Exact results for supersymmetric quantum mechanics on the lattice 2 1 David Baumgartner∗and Urs Wenger 0 2 AlbertEinsteinCenterforFundamentalPhysics InstituteforTheoreticalPhysics n a UniversityofBern J Sidlerstrasse5 6 CH-3012Bern Switzerland ] at E-mail: [email protected],[email protected] l - p e We discuss N =2 supersymmetric quantum mechanics on the lattice using the fermion loop h formulation. Inthisapproachthesystemnaturallydecomposesintoabosonicandfermionicsec- [ tor. Thisallowsustodealwiththesignproblemarisinginthecontextofbrokensupersymmetry 1 v duetothevanishingoftheWittenindex. Employingtransfermatrixtechniquesweobtainexact 5 resultsatfinitelatticespacingandarehenceabletostudyhowthecontinuumlimitisapproached. 8 4 Inparticular,wedeterminehowsupersymmetryisrestoredandhow,inthecaseofbrokensuper- 1 symmetry,thegoldstinomodeemerges. . 1 0 2 1 : v i X r a TheXXIXInternationalSymposiumonLatticeFieldTheory July10-16,2011 SquawValley,California,USA ∗Speaker. (cid:13)c Copyrightownedbytheauthor(s)underthetermsoftheCreativeCommonsAttribution-NonCommercial-ShareAlikeLicence. http://pos.sissa.it/ ExactresultsforSUSYQMonthelattice DavidBaumgartner 1. Introduction Calculating nonperturbative properties of supersymmetric theories on the lattice encounters various difficulties related to the fact that the discretisation of space-time explicitly breaks super- symmetry and violates Leibniz’ rule. Moreover, the vanishing of the Witten index in the context ofspontaneoussupersymmetrybreakingleadstoafermionsignproblemwhichmakesstraightfor- wardnumericalsimulationsimpossible. Whiletherestorationofsupersymmetrycansometimesbe achievedinthecontinuumlimitofthelatticetheory,e.g.byfinetuningorbyconstructingQ-exact discretisations[1], asolutiontothesignproblemisnoteasytofind. Apossiblewayouthasbeen proposedin[2,3,4]. Itisbasedonthefermionloopformulationwhichcanbesimulatedwithout criticalslowingdownevenwhenamasslessgoldstinomodeispresent. Inthiswork,weapplythefermionloopformulationtoN =2supersymmetricquantumme- chanics for superpotentials yielding broken or unbroken supersymmetry. Using transfer matrix techniquesweareabletoobtainexactresultsforpartitionfunctionsandvariousobservablesatfi- nitelatticespacing. Weinvestigatehowthesupersymmetricspectrumisrecoveredinthecontinuum limitandhowthegoldstinomodeemergesinthecaseofbrokensupersymmetry. Intheseproceed- ingsweconfineourselvestothepresentationofresultsobtainedusingaWilsontypediscretisation togetherwiththeappropriatefinetuningofcounterterms,althoughresultsusingaQ-exactdiscreti- sationhavebeenderivedaswell. 2. Supersymmetricquantummechanicsonthelattice ThecontinuumactionofN =2supersymmetricquantummechanicscanbewrittenas (cid:34) (cid:35) (cid:90) 1(cid:18)dφ(t)(cid:19)2 1 (cid:18)d (cid:19) S= dt + P(cid:48)(φ(t))2+ψ(t) +P(cid:48)(cid:48)(φ(t)) ψ(t) (2.1) 2 dt 2 dt with one real bosonic coordinate φ, two anticommuting fermionic coordinates ψ and ψ, and a genericsuperpotentialP(φ). ThederivativeofthesuperpotentialP(cid:48)(φ)istakenwithrespecttoφ, P(cid:48)(φ) =˙ ∂P(φ). For periodic boundary conditions (PBC) the action is invariant under two super- ∂φ symmetrytransformationsδ : 1,2 δ φ = ψε, δ φ = ψε, 1 2 δ ψ = 0, δ ψ = (dφ −P(cid:48))ε, 1 2 dt δ ψ = (dφ +P(cid:48))ε, δ ψ = 0, 1 dt 2 withtwoGrassmannvaluedparametersε andε. Notethatforsupersymmetricquantummechanics itistheformofthesuperpotentialP(φ)whichdeterminesthesupersymmetrybreakingpattern. If the highest power of P(φ) is even (odd), supersymmetry is unbroken (broken). A main feature of supersymmetryisthedegeneracybetweentheenergylevelsinthebosonicandthefermionicsector. Forunbrokensupersymmetry,however,thereisonesingleunpairedenergylevelatzeroenergy,i.e., auniquegroundstate,eitherinthebosonicorinthefermionicsector. Thisisincontrasttothecase ofbrokensupersymmetry,wherethelowestenergylevelsinbothsectorsaredegenerateandlifted above zero. In addition, there is a zero energy goldstino mode which mediates between the two degenerategroundstates. 2 ExactresultsforSUSYQMonthelattice DavidBaumgartner The supersymmetry breaking pattern can also be partly infered from the Witten index. It is formallydefinedas W ≡ lim Tr(cid:2)(−1)Fexp(−βH)(cid:3), β→∞ whereF denotesthefermionnumberoperatorandH istheHamiltonianofthesystem. Essentially, W counts the difference between the number of bosonic and fermionic zero energy states and its vanishing provides a neccessary but not sufficient condition for supersymmetry breaking. W can alsobewrittenmoreexplicitelyas W = lim[Tr exp(−βH)−Tr exp(−βH)]= lim[Z −Z ]= lim Z , (2.2) b f 0 1 PBC β→∞ β→∞ β→∞ whereTr denotethetracesoverthebosonicandfermionicstates. Z arethepartitionfunctions b,f 0,1 in the F =0,1 sectors and Z is the one with periodic boundary conditions. In the language of PBC fieldtheory,thelattercanbecalculatedvia (cid:90) (cid:90) ∞ Z = DφDψDψexp(−S)= DφdetD(φ)exp(−S ). PBC φ −∞ In the last step, the fermions have been integrated out yielding the fermion matrix determinant detD and the bosonic part of the action S . In this representation, the origin of a fermion sign φ problem becomes evident when supersymmetry is broken: a vanishing Witten index requires the determinantdetDtobeindefinite. 2.1 Latticeformulation Fortheconstructionofalatticeversionofthemodel,wefollowGoltermanandPetcher[5]and employ the same lattice derivative for the bosons as for the fermions. To avoid fermion doublers, weusetheWilsonlatticederivativewithWilsonparameterr=1. Inonedimensionthissimplifies tothebackwardderivative(∆−f) = f − f andthediscretisedactionexplicitlyreads x x x−1 (cid:20) (cid:21) 1 S =∑ (P(cid:48)(φ )2+2φ2)−φ φ +(1+P(cid:48)(cid:48)(φ ))ψ ψ −ψ ψ . (2.3) L 2 x x x x−1 x x x x x−1 x Duetoradiativecorrectionsthelatticetheoryis,however,notguaranteedtoyieldasupersymmet- rictheoryinthecontinuumlimit. Thecorrectionscanbeaccountedforeitherbyaddingasuitable counterterm 1∑P(cid:48)(cid:48) totheaction[5,6],whichrestoresthesupersymmetriesinthecontinuumlimit, 2 orbyaddingthesurfaceterm∑P(cid:48)(∆−φ)[7,8,9]resultinginaQ-exactaction. Thelatterconstruc- tion preserves a particular combination of the supersymmetries δ exactly even at finite lattice 1,2 spacingandhenceguaranteesthecorrectcontinuumlimitwithoutanyfinetuning. Tocircumventthesignproblemdiscussedabove,wemakeuseofthefermionloopformulation [2,3,4]. Thebasicideahereistoexactlyrewritetheexponentialofthefermiondegreesoffreedom asapowerseriestoallorders. Uponintegrationofthefermionfields,thenilpotencyoftheGrass- f man variables yields a constraint on the oriented fermionic bond occupation numbers n = 0,1 x between the sites x and x−1 related to the fermion hopping term ψ ψ , and on the monomer x x−1 occupationnumbersmf =0,1stemmingfromtheterm(1+P(cid:48)(cid:48)(φ ))ψ ψ . Theconstraintisgiven x x x x by 1 mf + (nf +nf )=1 ∀x, x 2 x x+1 3 ExactresultsforSUSYQMonthelattice DavidBaumgartner f f and allows only two fermion configurations: {m =1,n =0,∀x} with fermion number F =0, x x f f and {m =0,n =1,∀x} with fermion number F =1. For PBC the latter receives an additional x x minussignrelativetotheformerduetothefermionloop. Asaconsequence,thepartitionfunction naturally decomposes into a bosonic and fermionic contribution Z and Z , in accordance with 0 1 eq.(2.2). Itisthisdecompositionwhicheventuallyallowstotakecareofthefermionsignproblem. Inadditiontothefermionbondsandmonomerswealsointroducenon-orientedbondsforthe bosonic degrees of freedom, with the corresponding bosonic bond occupation numbers nb ∈N0 x [4]. Depending on the symmetries of the action, these bosonic bond configurations may obey certain constraints. By summing over these constrained configurations {nb} we obtain the locally x factorisedpartitionfunctionswithfixedfermionnumberF =0,1, 1 Z = ∑ ∏ Q (N ) F nb! F x {nb} x x x wherethelocalweightsQ aredefinedas F (cid:90) QF(N)= dφ φNe−12(P(cid:48)(φ)2+2φ2)(1+P(cid:48)(cid:48)(φ))1−F withthebosonicsiteoccupationnumberN =nb+nb . TheQ-exactdiscretisationrequiresaddi- x x x+1 tionaltypesofbosonicbonds,butstillleadstoalocallyfactorisedpartitionfunction. 2.2 Transfermatrix The dimensionality of the system allows a further reformulation in terms of a transfer matrix betweenstatesdefinedontheduallattice. Eachstateischaracterisedbythefermionbondoccupa- tionnumbernumbernf andthebosonbondoccupationnumbernb,i.e.|nf,nb(cid:105). Sincethefermion numberisconservedthetransfermatrixhasablockstructureconsistingofthetwomatricesTF=0,1 mb,nb whichtakethesystemfromstate|F,nb(cid:105)to|F,mb(cid:105). Tobespecific,thetransfermatrixelementsare givenby 1 1 TF = √ √ Q (mb+nb). mb,nb mb! nb! F Inordertokeepthesizeofthematricesfinite,weintroduceacutoffonthemaximalbosonicbond occupation number. Keeping it of the order O(102) turns out to be sufficient to render all results independentofthecutoff. In terms of these transfer matrices, the partition function for a system with L lattice sites is t calculatedineachsectorF accordingto Z =Tr[(TF)Lt]. F ThesepartitionfunctionscanthenbecombinedtoZ =Z −Z andZ =Z +Z forPBCand PBC 0 1 aPBC 0 1 antiperiodic boundary conditions (aPBC), respectively. The construction via the transfer matrices allows the straightforward calculation of various observables, such as correlation functions, Ward identities and mass gaps. The latter are directly associated with the eigenvalues of the transfer matrices. If we denote the eigenvalues of TF by λF >λF >..., the k-th bosonic mass gap in the 0 1 sectorF canbecalculatedas mF,k =−L ·log(cid:0)λF/λF(cid:1), k=1,2,..., b t k 0 4 ExactresultsforSUSYQMonthelattice DavidBaumgartner l/m3/2 = 1.0 g/m2 = 1.0 0 1 mL = 0.1 mL = 0.2 mL = 0.5 mL = 0.8 0.998 mL = 1.0 mL = 2.0 mL = 5.0 Z/ZPBCaPBC-0.5 mmmmmLLLLL ===== 1112 80260.....00000 Z/ZPBCaPBC0.996 mmLL == 1 09..00 mL = 30.0 mL = 8.0 mL = 7.0 0.994 mmLL == 65..00 mL = 4.0 0.992 -1 0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4 a m a m Figure1: TheWittenindexW =Z /Z versusthelatticespacingforbroken(leftplot)andunbroken PBC aPBC supersymmetry(rightplot)atvariousvaluesoftheinversetemperaturemL.Thecontinuumlimitcorresponds toam→0. whereasthek-thfermionicenergygapisgivenby mF,k =−L ·log(cid:0)λ1−F/λF(cid:1), k=0,1,.... f t k 0 The transfer matrix approach can, of course, be generalised straightforwardly to any kind of dis- cretisationoftheactioneq.(2.1),inparticularalsototheQ-exactdiscretisation. 3. Results We now present the results for the action (2.3) with the counterterm using the techniques introduced above. For our calculations, we use the superpotential P (φ)= 1mφ2+1gφ4 as an u 2 4 example with unbroken supersymmetry and P (φ)=−m2φ+1λφ3 as an example for which the b 4λ 3 supersymmetry is broken. The calculations are performed at coupling strengths g/m2 =1.0 and λ/m3/2=1.0,respectively,thusweareclearlyinaregimewhereperturbationtheoryisnotappli- cable. ForasystemwithaPBCforthefermionthetemporalextentofthelatticeisinverselyrelated to the temperature T of the system, such that mL→∞ corresponds to the zero temperature limit. Finally,thecontinuumlimitisreachedbytakingL →∞. t 3.1 Wittenindex TheWittenindexisdeterminedbythequantityZ /Z =(Z −Z )/(Z +Z ). Itmeasures PBC aPBC 0 1 0 1 therelativeweightbetweenthebosonicandfermionicsectorsZ andZ ,respectively. Inthesystem 0 1 with broken supersymmetry both ground states are equally favourable, yielding Z /Z =0 PBC aPBC in the zero temperature limit. Of course, the degeneracy between the two ground states is broken at finite lattice spacing, so one expects a Witten indexW =±1 in the limit T →0 at fixed a. It turns out that for our choice of parameters, the fermionic ground state has a slightly lower energy atfinitealeadingtoW =−1intheT →0limit,cf.leftplotinfigure1. Thisistrueforanyfinite a,sotheorderofthelimitslim lim iscrucialtoobtainW =0. NotealsothatforT (cid:29)1the T→0 a→0 5 ExactresultsforSUSYQMonthelattice DavidBaumgartner l/m3/2 = 1.0 g/m2 = 1.0 8 mb/m in Z0 8 mb/m in Z1 mf/m in Z1 6 6 mmbf//mm iinn ZZ00 m m m/f/b4 m/f/b4 2 2 0 0 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5 a m a m Figure2: Bosonicandfermionicmassgapsm andm versusthelatticespacinga,allexpressedinunitsof b f thebaremassm. Resultsforbrokenandunbrokensupersymmetryaredisplayedintheleftandrightpanel, respectively.NotethatforbrokensupersymmetrythezeroenergyGoldstinomodeemergesinthecontinuum limit. Wittenindextendstozeroatanyfinitea, inaccordancewiththecountingofthestatesineq.(2.2) atfinitetemperature. Inthesituationwithunbrokensupersymmetrythesystemisforcedtooccupythesingleunique ground state in the zero temperature limit, yielding Z /Z =+1 or −1. Note that for our PBC aPBC specific choice of parameters the ground state is bosonic, hence W = +1. However, while one findsthattheindexispushedawayfrom0forT (cid:29)1asbefore,inthelimitT →0itwillalwaysgo to 1 at any finite a, cf. right plot in figure 1. So it turns out that for unbroken symmetry, the order ofthetwolimitslim andlim isnotrelevant. T→0 a→0 3.2 Massgaps It is also interesting to study how the energy or mass gaps approach the continuum limit. In figure2weshowtheresultsforthelowestfewmassesasafunctionofthelatticespacinga,every- thingexpressedinunitsofthebaremassm,forbroken(leftplot)andforunbrokensupersymmetry (right plot). Since we extract the mass gaps from the eigenvalues of the transfer matrices, the re- sultsareobtaineddirectlyinthelimitT →0. Asaconsequence,forbrokensupersymmetry,where therearetwodegenerategroundstatesinthecontinuum,itmakessensetocalculatebosonicexci- tations m both in the F =0 and F =1 sector. The plots illustrate nicely how the supersymmetry b in the spectrum, i.e. the degeneracies between the bosonic and fermionic excitations, are restored in the continuum limit. Furthermore, when the supersymmetry is broken one expects a zero en- ergy fermionic excitation, the goldstino mode, which is responsible for the fact that Z = 0. PBC From the plot it becomes clear how the lattice acts as a regulator for the goldstino mode and, as a consequence, also for the vanishing Witten indexW, hence allowing to give meaning to (finite) observables even in the system with PBC. Finally, we make the observation that the leading lat- tice artefacts of the spectral mass gaps are all O(a) except for m in the F =0 sector when the b supersymmetryisbroken. InthatcasetheyareO(a2). 6 ExactresultsforSUSYQMonthelattice DavidBaumgartner 4. Conclusions WehavepresentedexactresultsforN =2supersymmetricquantummechanicsonthelattice usingthefermionloopformulationandcorrespondingtransfermatrices. Withthesetechniqueswe are able to study in detail how the supersymmetric spectrum is recovered in the continuum limit andhowtheWittenindexisregularisedonthelattice. In the loop formulation the partition function naturally separates into bosonic and fermionic contributions and this is crucial for containing the fermion sign problem in supersymmetric sys- tems with broken supersymmetry. The transitions between the bosonic and fermionic sectors are controlledbythe(would-be)goldstinomodewhichbecomesmasslessonlyinthecontinuumlimit. Since massless fermion modes can be efficiently simulated with the fermion loop algorithm pro- posedin[2,3]ourapproachprovidesawaytocircumventthesignproblem. Indeed, resultsfrom Monte Carlo simulations of N =2 supersymmetric quantum mechanics have already been pre- sented in [4] and in this work we have provided the corresponding exact results using transfer matrices. Itisalsointerestingtoapplyourapproachinhigherdimensionswhereitallowstoinvestigate thespontaneousbreakingofsupersymmetrynonperturbativelyandfromfirstprinciples. Inpartic- ular,theapproachcanbeappliedtosupersymmetricWess-Zuminomodels[4]ind=2dimensions and first results from simulations of the N =1 model including one Majorana fermion and one scalarfieldhavebeenpresentedatthisconference[10]. References [1] S.Catterall,TwistedlatticesupersymmetryandapplicationstoAdS/CFT,PoSLATTICE2010(2010) 002,[arXiv:1010.6224]. [2] U.Wenger,Efficientsimulationofrelativisticfermionsviavertexmodels,Phys.Rev.D80(2009) 071503,[arXiv:0812.3565]. [3] U.Wenger,SimulatingWilsonfermionswithoutcriticalslowingdown,PoSLAT2009(2009)022, [arXiv:0911.4099]. [4] D.BaumgartnerandU.Wenger,Simulationofsupersymmetricmodelsonthelatticewithoutasign problem,PoSLATTICE2010(2010)245,[arXiv:1104.0213]. [5] M.F.L.GoltermanandD.N.Petcher,Alocalinteractivelatticemodelwithsupersymmetry,Nucl. Phys.B319(1989)307–341. [6] J.Giedt,R.Koniuk,E.Poppitz,andT.Yavin,Lessnaiveaboutsupersymmetriclatticequantum mechanics,JHEP12(2004)033,[hep-lat/0410041]. [7] S.CatterallandE.Gregory,Alatticepathintegralforsupersymmetricquantummechanics,Phys. Lett.B487(2000)349–356,[hep-lat/0006013]. [8] S.Catterall,Latticesupersymmetryandtopologicalfieldtheory,JHEP0305(2003)038, [hep-lat/0301028]. [9] G.Bergner,T.Kaestner,S.Uhlmann,andA.Wipf,Low-dimensionalsupersymmetriclatticemodels, AnnalsPhys.323(2008)946–988,[arXiv:0705.2212]. [10] D.Baumgartner,K.Steinhauer,andU.Wenger,Supersymmetrybreakingonthelattice: theN=1 Wess-Zuminomodel,PoSLATTICE2011(2011)253,[arXiv:1111.6042]. 7