”ofthepurelyimaginary(left)andpurelyreal(right)eigenvalues intheregimeofweaknon-HermiticityforN =1, µˆ =3,ν =0,anddifferentvaluesofmˆ. Thedensityof f therealeigenvaluesgoesthroughzeroforx=mˆ . f ρC(z) w Imz ρC(z) w Imz Rez Rez Figure2:Microscopicspectral“density”ofthecomplexeigenvaluesintheregimeofweaknon-Hermiticity for N =1 and ν =0. Left: µˆ =1.8 and mˆ =0. The massless quark causes a depletion of the density f neartheorigin. Right: µˆ =6andmˆ =20. Forlarge µˆ thereisanellipticaldomaininwhichthe“density” oscillatesstrongly. 0.4 0.4 ρs(z) ρs(z) 0.2 0.2 Im Im Re Re 0 0 0 1 2 3 4 z 5 0 1 2 3 4 z 5 Figure3: Microscopicspectral“density”ofthepurelyimaginary(solid)andpurelyreal(dashed)eigenval- uesintheregimeofstrongnon-HermiticityforN =2,mˆ =2,mˆ =3,ν =0(left),andν =2(right). The f 1 2 densityoftherealeigenvaluesgoesthroughzeroforx=mˆ . f ρC(z) ρC(z) s s Imz Imz Rez Rez Figure4:Microscopicspectral“density”ofthecomplexeigenvaluesintheregimeofstrongnon-Hermiticity forN =2andν=0.Left:mˆ =mˆ =2.Degeneratemassesgenerateadipinthespectrumatz=mˆ.Right: f 1 2 mˆ =2,mˆ =8. Unequalmassesresultinadomainofstrongoscillations,indicativeofthesignproblem. 1 2 5 Exactresultsfortwo-colorQCDatlowandhighdensity TiloWettig 1 mˆ=0 1 ν=0 mˆ=6 ν=10 (cid:104)sgn(cid:105) mˆ=15 (cid:104)sgn(cid:105) ν=20 0.5 0.5 0 0 0 1 2 3 4 5 µˆ 0 1 2 3 4 5 µˆ Figure5: Averagesignatweaknon-HermiticityforN =1asafunctionofµˆ. Left: ν=0iskeptfixedand f mˆ isvaried. Right: mˆ =0iskeptfixedandν isvaried. 1 ν=0 ν=1 (cid:104)sgn(cid:105) ν=2 0.5 0 1 2 3 4 5 6 mˆ2 Figure6: Averagesignatstrongnon-HermiticityforN =2,mˆ =1,andν =0,1,2asafunctionofmˆ . f 1 2 We first consider the regime of weak non-Hermiticity. We choose N =1 and turn on µˆ to f study its effect on the average sign, see Fig. 5. It is evident from the plots that the sign problem (i)increaseswithincreasingµˆ,(ii)decreaseswithincreasingmˆ,and(iii)decreaseswithincreasing ν (in agreement with [15]). A quantitative analysis [14] reveals that in the thermodynamic limit (cid:112) the average sign makes a first-order transition from 1 to 0 at µˆ = mˆ/2, which in physical units correspondstoacriticalchemicalpotentialµ =m /2. phys π Next we consider the regime of strong non-Hermiticity. We choose N =2 and detune the f quark masses. The effect on the average sign is shown in Fig. 6. The sign problem is absent for mˆ =mˆ andincreasesas|mˆ −mˆ |increases. Itagaindecreaseswithincreasingν. 1 2 1 2 5. Conclusions We have shown that a single random matrix theory describes two-color QCD at low density in the regime of weak-Hermiticity and at high density in the BCS superfluid phase, depending on the choice of the RMT parameter µ and on the rescaling factors in (2.2) and (2.5). These two regimes have very different symmetry breaking patterns. It would be interesting to investigate theapplicabilityofrandommatrixtheoryintheregionofintermediatedensities,whereintriguing phenomenasuchasaBEC-BCScrossoverhavebeenconjectured[16]. The analytical RMT results can be used to extract physical parameters such as ∆ from lat- tice data. Two-color lattice simulations with adjoint staggered fermions, which are in the same symmetryclassascontinuumfundamentalfermions[17],arecurrentlyunderwaytotestourRMT predictions. 6 Exactresultsfortwo-colorQCDatlowandhighdensity TiloWettig References [1] P.deForcrand,SimulatingQCDatfinitedensity,PoSLAT2009(2009)010,[arXiv:1005.0539]. [2] J.B.Kogut,D.K.Sinclair,S.J.Hands,andS.E.Morrison,Two-colourQCDatnon-zero quark-numberdensity,Phys.Rev.D64(2001)094505,[hep-lat/0105026]. [3] J.B.Kogut,M.A.Stephanov,D.Toublan,J.J.M.Verbaarschot,andA.Zhitnitsky,QCD-liketheories atfinitebaryondensity,Nucl.Phys.B582(2000)477–513,[hep-ph/0001171]. [4] T.Kanazawa,T.Wettig,andN.Yamamoto,ChiralLagrangianandspectralsumrulesfordense two-colorQCD,JHEP08(2009)003,[arXiv:0906.3579]. [5] T.Kanazawa,T.Wettig,andN.Yamamoto,ChiralLagrangianandspectralsumrulesfortwo-color QCDathighdensity,PoSLAT2009(2009)195,[arXiv:0910.2300]. [6] J.J.M.VerbaarschotandT.Wettig,RandommatrixtheoryandchiralsymmetryinQCD,Ann.Rev. Nucl.Part.Sci.50(2000)343–410,[hep-ph/0003017]. [7] G.Akemann,MatrixmodelsandQCDwithchemicalpotential,Int.J.Mod.Phys.A22(2007) 1077–1122,[hep-th/0701175]. [8] T.Kanazawa,T.Wettig,andN.Yamamoto,Chiralrandommatrixtheoryfortwo-colorQCDathigh density,Phys.Rev.D81(2010)081701,[arXiv:0912.4999]. [9] D.T.Son,Superconductivitybylong-rangecolormagneticinteractioninhigh-densityquarkmatter, Phys.Rev.D59(1999)094019,[hep-ph/9812287]. [10] T.Schafer,QCDandtheeta’mass: Instantonsorconfinement?,Phys.Rev.D67(2003)074502, [hep-lat/0211035]. [11] G.Akemann,M.J.Phillips,andH.J.Sommers,CharacteristicpolynomialsinrealGinibre ensembles,J.Phys.A42(2008)012001,[arXiv:0810.1458]. [12] A.M.HalaszandJ.J.M.Verbaarschot,EffectiveLagrangiansandchiralrandommatrixtheory, Phys.Rev.D52(1995)2563–2573,[hep-th/9502096]. [13] G.Akemann,M.J.Phillips,andH.J.Sommers,ThechiralGaussiantwo-matrixensembleofreal asymmetricmatrices,J.Phys.A43(2010)085211,[arXiv:0911.1276]. [14] G.Akemann,T.Kanazawa,M.Phillips,andT.Wettig,Randommatrixtheoryofunquenched two-colourQCDwithnonzerochemicalpotential,[arXiv:1012.4461]. [15] J.C.R.BlochandT.Wettig,RandommatrixanalysisoftheQCDsignproblemforgeneraltopology, JHEP03(2009)100,[arXiv:0812.0324]. [16] K.Splittorff,D.T.Son,andM.A.Stephanov,QCD-likeTheoriesatFiniteBaryonandIsospin Density,Phys.Rev.D64(2001)016003,[hep-ph/0012274]. [17] S.Handsetal.,NumericalstudyofdenseadjointmatterintwocolorQCD,Eur.Phys.J.C17(2000) 285–302,[hep-lat/0006018]. 7

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.