Exact Price of Anarchy for Polynomial Congestion Games ? SebastianAland,DominicDumrauf,MartinGairing,BurkhardMonien,andFlorian Schoppmann DepartmentofComputerScience,ElectricalEngineeringandMathematics UniversityofPaderborn,Fu¨rstenallee11,33102Paderborn,Germany {sebaland,masa,gairing,bm,fschopp}@uni-paderborn.de Abstract. We show exact values for the price of anarchy of weighted and un- weightedcongestiongameswithpolynomiallatencyfunctions.Thegivenvalues alsoholdforweightedandunweightednetworkcongestiongames. 1 Introduction Motivation and Framework. Large scale communication networks, like e.g. the in- ternet,oftenlackacentralregulationforseveralreasons:Thesizeofthenetworkmay be too large, or the users may be free to act according to their private interests. Even cooperation among the users may be impossible due to the fact that users may not even know each other. Such an environment—where users neither obey some central controlinstancenorcooperatewitheachother—canbemodeledasanon-cooperative game[18]. One of the most widely used solution concepts for non-cooperative games is the conceptofNashequilibrium.ANashequilibriumisastateinwhichnoplayercanim- provehisobjectivebyunilaterallychanginghisstrategy.ANashequilibriumiscalled pureifallplayerschooseapurestrategy,andmixed ifplayerschooseprobabilitydis- tributionsoverstrategies. Rosenthal [25] introduced a special class of non-cooperative games, now widely knownascongestiongames.Here,thestrategysetofeachplayerisasubsetofthepower setofgivenresources.Theplayersshareaprivatecostfunction,definedasthesum(over theirchosenresources)offunctionsinthenumberofplayerssharingthisresource.Later Milchtaich [20] considered weighted congestion games as an extension to congestion gamesinwhichtheplayershaveweightsandthusdifferentinfluenceonthecongestion oftheresources.Weightedcongestiongamesprovideuswithageneralframeworkfor modeling any kind of non-cooperative resource sharing problem. A typical resource sharing problem is that of routing. In a routing game the strategy sets of the players correspond to paths in a network. Routing games where the demand of the players cannot be split among multiple paths are also called (weighted) network congestion games.Anothermodelforselfishrouting—thesocalledWardropmodel—wasalready ?This work has been partially supported by the DFG-SFB 376 and by the European Union withinthe6thFrameworkProgrammeundercontract001907(DELIS). studiedinthe1950’s(seee.g.[3,29])inthecontextofroadtrafficsystems,wheretraffic flows can be split arbitrarily. The Wardrop model can be seen as a special network congestiongamewithinfinitelymanyplayerseachcarryinganegligibledemand. Inordertomeasurethedegradationofsocialwelfareduetotheselfishbehaviorof theplayers,KoutsoupiasandPapadimitriou[16]introducedaglobalobjectivefunction, usuallycoinedassocialcost.Theydefinedthepriceofanarchy,alsocalledcoordination ratio,astheworst-caseratiobetweenthevalueofsocialcostinaNashequilibriumand thatofsomesocialoptimum.Thus,thepriceofanarchymeasurestheextenttowhich non-cooperation approximates cooperation. The price of anarchy directly depends on the definition of social cost. Koutsoupias and Papadimitriou [16] considered a very simpleweightednetworkcongestiongameonparallellinks,nowknownasKP-model. For this model they defined the social cost as the expected maximum latency. For the Wardrop model, Roughgarden and Tardos [28] considered social cost as the total la- tency,whichisameasureforthe(weighted)totaltraveltime.Awerbuchetal.[1]and Christodoulou and Koutsoupias [5] considered the total latency for congestion games withafinitenumberofplayerswithnon-negligibledemands.Inthissetting,theyshow asymptoticboundsonthepriceofanarchyforweighted(andunweighted)congestion gameswithpolynomiallatency(cost)functions.Here,allpolynomialsareofmaximum degree d and have non-negative coefficients. For the case of linear latency functions theygiveexactboundsonthepriceofanarchy. Contribution and Comparison. In this work we prove exact bounds on the price of anarchy for unweighted and weighted congestion games with polynomial latency functions.Weusethetotallatencyassocialcostmeasure.Thisimprovesonresultsby Awerbuchetal.[1]andChristodoulouandKoutsoupias[5],wherenon-matchingupper andlowerboundsaregiven. Wenowdescribeourfindingsinmoredetail. – For unweighted congestion games we show that the price of anarchy (PoA) is ex- actly (k+1)2d+1−kd+1(k+2)d PoA= , (k+1)d+1−(k+2)d+(k+1)d−kd+1 where k = bΦ c and Φ is a natural generalization of the golden ratio to larger d d dimensionssuchthatΦ isthesolutionto(Φ +1)d =Φd+1.Priortothispaperthe d d d best known upper and lower bounds were shown to be of the form dd(1−o(1)) [5]. However,thetermo(1)stillhidesagapbetweentheupperandthelowerbound. – Forweightedcongestiongamesweshowthatthepriceofanarchy(PoA)isexactly PoA=Φd+1. d This result closes the gap between the so far best upper and lower bounds of O(2ddd+1)andΩ(dd/2)from[1]. Weshowthattheabovevaluesonthepriceofanarchyalsoholdforthesubclassesof unweightedandweightednetworkcongestiongames. Forourupperboundsweuseasimilaranalysisasin[5].Thecoreofouranalysisis todetermineparametersc andc suchthat 1 2 y·f(x+1)≤c ·x·f(x)+c ·y·f(y) (1) 1 2 2 forallpolynomiallatencyfunctionsofmaximumdegreedandforallrealsx,y≥0.For thecaseofunweighteddemandsitsufficestoshow(1)forallintegersx,y.Inorderto provetheirupperboundChristodoulouandKoutsoupias[5]lookedat(1)withc = 1 1 2 and gave an asymptotic estimate for c . In our analysis we optimize both parameters 2 c ,c .Thisoptimizationprocessrequiresnewideasandisnon-trivial. 1 2 Table 1 shows a numerical comparison of our bounds with the previous results of Awerbuchetal.[1]andChristodoulouandKoutsoupias[5]. For d ≥ 2, the table only gives the respective lower bounds that are given in the cited works (before any estimates are applied). Values in parentheses denote cases in whichtheboundforlinearfunctionsisbetterthanthegeneralcase. In [1, Theorem 4.3], a construction scheme for networks is described with price of anarchy approximating 1P∞ kd which yields the d-th Bell number. In [5, Theo- e k=1 k! rem 10], a network with price of anarchy (N−1)d+2 is given, with N being the largest N integerforwhich(N −1)d+2 ≤Ndholds. Thecolumnwiththeupperboundfrom[5] is computed byusing(1)withc = 1 1 2 andoptimizingc withhelpofouranalysis.Thus,thecolumnshowsthebestpossible 2 boundsthatcanbeshownwithc = 1. 1 2 unweightedPoA weightedPoA d Φd Ourexactresult UpperBound[5] Lowerbound[5] Ourexactresult Lowerbound[1] 1 1.618 2.5 2.5 2.5 2.618 2.618 2 2.148 9.583 10 (2.5) 9.909 (2.618) 3 2.630 41.54 47 (2.5) 47.82 5 4 3.080 267.6 269 21.33 277.0 15 5 3.506 1,514 2,154 42.67 1,858 52 6 3.915 12,345 15,187 85.33 14,099 203 7 4.309 98,734 169,247 170.7 118,926 877 8 4.692 802,603 1,451,906 14,762 1,101,126 4,140 9 5.064 10,540,286 20,241,038 44,287 11,079,429 21,147 10 5.427 88,562,706 202,153,442 132,860 120,180,803 115,975 Table1.Comparisonofourresultsto[5]and[1] RelatedWork. ThepapersmostcloselyrelatedtoourworkarethoseofAwerbuchet al. [1] and Christodoulou and Koutsoupias [5,4]. For (unweighted) congestion games and social cost defined as average private cost (which in this case is the same as total latency) it was shown that the price of anarchy of pure Nash equilibria is 5 for linear 2 latencyfunctionsanddΘ(d) forpolynomiallatencyfunctionsofmaximumdegreed[1, 5].Theboundof 5 forlinearlatencyfunctionalsoholdsforthecorrelatedandthusalso 2 forthemixedpriceofanarchy[4].Forweighted congestiongamesthemixedpriceof √ anarchyfortotallatencyis 3+ 5 forlinearlatencyfunctionsanddΘ(d) forpolynomial 2 latencyfunctions[1]. The price of anarchy [24], also known as coordination ratio, was first introduced andstudiedbyKoutsoupiasandPapadimitriou[16].Asastartingpointoftheirinvesti- gationtheyconsideredasimpleweightedcongestiongameonparallellinks,nowknown asKP-model.IntheKP-modellatencyfunctionsarelinearandsocialcostisdefinedas themaximumexpectedcongestiononalink.Inthissetting,thereexisttightboundson thepriceofanarchyofΘ( logm )foridenticallinks[7,15]andΘ( logm )[7]for loglogm logloglogm 3 relatedlinks.ThepriceofanarchyhasalsobeenstudiedforvariationsoftheKP-model, namelyfornon-linearlatencyfunctions[6,12],forthecaseofrestrictedstrategysets[2, 10],forthecaseofincompleteinformation[14]andfordifferentsocialcostmeasures [11,17].Inparticular Lu¨ckinget al.[17] studythetotal latency(they callitquadratic social cost) for routing games on parallel links with linear latency functions. For this model they show that the price of anarchy is exactly 4 for case of identical player 3 weightsand 9 forthecaseofidenticallinksandarbitraryplayerweights. 8 The class of congestion games was introduced by Rosenthal [25] and extensively studiedafterwards(seee.g.[8,20,21]).InRosenthal’smodelthestrategyofeachplayer isasubsetofresources.Resourceutilityfunctionscanbearbitrarybuttheyonlydepend onthenumberofplayerssharingthesameresource.Rosenthalshowedthatsuchgames alwaysadmitapureNashequilibriumusingapotentialfunction.MondererandShap- ley [21] characterize games that possess a potential function as potential games and show their relation to congestion games. Milchtaich [20] considers weighted conges- tion games with player specific payoff functions and shows that these games do not admitapureNashequilibriumingeneral.Fotakisetal.[8,9]considerthepriceofan- archyforsymmetricweightednetworkcongestiongamesinlayerednetworks[8]and forsymmetric(unweighted)networkcongestiongamesingeneralnetworks[9].Inboth casestheydefinesocialcostasexpectedmaximumlatency.Forasurveyonweighted congestiongameswereferto[13]. InspiredbytheariseninterestinthepriceofanarchyRoughgardenandTardos[28] re-investigatedtheWardropmodelandusedthetotallatencyasasocialcostmeasure. Inthiscontextthepriceofanarchywasshowntobe 4 forlinearlatencyfunctions[28] 3 andΘ( d )[26]forpolynomiallatencyfunctionsofmaximumdegreed.Anoverview logd onresultsforthismodelcanbefoundintherecentbookofRoughgarden[27]. Roadmap. The rest of this paper is organized as follows. In Section 2 we give an exact definition of weighted congestion games. We present exact bounds on the price ofanarchyforunweightedcongestiongamesinSection3andforweightedcongestion gamesinSection4.Duetolackofspaceweomitsomeoftheproofs. 2 Notations General. Forallintegersk ≥ 0,wedenote[k] = {1,...,k},[k] = {0,...,k}.For 0 all integers d > 0, let Φ ∈ R+ denote the number for which (Φ +1)d = Φd+1. d d d Clearly,Φ coincideswiththegoldenratio.Thus,Φ isanaturalgeneralizationofthe 1 d goldenratiotolargerdimensions. Weighted Congestion Games. A weighted congestion game Γ is a tuple Γ = (cid:0)n,E,(w ) ,(S ) ,(f ) (cid:1). Here, n is the number of players (or users) i i∈[n] i i∈[n] e e∈E and E is the finite set of resources. For every player i ∈ [n], w ∈ R+ is the weight i and S ⊆ 2E is the strategy set of player i. Denote S = S ×...×S and S = i 1 n −i S × ... × S × S ... × S . For every resource e ∈ E, the latency function 1 i−1 i+1 n f : R+ → R+ describesthelatencyonresourcee.Weconsideronlypolynomialla- e tency functions with maximum degree d and non-negative coefficients, that is for all e ∈ E thelatencyfunctionisoftheformf (x) = Pd a ·xj witha ≥ 0forall e j=0 e,j e,j j ∈[d] . 0 4 Ina(unweighted)congestiongame,theweightsofallplayersareequal.Thus,the private cost of a player only depends on the number of players choosing the same re- sources. StrategiesandStrategyProfiles. Apurestrategyforplayeri ∈ [n]issomespecific s ∈S whereasamixedstrategyP =(p(i,s )) isaprobabilitydistributionover i i i i si∈Si S ,wherep(i,s )denotestheprobabilitythatplayerichoosesthepurestrategys . i i i Apurestrategyprofileisann-tuples = (s ,...,s ) ∈ S whereasamixedstrat- 1 n egy profile P = (P ,...,P ) is represented by an n-tuple of mixed strategies. For a 1 n Q mixedstrategyprofilePdenotebyp(s)= p(i,s )theprobabilitythattheplay- i∈[n] i erschoosethepurestrategyprofiles = (s ,...,s ).Followingstandardgametheory 1 n notation,wedenoteP = (P ,...,P ,P ,...,P )asthe(mixed)strategypro- −i 1 i−1 i+1 n fileofallplayersexceptplayeriand(P ,Q )asthestrategyprofilethatresultsfrom −i i PifplayerideviatestostrategyQ . i P PrivateCost. Fixanypurestrategyprofiles,anddenotebyl (s)= w the e i∈[n],si3e i loadonresourcee ∈ E.Theprivatecostofplayeri ∈ [n]inapurestrategyprofiles isdefinedbyPC (s)=P f (l (s)).ForamixedstrategyprofileP,theprivatecost i e∈si e e ofplayeri∈[n]is X PC (P)= p(s)·PC (s). i i s∈S Social Cost. Associated with a weighted congestion game Γ and a mixed strategy profilePisthesocialcostSC(P)asameasureofsocialwelfare.Inparticularweuse theexpectedtotallatency,thatis, X X SC(P)= p(s) l (s)·f (l (s)) e e e s∈S e∈E X X X = p(s) w ·f (l (s)) i e e s∈S i∈[n]e∈si X = w ·PC (P). i i i∈[n] The optimum associated with a weighted congestion game is defined by OPT = min SC(P). P NashEquilibriaandPriceofAnarchy. Weareinterestedinaspecialclassof(mixed) strategyprofilescalledNashequilibria[22,23]thatwedescribehere.Givenaweighted congestiongameandanassociatedmixedstrategyprofileP,aplayeri∈[n]issatisfied ifhecannotimprovehisprivatecostbyunilaterallychanginghisstrategy.Otherwise, playeriisunsatisfied.ThemixedstrategyprofilePisaNashequilibriumifandonly ifallplayersi ∈ [n]aresatisfied,thatis,PC (P) ≤ PC (P ,s )foralli ∈ [n]and i i −i i s ∈S . i i Note,thatifthisinequalityholdsforallpurestrategiess ∈ S ofplayeri,thenit i i also holds for all mixed strategies over S . Depending on the type of strategy profile, i wedifferbetweenpureandmixedNashequilibria. Thepriceofanarchy,alsocalledcoordinationratioanddenotedPoA,isthemaxi- mumvalue,overallinstancesΓ andNashequilibriaP,oftheratio SC(P). OPT 5 3 PriceofAnarchyforUnweightedCongestionGames In this section, we prove the exact value for the price of anarchy of unweighted con- gestiongameswithpolynomiallatencyfunctions.Westartwithtwotechnicallemmas whicharecrucialfordeterminingc andc in(1)andthusforprovingtheupperbound 1 2 Theorem 1. In Theorem 2 we give a matching lower bound which also holds for un- weightednetworkcongestiongames(Corollary1). Lemma1. Let0≤c<1andd∈N then 0 ((cid:18)x+1(cid:19)d (cid:18)x(cid:19)d+1) n o max −c· =max (x+1)d−c·xd+1 . x∈N0,y∈N y y x∈N0 Lemma2. Letd∈Nand F ={g(d) :R→R|g(d)(x)=(r+1)d−x·rd+1,r∈R } d r r ≥0 beaninfinitesetoflinearfunctions.Furthermore,letγ(s,t)fors,t ∈ R ands 6= t ≥0 denote the intersection abscissa of g(d) and g(d). Then it holds for any s,t,u ∈ R s t ≥0 withs<t<uthatγ(s,t)>γ(s,u)andγ(u,s)>γ(u,t). Theorem1. For unweighted congestion games with polynomial latency functions of maximumdegreedandnon-negativecoefficients,wehave (k+1)2d+1−kd+1(k+2)d PoA≤ , wherek=bΦ c. (k+1)d+1−(k+2)d+(k+1)d−kd+1 d Proof. LetP = (P ,...,P )bea(mixed)NashequilibriumandletQ = (Q ,...,Q ) 1 n 1 n be a pure strategy profile with optimum social cost. Since P is a Nash equilibrium, playeri∈[n]cannotimprovebyswitchingfromstrategyP tostrategyQ .Thus, i i X X PC (P)= p(s) f (l (s))≤PC (P ,Q ) i e e i −i i s∈S e∈si X X X = p(s) fe(le(s))+ fe(le(s)+1) s∈S e∈Qi∩si e∈Qi\si X X ≤ p(s) f (l (s)+1). e e s∈S e∈Qi Summingupoverallplayersi∈[n]yields X X X X X X SC(P)= p(s) f (l (s))≤ p(s) f (l (s)+1) e e e e i∈[n]s∈S e∈si i∈[n]s∈S e∈Qi X X = p(s) l (Q)·f (l (s)+1). e e e s∈S e∈E Now, l (Q) and l (s) are both integer, since Q and s are both pure strategy profiles. e e Thus,bychoosingc ,c suchthat 1 2 y·f(x+1)≤c ·x·f(x)+c ·y·f(y) (2) 1 2 6 forallpolynomialsf withmaximumdegreedandnon-negativecoefficientsandforall x,y ∈N ,weget 0 X X SC(P)≤ p(s) [c l (s)f (l (s))+c l (Q)f (l (Q))]=c ·SC(P)+c ·SC(Q). 1 e e e 2 e e e 1 2 s∈S e∈E With c1 < 1 it follows that SSCC((QP)) ≤ 1−c2c1. Since P is an arbitrary (mixed) Nash equilibriumweget c PoA≤ 2 . (3) 1−c 1 Infact,c andc dependonthemaximumdegreed,however,forthesakeofreadability 1 2 weomitthisdependenceinournotation. We will now show how to determine constants c and c such that Inequality (2) 1 2 holdsandsuchthattheresultingupperboundof c2 isminimal.Todoso,wewillfirst 1−c1 showthatitsufficestoconsiderInequality(2)withy =1andf(x)=xd. Sincef isapolynomialofmaximumdegreedwithnon-negativecoefficients,itis sufficienttodeterminec andc thatfulfill(2)forf(x)=xrforallintegers0≤r ≤d. 1 2 Soletf(x)=xr forsome0≤r ≤d.Inthiscase(2)reducesto y·(x+1)r ≤c ·xr+1+c ·yr+1. (4) 1 2 Foranygivenconstant0 ≤ c < 1letc (r,c )betheminimumvalueforc suchthat 1 2 1 2 (4)holds,thatis (cid:26)y(x+1)r−c ·xr+1(cid:27) ((cid:18)x+1(cid:19)r (cid:18)x(cid:19)r+1) c (r,c )= max 1 = max −c · . 2 1 x∈N0,y∈N yr+1 x∈N0,y∈N y 1 y Notethat(4)holdsforanyc wheny =0.ByLemma1wehave 2 c (r,c )=max(cid:8)(x+1)r−c ·xr+1(cid:9). (5) 2 1 1 x∈N0 Now, c (r,c ) is the maximum of infinitely many linear functions in c ; one for 2 1 1 eachx∈N .DenoteF asthe(infinite)setoflinearfunctionsdefiningc (r,c ): 0 r 2 1 F :={g(r) :(0,1)→R|g(r)(c )=(x+1)r−c ·xr+1,x∈N } r x x 1 1 0 Forthepartialderivativeofanyfunction(x,r,c )7→g(r)(c )weget 1 x 1 ∂((x+1)r−c ·xr+1) 1 =(x+1)r·ln(x+1)−c ·xr+1·ln(x) ∂r 1 >ln(x+1)(cid:2)(x+1)r−c ·xr+1(cid:3)≥0, 1 for(x+1)r−c ·xr+1 ≥0,thatis,forthepositiverangeofthechosenfunctionfrom 1 F . Thus, the positive range of (x+1)d −c ·xd+1 dominates the positive range of r 1 (x+1)r−c ·xr+1forall0≤r ≤d.Sincec (r,c )>0forall0≤r ≤d,itfollows 1 2 1 thatc (d,c ) ≥ c (r,c ),forall0 ≤ r ≤ d.Thus,withoutlossofgenerality,wemay 2 1 2 1 assumethatf(x)=xd. Fors,t∈R ands6=tdefineγ(s,t)astheintersectionabscissaofg(d) andg(d) ≥0 s t (asinLemma2).Nowconsidertheintersectionofthetwofunctionsg(d)andg(d) from v v+1 F forsomev ∈ N.Weshowthatthisintersectionliesaboveallotherfunctionsfrom d F . d 7 – First consider any function g(d) with z > v +1. We have g(d)(0) > g(d) (0) > z z v+1 g(d)(0). Furthermore, by Lemma 2 we get γ(v,z) < γ(v,v +1). It follows that v g(d)(γ(v,v+1))>g(d)(γ(v,v+1)). v z – Nowconsideranyfunctiong(d) withz < v.Wehaveg(d) (0) > g(d)(0) > g(d)(0). z v+1 v z Furthermore, by Lemma 2 we get γ(v,z) > γ(v,v + 1). Again, it follows that g(d)(γ(v,v+1))>g(d)(γ(v,v+1)). v z Thus,allintersectionsoftwoconsecutivelinearfunctionsfromF lieonc (d,c ). d 2 1 By (3), any point that lies on c (d,c ) gives an upper bound on PoA. Let k be the 2 1 largestintegersuchthat(k+1)d ≥kd+1,thatisk=bΦ c.Then(k+2)d <(k+1)d+1. d Choosec andc attheintersectionofthetwolinesfromF withx=kandx=k+1, 1 2 d thatisc =(k+1)d−c ·kd+1andc =(k+2)d−c ·(k+1)d+1.Thus, 2 1 2 1 (k+2)d−(k+1)d (k+1)2d+1−(k+2)d·kd+1 c = and c = . 1 (k+1)d+1−kd+1 2 (k+1)d+1−kd+1 Notethatbythechoiceofkwehave0<c <1. 1 Itfollowsthat (k+1)2d+1−kd+1(k+2)d PoA≤ . (k+1)d+1−(k+2)d+(k+1)d−kd+1 Thiscompletestheproofofthetheorem. ut Theorem2. For unweighted congestion games with polynomial latency functions of maximumdegreedandnon-negativecoefficients,wehave (k+1)2d+1−kd+1(k+2)d PoA≥ , wherek=bΦ c. (k+1)d+1−(k+2)d+(k+1)d−kd+1 d Proof. Given the maximum degree d ∈ N for the polynomial latency functions, we constructacongestiongameforn≥k+2playersand|E|=2nfacilities. We divide the set E into two subsets E := {g ,...,g } and E := {h ,...,h }. 1 1 n 2 1 n Eachplayerihastwopurestrategies,P :={g ,...,g ,h ,...,h }andQ := i i+1 i+k i+1 i+k+1 i {g ,h }whereg :=g andh :=h forj >n.I.e.S ={Q ,P }. i i j j−n j j−n i i i EachofthefacilitiesinE sharethelatencyfunctionx7→axdforana∈R (yet 1 >0 tobedetermined)whereasthefacilitiesinE havelatencyx7→xd. 2 Obviously, the optimal allocation Q is for every player i to choose Q . Now we i determine a value for a such that the allocation P := (P ,...,P ) becomes a Nash 1 n Equilibrium,i.e.,eachplayeriissatisfiedwithP,thatisPC (P)≤PC (P ,Q )forall i i −i i i∈[n],orequivalentlyk·a·kd+(k+1)·(k+1)d ≤a·(k+1)d+(k+2)d.Resolving tothecoefficientagives (k+1)d+1−(k+2)d a≥ >0. (6) (k+1)d−kd+1 Because (k + 1)d 6= kd+1, due to either k + 1 or k being odd and the other being even, a is well defined and positive. Now since for any player i the private costs are PC (Q)=a+1andPC (P)=a·kd+1+(k+1)d+1,itfollowsthat i i P SC(P) = Pi∈[n]PCi(P) = a·kd+1+(k+1)d+1. (7) SC(Q) PC (Q) a+1 i∈[n] i 8 Providedthat(k+1)d ≥kd+1,itisnothardtoseethat(7)ismonotonicallydecreasing ina.Thus,weassumeequalityin(6),whichthengives SC(P) (k+1)2d+1−kd+1(k+2)d PoA≥ = . SC(Q) (k+1)d+1−(k+2)d+(k+1)d−kd+1 Thiscompletestheproofofthetheorem. ut Corollary1. ThelowerboundinTheorem2onPoAalsoholdsforunweightednetwork congestiongames. 4 PriceofAnarchyforWeightedCongestionGames Inthissection,weprovetheexactvalueforthepriceofanarchyofweightedcongestion gameswithpolynomiallatencyfunctions.TheproofoftheupperboundinTheorem3 hasasimilarstructureastheonefortheunweightedcase(cf.Theorem1).InTheorem4 we give a matching lower bound which also holds for weighted network congestion games (Corollary 2). Corollary 3 shows the impact of player weights to the price of anarchy. Theorem3. Forweightedcongestiongameswithpolynomiallatencyfunctionsofmax- imumdegreedandnon-negativecoefficientswehavePoA≤Φd+1. d Theorem4. Forweightedcongestiongameswithpolynomiallatencyfunctionsofmax- imumdegreedandnon-negativecoefficients,wehavePoA≥Φd+1. d Proof. Given the maximum degree d ∈ N for the polynomial latency functions, set k ≥ max{(cid:0) d (cid:1),2}. Note, that (cid:0) d (cid:1) = max (cid:0)d(cid:1). We construct a congestion bd/2c bd/2c j∈[d]0 j gameforn=(d+1)·kplayersand|E|=nfacilities. WedividethesetE intod+1partitions:Fori ∈ [d] ,letE := {g ,...,g }, 0 i i,1 i,k witheachg sharingthelatencyfunctionx 7→ a ·xd.Thevaluesofthecoefficients i,j i a willbedeterminedlater.Forsimplicityofnotation,setg := g forj > k in i i,j i,j−k thefollowing. Similarly,wepartitionthesetofplayers[n]:Fori∈[d] ,letN :={u ,...,u }. 0 i i,1 i,k TheweightofeachplayerinsetN isΦi,sow =Φi foralli∈[d] ,j ∈[k]. i d ui,j d 0 Now,foreverysetN ,eachplayeru ∈N hasexactlytwostrategies: i i,j i ( {g ,...,g ,g } fori=1tod Qui,j :={gi,j} and Pui,j := {gd,j+1} d,j+(di) i−1,j fori=0 d,j+1 NowletQ:=(Q ,...,Q )andP:=(P ,...,P )bestrategyprofiles.Thefacilities 1 n 1 n ineachsetE thenhavethefollowingloadsforQandP: i loadoneveryfacilitye∈E i i l (Q) l (P) e e d Φd Pd (cid:0)d(cid:1)Φl =(Φ +1)d =Φd+1 d l=0 l d d d 0tod−1 Φi Φi+1 d d 9 ForPtobecomeaNashEquilibrium,weneedtofulfillthefollowingNashinequalities foreachsetN ofplayers: i i Nashinequalitytofulfill PC (P)=(cid:0)d(cid:1)·a ·(Φd+1)d+a ·(Φi)d 1tod ui,j i d d i−1 d ≤a ·(Φi+1+Φi)d =PC (P ,Q ) i d d ui,j −ui,j ui,j 0 PC (P)=a ·(Φd+1)d ≤a ·(Φ +1)d =PC (P ,Q ) u0,j d d 0 d u0,j −u0,j u0,j Replacing“≤”by“=”yieldsahomogeneoussystemoflinearequations,i.e.,thesystem B ·a=0whereB isthefollowing(d+1)×(d+1)matrix: d d −Φd2+d+1+Φd2+d Φd2 0 ··· ··· 0 d d d (cid:0) d (cid:1)Φd2+d −Φd2+1 ... ... d−1 d d ... 0 ... ... ... ... ... ... Bd = (cid:0)di(cid:1)Φ...dd2+d 0... ··· 0 −Φidd0+d+1 Φ..id.d .0.. ··· 0... (8) ... ... 0 ... ... ... ... Φdd Φd2+d 0 ··· 0 ··· 0 −Φd+1 d d and a := (a ...a )t. Obviously, a solution to this system fulfills the initial Nash in- d 0 equalities.Notethat (Φi+1+Φi)d =(Φi)d·(Φ +1)d =Φid+d+1. d d d d d Claim. The(d+1)×(d+1)matrixB from(8)hasrankd. d Proof. Weusethewell-knownfactfromlinearalgebrathatifamatrixC resultsfrom another matrix D by adding a multiple of one row (or column) to another row (or column,respectively)thenrank(C)=rank(D). NowconsiderthematrixC thatresultsfromaddingrowj multipliedbythefactor d Φ−1 torowj−1,sequentiallydoneforj = d+1,d,...,2.Obviously,C isalower d d triangular matrix with nonzero elements only in the first column and on the principal diagonal. ForthetopleftelementofC weget d d ! d ! ! −Φd2+d+1+X d Φd2+j =Φd2 · −Φd+1+X d Φj =0. d j d d d j d j=0 j=0 | {z } (Φd+1)d SinceallelementsontheprincipaldiagonalofC —withthejustshownexception d ofthefirstone—arenonzero,itiseasytoseethatC (andthusalsoB )hasrankd. ut d d 10
Description: