DFTT-01/2007 Exact discreteness and mass gap of N = 1 symplectic Yang-Mills from M-theory. 7 0 L.Boulton1,M.P.Garc´ıadelMoral2,A.Restuccia3 0 2 1DepartmentofMathematicsandtheMaxwellInstituteforMathematicalSciences,Heriot-Watt n University,EdinburghEH142AS,UK a J 2 Dipartamento de Fisica Teorica, Universita di Torino and I.N.F.N., Sezione di Torino, Via P. 0 Giuria1,I-10125,TorinoItaly 1 3 Departamento de F´ısica, Universidad Simo´n Bol´ıvar, Apartado 89000, Caracas 1080-A, 1 v Venezuela. 0 0 1 Abstract. In this note we summarize some of the results found recently in [1]. We show the 1 0 pure discreteness of the non-perturbativequantum spectrum of a symplectic Yang-Mills theory 7 definedonaRiemannsurfaceofpositivegenus,livinginatargetspacethat,inparticular,canbe 0 4D. Thistheorycorrespondsto the membranewith centralcharges. The presenceof the central / h chargeinducesaconfinementinthephaseatzerotemperature. Whentheenergyrises,thecenter t of the group breaks and the theory enters in a quark-plasmaphase after a topologicaltransition - p correspondingtotheN=4wrappedsupermembrane. e h : v i X r a 1. Introduction Thenon-perturbativequantizationofStringTheoryisstillanopenproblemwhichreceivesmuchoftheattention of specialists. It can be reformulatedin terms of the quantizationof the M-theoryin 11 dimensionswhich, in turns,reducestofindingthequantizationofthebasicingredients:M2-braneorsupermembraneandM5brane.A furtherimportantopenproblem,notnecessaryconnectedwithStringTheory,isthenon-perturbativequantization ofYang-Millstheories. AttemptsalongthisdirectionincludelatticeQCD, twistors, gauge-gravityduality,spin chains,largeNmatrixmodelsandcanonicalquantization. The aim of this note is to draw to the attention of specialists, the fact that the membrane with central charges,whichisthequantumequivalentofasymplecticnoncommutativeYang-Millstheory[2],[3],hasapurely discretespectrumattheexactlevelofthetheory.Thisisanextensionofpreviousresultsfoundfortheregularized supermembranewithcentralcharges,([4]-[9]). ThecorrespondencewithanN=1Yang-Millstheorydefinedona(2+1)DRiemannsurfaceofpositive genusgthatcanliveinatargetspaceof4D,allowsthistheorytobeofinterestalsooutsidethescopeofString Theory. AdmittinganinterpretationintermsofSQCD,itconsistsoftwodifferentphasesatzerotemperature: a confinedphasecomprisingglueballsin the bosonicsector anda quark-gluonplasma phasewhich hasa micro- scopicoriginintheM-theory. Thequantumconsistencyofsupermembraneswithfixedcentralchargesprovides thenanindirectproofofconsistencyofallthesenoncommutativegaugetheories. 1E-mail:[email protected] 2E-mail:[email protected] 3E-mail:[email protected] 1 2. Thesupermembranewithnon-trivialcentralcharge Supermembranesareextendedobjectsdefinedintermsofabasemanifold,aRiemannsurfaceS ,whichliveina Minkowskitargetspace. ThecanonicallyreducedHamiltonianinthelightconegauge[10]hastheexpression 1 P 2 1 √W M + XM,XN 2+ Fermionicterms (1) ZS 2(cid:18)√W(cid:19) 4{ } ! where e ab XM,XN 2= ¶ XM¶ XN. (2) { } W(s ) a b restrictedbythefirstclassconstraint, p P M XM=0. (3) C √W I which generates area preserving diffeomorphismsof S for C any given closed path. Here and below M,N = 1,...,9. The continuityof the spectrum of the aboveHamiltonian at the SU(N) regularizedlevel was demon- stratedin[11].Thispropertyreliesontwobasicfacts:supersymmetryandthepresenceofsingularconfigurations withzeroenergyataclassicallevel. Undercompactifications,forexampleregardthetargetspaceasbeingM S1, itisbelieved,[12], that 10 × the spectrum of the theory remains continuous. Therefore, the compactification procedure by itself, does not seemenoughtochangethespectralpropertiesofthemodel. Wenowimposesometopologicalrestrictionsontheconfigurationspace. Thesecompletelycharacterize theD=11supermembranewithnon-trivialcentralchargegeneratedbythewrappingonthecompactsectorof thetargetspace. We willassumethatthetargetspaceisM S1 S1anditsbasemanifoldS ofpositivegenus 9 × × g,forsimplicity,g=1. Westressthatthesepropertiesremainvalidforanyothertargetspaceofdimensionless than9inparticularD=4. AllmapsfromthebasespaceS ,mustsatisfy dXr=2p SrRr, r=1,2; dXm=0 m=3,...,9 (4) i ICi ICi fori=1,2andthetopologicalcondition, Z= dXr dXs=e rs(2p 2R R )n, (5) 1 2 S ∧ Z wheren=detSr isfixed,eachentrySr isinteger,andR andR denotetheradiiofthetargetcomponentS1 S1. Notethat(4)deiscribemapsfromS toiS1 S1withdXm1anon-2trivialclosedone-form.Theonlyrestriction×upon × thesemapsistheassumptionthatnisfixed. Thetermontheleftsideof(5)describesthecentralchargeofthe supersymmetric algebra. Among all the maps from the torus S to the target space satisfying (4),(5) there is a minimizeroftheHamiltonian. ItcorrespondstoaminimalimmersionfromS tothetargetspacewhichimplies that,forthecaseofflattargetspaces,theworldvolumeofthesupermembraneisacalibratedsubmanifold. Minimalimmersionscanalsodescribenon-BPSminimalsolutions,[8]. Thetheoryresultstobeinvariant underSL(2,Z). ThedegreesoffreedomareexpressedintermsofA andthediscretesetofintegersdescribedby r theharmonicone-forms.Wecanalwaysfixthesegaugetransformationsby Sr=lrd r, l1l2=n. dXr=2p RrlrdXˆr+d rdA . (6) i i → s s Afterthegaugefixingthereisaresidualtransformation[1]Z(2)underwhich, A A A A . (7) 1 2 2 1 → →− ThisallowsustorewritetheHamiltonianintermsofXm,m=1,..,7andA ,r=1,2.Theresultingexpressionis: r 1 1 1 H = √W[P2+P 2+ W Xm,Xn 2+W(D Xm)2+ W(F )2] S 2 m r 2 { } r 2 rs Z 1 + [ √Wn2 L (D P + Xm,P )] (8) r r m S 8 − { } Z + √W[ YG G D Y +GY G Xm,Y +L GY ,Y ] r r m S − − − { } { − } Z 2 where([2],[4])D =2D +[A , ],F =D A D A +[A ,A ],andP andP aretheconjugatemomenta r r r rs r s s r r s m r toXm andA respe•ctively. D• and•F arethecova−riantderivativeandcurvatureofasymplecticnoncommuta- r r rs eab tivetheory[2,5],constructedfromthesymplecticstructure introducedbythecentralcharge. Thelastterm √W representsitssupersymmetricextensionintermsofMajoranaspinors. Therelevantdegreesoffreedominorder toquantizethetheoryaretheXm andthegaugeinvariantpartofA whicharesinglevaluedoverthebaseman- r ifold. ASU(N)regularizationwasobtainedin[4]andthespectralpropertiesofthespectrumwererigourously demonstratedatclassicallevel,andatquantumlevelinseveralpapers,[5],[6],[9]. 3. Onthespectrumoftheexacttheory According to the results reported in [5], the bosonic regularized Hamiltonian of the D=11 supermembrane with central charge, HB, relates to its semi-classical approximation,HB , by means of the following operator N sc,N inequality: HB C HB . (9) N ≥ N sc,N Here N denotesthe size of the truncationin the Fourierbasis of S andC is a positiveconstant. A seemingly N crucialstepintheproofof(9)foundin[5],reliesheavilyonthecompactnessoftheunitballoftheconfiguration spacewhichhappenstobefinitedimensional. TheexactbosonicHamiltonianhowevercontainsaconfiguration spacewhichisinfinite-dimensional,sothattheunitballisnotcompact. In[1]weshowthatthe sameoperator relationholdstruefortheexactbosonicHamiltonians.Weovercomethedifficultyoftheanalysisbycarryingout adetailedanalysisofeachterminvolvedintheexpansionofthepotentialtermoftheexactbosonicHamiltonian, HB. Followingthe standard notation Lp Lp(s ) denotesthe Banach space of all fields u, such that u = p up 1/p<¥ .Let ≡ k k h i u =( D u 4+ D D u 4)1/4. (10) 4,2 r r s k k k k k k ThefieldsXm,A lieontheconfigurationspaceH4,2offunctionsu H1suchthat u <¥ . Notethattheleft r 4,2 handsideof(10)isawelldefinednorminH4,2,thelaterisalinea∈rspace,butwekdoknotmakeanyassumption aboutcompleteness. Thepotential,V, ofthebosonicsector ofthesupermembranewith centralchargesiswell definedinH4,2as 1 V = D XmD Xm+ F F . (11) r r rs rs h 4 i V isnotwelldefinedinH1butinH4,2. Byimposingthegaugefixingconditions,D A =0andD A =0,thepotentialcanbere-writtenas, 1 1 1 2 V =r 2+2B+A2 (12) wherer 2isthesemiclassicalpotentialtermofHB,Letr 2bethepotentialtermofHB,sothat sc sc r 2= D XmD Xm+(D A )2+(D A )2 . r r 1 2 2 1 h i and B= D Xm A ,Xm +D A A ,A (13) r r 1 2 1 2 h { } { }i A= A ,Xm 2+ A ,Xm 2+ A ,A 2+ Xm,Xn 2 . (14) 1 2 1 2 h{ } { } { } { } i Thisallowsustoshowthefollowingcrucialidentity,[1]: thereexistsaconstant0<C 1,suchthat ≤ V Cr 2, Xm,A H2. (15) r ≥ ∀ ∈ Thelatterisaconsequenceoftheparticularexpressionofthepotential,propertiesasthecompactnessofthebase manifold(notoftheconfigurationspace)andtheCauchy-Schwarzinequality. 3 InordertodefinerigorouslytheLaplacianinthenon-compactinfinitedimensionalconfigurationspacewe haveintroduced,theHamiltonianisexpressedas HB=[V +V +(1 C)V ]+[ D +CV ] quartic cubic quadratic quadratic − − where the first bracket acts multiplicatively on the Hilbert space of states, while the operator on the second bracketmaybeexpressedintermsofcreationandannihilationoperatorsintheusualway. Alongsidewith(15), thisexpressionensurestheoperatoridentity HB CHB. (16) ≥ sc analogousto(9). 4. Confinementofthetheory ItwasanoriginalideaofG.’tHooft,[13]thatpermanentquarkconfinementoccursinagaugetheoryifitsvacuum condensesintoastatewhichresemblesasuperconductor.Hisproposalwastoconsidertheconfinementofquarks as dual of the Meissner effect, where the role of magnetism and electricity are interchanged. In his approach he considered a nonabelian gauge theory that were seen as an abelian theory enriched with Dirac magnetic monopoles, see also [14]. The symplectic Yang-Mills naturally creates this effect. The mass contribution of thecentralcharge,or,analogously,itscorrelatedresidualZ(2)symmetryoftheHamiltonian,canbedescribedin termsofthequadraticderivativesoftheconfigurationfieldsXmandA . Thederivativesofthesefieldscorrespond r tomappingsofthetargetspaceintoS .TheseareinducedbytheminimalimmersionwhichrealisesbyX ,r=1,2, r andtheharmonicfieldsoverS , b D Y = X ,Y =l BY =l Y r A { r A} rA B rA A where b l B = d2s √w X ,Y YB. rA { r A} Z They correspondto a particular subset of the structure consbtants that mixes the harmonic and the exact forms, gC . rA Forthecaseofatorus,anexplicitrelationwasfoundin[4]. Thequadratictermsonthederivativesofthe configurationvariables,defineastrictlypositivefunctionwhosecontributiontotheoverallHamiltoniangivesrise toabasinshapedpotential.Thelattereliminatesthestring-likespikesandprovidesadiscretespectrum,evenfor thesupersymmetricmodel. Thecentrecreatedbyadiscretesymmetryisamechanismforprovidingmasstothe monopoles[15]. Thesupermembranetheorywhencompactifiedin4Dcanbeinterpretedasatheorymodelling susyQCDinthespiritof[16]. Itexhibitsconfinementinthephaseatzerotemperaturesincethetheorybecomes naturallythesupermembranewithcentralcharges,whichhasminimalenergy. The mass terms are determined by the elements of the centre m(z) associated to the correlation length of the particles [17]. By rising the energy, the theory enter in the phase of asymptotic freedom described by the supermembranewithoutcentralcharges. The phase transitionis describedby the breakingof the centerof the groupthatbecomestrivial. The phase transitionof topologicalnature[18]-[20]. The particlesbehaveas if theywhereinaquark-gluonplasma.Thesequarks-gluonsdonotfeelthetopologicaleffects,sincethecorrelation lengthbecomesinfiniteandtheeffectivevolumeiszero.Alongthecommutativedirectionsthequarksexperiment noforce. 5. Conclusions Inthisnotewehavesumarizedtheresultsoftherecentmanuscript[1]. TheD=11supermembranewithcentral chargesisquantumequivalenttotheN=12+1Symplecticnon-commutativeSuperYang-MillsTheorydefinedin targetspacesofdimensionD 9.ThespectrumofthebosonicsectoroftheD=11theoryhasbeendemonstrated ≤ atexactlevelofthe theoryto bepurelydiscrete,hencecontaininga massgap. Thetheoryexhibitconfinement inthesupermembranewithcentralchargephase. Itentersintheasymptoticfreephasethroughthespontaneous breakingofthecenter. ThisphasecorrespondstotheN=4wrappedsupermembrane. 4 Acknowledgements We thank M. Banados, J. Zanelli, for helpful conversations. M.P.G.M thanks the organizersof the Workshop “’ForcesUniverse2006”forthe opportunityto presentthis work, and to CECS, (Valdivia, Chile) for kindhos- pitalityandsupport. M.P.G.M.ispartiallysupportedbytheEuropeanComunity’sHumanPotentialProgramme undercontractMRTN-CT-2004-005104andbytheItalianMURundercontractsPRIN-2005023102andPRIN- 2005024045. References [1] BoultonL,Garc´ıadelMoralMandRestucciaA(2006).Preprinthep-th/0609054. [2] Mart´ınI,OvalleJandRestucciaA2001Phys.Rev.D64040061 [3] Mart´ınI,RestucciaA2002Nucl.Phys.B622240–256. [4] Garc´ıadelMoralMandRestucciaA2002Phys.Rev.D66045023 [5] BoultonL,Garc´ıadelMoralM,Mart´ınIandRestucciaA2002Class.QuantumGrav.192951-2959. [6] BoultonL,Garc´ıadelMoralMandRestucciaA2003Nucl.Phys.B671343–358. [7] M.P.GarciadelMoral,A.Restuccia.InstituteofPhysicsConferenceSeries2005,Vol43,151 [8] BellorinJandRestucciaANucl.Phys.B737(2006)190-208 [9] BoultonLandRestucciaANucl.Phys.B724380-396,2005 [10] DeWitB,HoppejandNicolaiH1988Nucl.Phys.B305545 [11] DeWitB,Lu¨sherandNicolaiH1989Nucl.Phys.B320135–159. [12] DeWitB,PeetersKandPlefkaJ1998Nucl.Phys.ProcSuppl62405–411. [13] G.t’HooftNucl.Phys.B138:1,1978;Nucl.Phys.B190:455,1981 [14] E.WittenNucl.Phys.B149(1979)285-320 [15] M.PepeNucl.Phys.Proc.Suppl.153:207-214,2006; [16] A.Chodos,R.L.Jaffe,K.Johnson,CharlesB.Thorn,V.F.WeisskopfPhys.Rev.D9:3471-3495,1974 [17] K.Holland,M.Pepe,U.J.WieseNucl.Phys.B694:35-58,2004 [18] J.Preskill,A.VilenkinPhys.Rev.D47:2324-2342,1993 [19] A.S.Kronfeld,G.Schierholz,U.J.WieseNucl.Phys.B293:461,1987 [20] A.P.Balachandran,E.Batista,I.P.CostaeSilva,P.Teotonio-SobrinhoInt.J.Mod.Phys.A15:1629-1660,2000 5