ebook img

Exact linear hydrodynamics from the Boltzmann equation PDF

0.15 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Exact linear hydrodynamics from the Boltzmann equation

Exactlinearhydrodynamics from the Boltzmannequation I.V. Karlin,1,∗ M. Colangeli,2 and M. Kro¨ger2,† 1AerothermochemistryandCombustionSystemsLab, ETHZu¨rich, CH-8092Zu¨rich, Switzerlandand School ofEngineeringSciences, UniversityofSouthampton, SO171BJ,Southampton, UnitedKingdom 2PolymerPhysics,DepartmentofMaterialsandMaterialsResearchCenter,ETHZu¨rich,CH-8093Zu¨rich,Switzerland (Dated: 2008-01-1809:47:09) Exact(toallordersinKnudsennumber)equationsoflinearhydrodynamicsarederivedfromtheBoltzmann 8 kineticequationwiththeBhatnagar-Gross-Krookcollisionintegral.Theexacthydrodynamicequationsarecast 0 inaformwhichallowsustoimmediatelyprovetheirhyperbolicity,stability,andexistenceofanH-theorem. 0 2 PACSnumbers: 51.10.+y(Kinetictheory)05.20.Dd(Kinetictheory) n Keywords:Kinetictheory;heattransfer;hydrodynamics;hyperbolicequations;Boltzmannequation a J Hydrodynamicsassumesthatastateofafluidissolelyde- 8 0 1 scribed by five fields: density, momentum and temperature. DerivationoftheNavier-Stokes-Fourier(NSF)hydrodynamic −0.2 Re(ω ) ] equations from the Boltzmann kinetic equation as the first- ac h Im(ω ) / 10 c order approximation in the Knudsen number (ratio between −0.4 Re(ωac) hydrodynamic modes e mean free path and a flow scale) by Enskog and Chapman −0.6 Im(ωaacc) / 10 (real and imaginary parts) m is a textbook example of a success of statistical physics [1]. Re(ω ) diff - Recentrenewedinteresttotheproblemsbeyondthestandard −0.8 Im(ωdiff) t hydrodynamicsisdue,inparticular,toflowsimulationandex- Re(ω ) a shear t perimentsatamicro-andnano-scale[2–4]. However,almost −1 Im(ωshear) .s acenturyofefforttoextendthehydrodynamicdescriptionbe- 0 0.5 1 k 1.5 2 2.5 t a yondtheNSFapproximationfailedeveninthecaseofsmall m deviationsaroundthe equilibrium. Inordertoappreciatethe FIG. 1: Exact hydrodynamic modes ω of the Boltzmann-BGK kinetic problem, let us remind that, in the NSF approximations, the - equation asafunction ofwavenumberk (twocomplex-conjugated acous- d decay rate of the hydrodynamic modes is quadratic in the ticmodesωac,twicedegeneratedshearmodeωshearandthermaldiffusion on wavevector,Re(ω) ∼ −k2,andisunbounded. Ontheother modeωdiff).Thenon-positivedecayratesRe(ω)attainthelimitofcollision hand, Boltzmann’s collision term features equilibration with frequency(−1)ask→∞. c finite characteristicrates. This“finite collisionfrequency”is [ obviously incompatible with the arbitrary decay rates in the 1 NSFapproximation:intuitively,hydrodynamicmodesatlarge v popular in applications [9], and features a single relaxation k cannot relax faster than the collision frequency. Now, the 2 rate. Theresultforthehydrodynamicmodesisdemonstrated classicalmethodofEnskogandChapmanextendsthehydro- 3 inFig.1. ItisclearfromFig.1thattherelaxationofnoneof dynamicsbeyondtheNSFinsuchawaythatthedecayrateof 9 thehydrodynamicmodesisfasterthanω = 1whichisthe 2 thenextorderapproximations(Burnettandsuper-Burnett)are − collision frequencyin the units adopted in this paper. Thus, . polynomialsofhigherorderink. Insuchanextension,relax- 1 theresultfortheexacthydrodynamicsindeedcorrespondsto ation rate may becomecompletelyunphysical(amplification 0 theaboveintuitivepicture.Below,weapplythemethodofin- 8 instead of attenuation), as first shown by Bobylev [5] for a variantmanifold [10] to derive the hydrodynamicequations. 0 particularcaseofMaxwellmolecules.Thisindicatesinability Thenon-perturbativederivationismadepossiblewithanop- : oftheChapman-Enskogmethodtotackletheaboveproblem, v timalcombinationof analyticalandnumericalapproachesto andnon-perturbativeapproachesaresought. Theproblemof i X exact hydrodynamics has been studied in depth recently for solvetheinvarianceequation. PointofdepartureisthelinearizedBoltzmann-BGKequa- r toy(finite-dimensional)models-momentsystemsofGrad-in a tionforthedeviation f =f fGMofthedistributionfunc- [6–8],andmanyremarkableresultswereobtained. Inpartic- tionf fromaglobalM△axwelli−anfGM(c2) = π−3/2e−c2. In ular,in[6,7]itwasshownthattheexacthydrodynamicequa- thereciprocalspace,itreads, tions are hyperbolicand stable for all wave numbers. How- ever,for“true”kineticequationssuchquestionsremainopen. ∂ f = ik c f δf; δf =f fLM, (1) t △ − · △ − − InthisLetterwederiveexacthydrodynamicequationsfrom withthewavevectork = ke defininge ,k k,peculiar thelinearizedBoltzmannequationwiththeBhatnagar-Gross- k k ≡ | | velocity c and time t. All quantities are considered dimen- Krook (BGK) collision term. This kinetic equation remains sionless, i.e.,reducedwiththeunitsoftherelaxationtimeτ, the thermalvelocity 2kBT/mand mass m of the particle. In(1),thelinearizedlpocalMaxwellianisfLM =fGM(1+ϕ0) ∗†UElRecLt:rownwicw.adcdormespsl:[email protected] ewrhagerees1ar+edϕe0fi=nehd1fiofr+ar2bcitr·ahrcyifω+vi32a(cω2−f 23)hc2ω−f32di3fc.,Aanvd- h i ≡ R 2 weintroducepertinentquantitieswhichcharacterizedeviation σ1k σ2k σ3k σ4 fromtheglobalequilibrium:n 1 1(densityperturba- tion),u ≡ hcif (velocitypertur≡bahtioinf)−andT ≡ 32hc2− 23if hλ−kkδ2XB1i hλikkδAX2i hλ−kkδ2XC3i hckick⊥DδY4i (temperatureperturbation). Sincethescalarproductbetween kandcappearsin(1),thedistributionfunctionofferssymme- B0 =−31 A0 =−23 C0 =0 D0 =−21 trywithrespecttothee -axis,whichisnotuniaxialincaseu real,⊕ imag,⊕ real,⊕ imag,⊖ k is not collinear with ek. We denote the two components of q1k q2k q3k q4 the mean velocity as uk = u·ek and u⊥ = u·e⊥, where hγkδX1i hγkδX2i hγkckδX3i h(c2− 25)c⊥δY4i theunitvectore⊥belongstotheintersectionoftheplaneper- ikX −k2Z ikY −k2U pue=ndiuckuelar+tou⊥kean.dEqthueatpiolannseofspcahnannegdefboyrmkoamndenuts, sωo tharaet X0 =0 Z0 =−16 Y0 =−45 U0 = 21 obtainedkbyinteg⊥rationoftheweighted(1)overd3cash i imag,⊖ real,⊖ imag,⊖ real,⊕ ∂ ω = ik cω ω . (2) TABLEI:Symmetryadaptedcomponentsof(nonequilibrium)stress th i△f − ·h i△f −h iδf tensor σ andheat fluxq, introducedin(7a)and(7b), respectively. In order to calculate such averages, we can switch to spher- Row2:Microscopicexpressionofthesecomponents(averagingwith ical coordinates. For each (at present arbitrary) wave vec- theglobalMaxwellian).Short-handnotationused:λk =c2−c2 and k 3 tor, we choose the coordinate system in such a way that its γk = (c2− 5)c . Row3: Expressionofthecomponents interms 2 k z-direction aligns with e . We can then express c in terms of(asweshow,real-valued)functionsA–Z (seetext). Row4: Val- k of its norm c, a vertical variable z and plane vector e (az- uesoffunctionsA–Zatk=0.Thesevaluesrecoverhydrodynamic φ imuthal angle e e = cosφ) for the present purpose as equationsuptoBurnettapproximation. Row5: Paritywithrespect c/c = √1 z2φe· +⊥ze . We could have equally chosena toz–symmetric(⊕)orantisymmetric(⊖)–ofthepartofthecor- − φ k responding δX entering the averaging in row 2, and whether this fixedcoordinatesystemintheplaneorthogonaltok,andtwo partisimaginaryorreal-valued(seeFig.2). Row3isanimmediate fieldsinsteadofu⊥plusanangle,viz.u⊥+iu⊥ =eiφu⊥.Due x y consequenceofrow5. to isotropy, u⊥ alone fully represents the twice degenerated (shear)dynamics. Inordertosimplifynotationandcompute thedynamicsofallfivefieldsweintroduceafour-dimensional whichisanonlinearintegralequationfortheunknownfields v(sxiemckt,poxlre4)foowfrmihth,yϕdxr0ko=d≡yXn(an0m,uixck.,fiTTeh)ledasvn,edcxtxo4r≡X=0u(c⊥xa.n1T,ixmh2em,nxeϕ3d0,iaxtta4ek)lyesb=ae δoHXfe(r,2e,)b,eωfcoairussaseismu∂ititlxaabrhlwyasicthhtooXsbe0enarvenepdcltadocireffωderbsfyuflrfitohlmleinrXgigh0hωtmih△aainfndly=sbidxee-. readoff,wehaveX0(c·,z)=(1,2c ,c2 3,2c ),wherewe causeofconventionsforprefactorsinthetemperatureandve- introduced,forlateruse,theabbrevikation−s 2 φ locitydefinitions,ω =(1,c ,2(c2 3),c ). Withinthesame k 3 −2 φ c eigen-closure,Eq.(2)islinearinxandhencewrittenas c c e , c c e , c φ , (3) k ≡ · k φ ≡ · ⊥ ⊥ ≡ e⊥·eφ ∂tx=M x. (6) · suchthatik c = ikc , c = c e +c e with c = cz and · k ⊥ φ k k k The matrix M solely depends on the non-hydrodynamic c⊥ = c√1−z2, contrasted by cφ (and eφ), do not depend fields, the heat flux q c(c2 52) f and the stress tensor ontheazimuthalangle. Similarly,weintroduceyetunknown ≡ h − i σ cc , where s denotesthe symmetric tracelesspart tfiheelddsisδtXrib(uct,ikon)wfuhniccthiocnh,aδraϕct=erizδeft/hfeGnMonienquteirlimbrsiuomf tphaerthoyf- of≡a tehnsorisf[6, 11], s = 12(s+sT)− 13tr(s)I. Using(4), thestresstensorandheatfluxuniquelydecomposeasfollows drodynamicfieldsxthemselves, δϕ=δX x=δX1n+δX2uk+δX3T +δX4u⊥, (4) 3 · σ = σk e e +σ⊥2e e , (7a) Twhhiesre“eδiXge4n”f-accltoosruizrees(a4s) δwXhi4c(hc,fzo,rφm)al=ly a2nδdY4v(ecr,yz)geenφe·rael⊥ly. q = qke2 +kqk⊥e , k ⊥ (7b) k ⊥ addressesthefact,thatwewishtonotincludeotherthanhy- drodynamicvariablesimpliesa closurebetweenmomentsof withthemomentsσk =(σ1k,σ2k,σ3k)·xkandσ⊥ =σ4x4,and similarlyforq(seeRow2ofTab.I).Theprefactorsarisefrom thedistributionfunction,tobeworkedoutindetailbelow. It theidentities e e : e e = 2 and e e : e e = 1. The assumes the existence of an invariant manifold, and the hy- k k k k 3 k k k ⊥ 2 appearanceof δY4 rather than δX4 in the expression for the drodynamic fields as slow variables which leave the higher orthogonalmoment(inTab.I)reflectsthefactthatwehaveal- moments “slaved”. In order to ensure these contributionsto readyintegratedouttheangularvariable, 2πe e e dφ= notinterferewiththelocalMaxwellian,onehasthefreedom R0 φ φ· ⊥ torequire X0 δf = 0withoutproducinganylimitation,i.e., πe⊥. We note in passing that, while the stress tensorhas, in h i general, threedifferenteigenvalues,in the presentsymmetry bykeepingxtobedefinedthroughthelocalMaxwellianpart adaptedcoordinatesystemitexhibitsavanishingfirstnormal of the distribution function. Using the above form for δf in (1), and using the canonicalabbreviation X X0 +δX, stressdifference. Sincetheintegralkernelsofallmomentsin △ ≡ (7) do not depend on the azimuthalangle, these are actually yields two-dimensionalintegrals over c [0, ] and z [ 1,1], X ∂ x= ikc X x δX x, (5) weightedby2πc2fGM(c2)δX . ∈ ∞ ∈ − △ · t − k△ · − · µ 3 Stresstensorandheatfluxcanyetbewritteninanalterna- [6,7]andbelow),oncethefunctionsA–Z areexplicitlyeval- tive form which is defined by Row 3 of Tab. I. As we will uated. For that, we still requireδX. Combining(5)and (6), seelateron,duetobasicsymmetryconsiderations,thehereby andrequiringthatthe resultholdsforanyx(invariancecon- introducedfunctions A–Z are real-valued. We postpone the dition),weobtainaclosed,singularintegralequation(invari- related proof, and proceed by using these functions A–Z to anceequation)forcomplex-valuedδX, splitMintopartsasM=Re(M) iIm(M)with − δX=X0 (M+[ikc +1]I)−1 X0. (9) · k − 0 0 0 0   Notice that δX vanishes for k = 0, and that (9) is supple- Re(M) = k2 320X A0 230Y 00 , (8) mvaennistehdinwgitLhagthraenbgaesimcuclotinpsltirearisnt(mhXat0riixδf) =X00δ,Xor,ewquhailclhy,,   h i  0 0 0 D  however, is automatically dealt with if we only evaluate anisotropic (irreducible) moments with δf, such as those 0 1 0 0   listed in Tab. I. The implicit equation (9) is identical with Im(M) = k 12−0k2B 32(1−0k2Z) 12−0k2C 00 . trheseuelti,gwenit-hclMosufrreo(m4)(,8a)n,dcki,sXo0u,ramndaiAn–aZnddperfiancetidcainllyanudsejufustl  0 0 0 0  before(3)andTab.I,respectively. Weiterativelycalculate(i)δXdirectlyfrom(9)foreachk intermsofM,(ii)subsequentlycalculatemomentsfromδX bynumericalintegration. Importantly,thefix pointoftheit- eration(i)-(ii)-(i)-..isuniqueforeachk,i.e.,doesnotdepend ontheinitialvaluesformomentsA–Z,aslongaswechoose real-valued ones which are consistent with (9), as we prove in the next paragraph. In addition, two other computational strategies were implemented: First, we used continuation of functionsA–Z fromtheirvaluesatk =0tosolve(9)withan incrementalincreaseofk,wherethesolutionatkwasusedas theinitialguessfork+dk. Second,weusedalsoacontinu- ation“backwards”inwhichthesolutionatsomek (obtained byconvergentiterationswitharandominitialcondition)was usedastheinitialguessfora solutionatk dk. Both these − strategiesreturnedthesamevaluesoffunctionsA–Z ascom- putedbyiterationsfromarbitraryinitialcondition. Thesolu- tionδXallowstocalculatethewholedistributionfunctionf via (4) as illustrated by Fig. 2. For resulting moments for a widerangeofk-valuesseeFig.3. Finally, we need to clarify the origin of row 5 in Tab. I (whichisdirectlyillustratedbyFig.2)anditsimplicationon thestructureofM(8)whoseentriesare–apriori–complex- valued functions to be calculated with complex-valued δX. Wewishtomakeuseofthefactthatallintegralsoverz van- ish for odd integrands. To this end we introduce abbrevia- tions ( ) for a real-valued quantity which is even (odd) ⊕ ⊖ with respect to the transformation z z. One notices X0 = ( , , , ), and we recall th→at A−–Z are integrals ⊕ ⊖ ⊕ ⊕ overeitherevenoroddfunctionsinz,timesa componentof δX (see Tab. I). Let us prove the consistency of the spec- ified symmetry of M and the invariance condition: Start by assumingA–Z to be real-valuedfunctions. ThenM = µν ⊕ if µ + ν is even, and M = i otherwise. This implies FIG.2: (Coloronline)Sampledistributionfunctionf(c,k)atk=1,fully µν ⊕ characterizedbythefourquantitiesδX1,2,3(c,z)andδY4(c,z).Shownhere δX1 = ⊕ + i⊖, δX2 = ⊖ + i⊕, δX3 = ⊕ + i⊖, and areboththeirreal(left)andimaginaryparts(rightcolumn). Inordertoim- δX4 = +i , i.e., different symmetry properties for real ⊕ ⊖ provecontrast,weactuallyplotln|1+fGMδXµ|multipliedbythesignof andimaginaryparts. Withthese“symmetry”expressionsfor δXµ.Samecolorcodeforallplots,rangingfrom−0.2(red)to+0.2(blue). X0,δX,andMathand,wecaninsertintotherighthandside of the equation, δX = (X0 +δX) (M+i I), which is · ⊖ identicalwiththeinvarianceequation(9). Thereareonlytwo Note that the checkerboard structure of the matrix M (8) cases to consider, because M has a checkerboard structure, is particularlyusefulfor studyingpropertiesof the hydrody- i.e.,onlytwotypesofcolumns: Columnsµ = 1andµ = 3: namic equations(6), such as hyperbolicityand stability (see δXµ = +i becauseM1−3,4 = 0; Columnsµ 2,4 : ⊕ ⊖ ∈ { } 4 δXµ = +i ifMµ,1−3 =0(whichisthecaseforcolumn ∂tx′ =M′ x′,withM′ =T M T−1ismanifestlyhyper- 4)and ⊕+i ⊖ifMµ,4 =0(whichisthecaseforcolumn2). bolicandsta·ble;Im(M′)issym· me·tric,Re(M′)issymmetric ⊖ ⊕ and non-positive semi-definite. The corresponding transfor- mationmatrixTcanbeeasilyreadofftheresultsobtainedin 0.5 [6,7]forGrad’ssystemssincethestructureofthematrixM (8) is identical to the one studied in [6, 7]. We have explic- itlyverifiedthatmatrixT(equations(21)–(23)inRef.[7]and 0 Z o (13)inRef.[6])withthefunctionsA–Zderivedhereinisreal- A t valued and thus render the transformedhydrodynamicequa- nts −0.5 A tionsmanifestlyhyperbolicandstable.Wenotethatthisresult e B m – hyperbolicity of exact hydrodynamic equations – strongly C o m D supportsarecentsuggestionbyBobylevtoconsiderahyper- −1 U X bolicregularizationof the Burnettapproximation[12]. Sim- Y ilarly, using the hyperbolicity, an H-theorem is elementary Z −1.5 provenasin[6,12]. Finally,usingtheaccuratedataforfunc- 0 0.5 1 1.5 2 2.5 3 k tionsA–Z, wecanwriteanalyticapproximationsforthehy- drodynamicequations(6)insuchawaythathyperbolicityand FIG.3:MomentsA–Zvs.wavenumberkobtainedwiththesolutionof(9). stabilityisnotdestroyedinsuchanapproximation(see[7]). In conclusion, we derived exact hydrodynamic equations Wehavethusshownthatbothsidesoftheinvarianceequa- fromthelinearizedBoltzmann-BGKequation.Themainnov- tion(9)haveequalsymmetryproperties,andthatδXwiththe elty is the numericalnon-perturbativeprocedureto solve the specified symmetriesis consistentwith real-valuedmoments invariance equation. In turn, the highly efficient numerical A–Z. The proof implies, that any iteratively obtained solu- approach is made possible by choosing a convenient coor- tion, if it exists, starting with arbitrary real-valued moments dinate system and establishing symmetries of the invariance A–Z in (9) to evaluate δX must convergeto real-valuedso- equation. Theinvariantmanifoldin the spaceof distribution lution A–Z. Since the solution is smoothly varying with k, functionsistherebycompletelycharacterized,thatis,notonly and since A–Z at k = 0 are known and are real-valued, the equationsof hydrodynamicsare obtained but also the corre- momentsmustbereal-valuedoverthewholek-space. sponding distribution function is made available. The perti- WiththeresultforthefunctionsA–Z athand,theextended nentdatacanbeused,inparticular,asamuchneededbench- hydrodynamic equations are closed. Let us briefly discuss markforcomputation-orientedkinetictheoriessuchaslattice the pertinent properties of this system. First, the general- Boltzmannmodels, as well as forconstructingnovelmodels ized transport coefficients are given by the nontrivial eigen- usingquadraturesin the velocityspace [13, 14]. Finally, we values of k−2Re(M): λ2 = A (elongation viscosity), have established a novel non-perturbativecomputationalap- λ3 = −32Y−(thermal diffusivity),−and λ4 = −D (shear vis- proachtofindinginvariantmanifoldsofkineticequations. cosity). All these generalized transportcoefficients are non- negative (see Fig. 3). Second, computing the eigen-values The present approach can be extended to the Boltzmann of matrix M we obtain the dispersion relation ω(k) of the equationwith othercollision terms. Theabovederivationof correspondinghydrodynamicmodesalreadypresentedinFig. hydrodynamicsisdoneunderthe standardassumptionof lo- 1. Third, a suitable transform of the hydrodynamic fields, calequilibrium[1], howeverthe assumptionitself is open to x′ = T x, where T is a real-valued matrix, can be es- furtherstudy[15][WethankH.C.O¨ttingerforthisimportant · tablishedsuchthatthetransformedhydrodynamicequations, remark].I.V.K.acknowledgessupportofCCEM-CH. [1] S. Chapman, T. G. Cowling, The Mathematical Theory of [8] A.N.Gorban,I.V.Karlin,Phys.Rev.Lett.77(1996)282. NonuniformGases (CambridgeUniv.Press,NewYork,1970). [9] C.Cercignani,TheoryandApplicationoftheBoltzmannEqua- [2] A.Beskok, G.E.Karniadakis, Microflows: Fundamentalsand tion (ScottishAcademicPress,Edinburgh,1975). Simulation (Springer,Berlin,2001). [10] A.N.Gorban,I.V.Karlin,Transp.Th.Stat.Phys.23(1994)559. [3] S. Ansumali, I.V. Karlin, S. Arcidiacono, A. Abbas, N.I. [11] M. Kro¨ger, Models for Polymeric and Anisotropic Liquids Prasianakis,Phys.Rev.Lett.98(2007)124502. (Springer,Berlin,2005). [4] D.M.Karabacak,V.Yakhot,K.L.Ekinci,Phys.Rev.Lett.98 [12] A.V.Bobylev,J.Stat.Phys.124(2006)371. (2007)254505. [13] S.S. Chikatamarla, I.V. Karlin, Phys. Rev. Lett. 97 (2006) [5] A.V.Bobylev,Sov.Phys.Dokl.27(1982)29. 190601. [6] M.Colangeli, I.V.Karlin, M.Kro¨ger, Phys.Rev.E76(2007) [14] X.Shan,X.He,Phys.Rev.Lett.80(1998)65. 022201. [15] H.C. O¨ttinger, H. Struchtrup, Multiscale Model. Simul. 6 [7] M.Colangeli, I.V.Karlin, M.Kro¨ger, Phys.Rev.E75(2007) (2007)53. 051204.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.