ebook img

Exact Controllability and Stabilization: The Multiplier Method PDF

167 Pages·1995·5.924 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Exact Controllability and Stabilization: The Multiplier Method

EXACT CONTROLLABILITY AND STABILIZATION THE MULTIPLIER METHOD OTHER TITLES IN THE SAME SERIES Analysis of the K-Epsilon Turbulence Model, by B. Mohammadi and O. PmoNNEAU. 1994,212 pages. Global Classical Solutions for Quasilinear Hyperbolic Systems, by Li Ta-tsien. 1994, 328 pages. Recent Advances in Partial Differential Equations, by M.-A. Herrero and E. ZuAZUA. 1994,160 pages. Exponential Attractors for Dissipative Evolution Equations, by A. Eden, C. Foias, B. Темам. 1994,192 pages. D A Research in Applied Mathematics K M fV I Series Editors : P.G. CIARLET and J.-L. LIONS EXACT CONTROLLABILITY AND STABILIZATION THE MULTIPLIER METHOD V. Komornik Université Louis Pasteur, Strasbourg, France JOHN WILEY & SONS 1994 Chichester • New York • Brisbane • Toronto • Singapore MASSON Paris Milan Barcelona La collection Recherches en Mathéma­ The aim of the Recherches en Mathé­ tiques Appliquées a pour objectif de publier matiques Appliquées series (Research in dans un délai très rapide des textes de haut Applied Mathematics) is to publish high niveau en Mathématiques Appliquées, level texts In Applied Mathematics very notamment : rapidly : — des cours de troisième cycle, — Post-graduate courses — des séries de conférences sur un sujet — Lectures on particular topics donné, — Proceedings of congresses — des comptes rendus de séminaires, — Preliminary versions of more complete congrès, works — des versions préliminaires d’ouvrages plus Theses (partially or as a whole) élaborés, — des thèses, en partie ou en totalité. Les manuscrits, qui doivent comprendre de Manuscripts which should contain between 120 à 260 pages, seront reproduits directe­ 120 or 250 pages will be printed directly by a ment par un procédé photographique. Ils photographic process. They have to be devront être réalisés avec le plus grand soin, prepared carefully according to standards en observant les normes de présentation defined by the publisher. précisées par l’Éditeur. Manuscripts may be written in English or in Les manuscrits seront rédigés en français ou French and will be examined by at least one en anglais. Dans tous les cas, ils seront referee. examinés par au moins un rapporteur. All manuscripts should be submitted to Ils seront soumis directement soit au Professor P.G. Ciarlet, Analyse numérique, T. 55, Université Pierre et Marie Curie, 4, place Jussieu, 75005 Paris soit au/or to Professor J.-L. Lions, Collège de France, 11, place Marcelin-Berthelot, 75005 Paris Tous droits de traduction, d’adaptation et de reproduction par tous procédés, réservés pour tous pays. Les articles L. 122-4, L. 122-5 et L. 335-2 du Code de la propriété intellectuelle interdisent notamment la photocopie à usage collectif sans autorisation de l’éditeur. AU rights reserved. No part of this book may be reproduced by any means, or transmitted, or translated into a machine language without the written permission of the publisher. A catalogue record for this book is available from the British Library. © Masson, Paris, 1994 ISBN Masson: 2-225-84612-X ISBN WUey : 0-471-95367-9 ISSN : 0298-3168 Masson S.A. 120, bd Saint-Germain, 75280 Paris Cedex 06 John Wiley and Sons Ltd Baffins Lane, Chichester, West Sussex PO 19 lUD, England Icdnaky Timinek es ZsoUnak PREFACE This book grew out of a series of lectures given over the past four years in FVance, Hungary and the USA. In the first part exact boimdary controllability problems are studied by the Hilbert Uniqueness Method. This approach, introduced by Lions [3] in 1986, is based on uniqueness theorems leading to the construction of suitable Hilbert spaces of the controllable spaces. It is closely related to a duality theory of Dolecki and Russell [1]. Following Ho [1] and Lions [2], these spaces may often be characterized by using the multiplier method. In chapters 2 to 4 we reproduce some results of Lions [4], [5] with certain changes : - some compactness-uniqueness arguments are replaced by constructive proofs; - equations containing lower-order terms are also considered; - more general boundary conditions are used which in fact simplify the theory. The results of chapters 5 and 6 were obtained after the publication of Lions’ monography. In chapter 5 we develop a general and constructive approach to improve the usual estimates of the exact controllability time. It was inspired by a new estimation method of Haraux [3]. Using this approach, in chapter 6 we improve most of the results obtained in chapters 3 and 4. We also give elementary and constructive proofs for certain results of Zuazua [1], obtained earlier by indirect arguments. The second part of the book is devoted to stabilizability. In chapters 8 and 9 strong and uniform boundary stabilization theorems are proved. Our method is a modified and simplified version of a Liapunov type approach introduced in Komornik and Zuazua [1]. We also present here a classical principle of Russell [2] connecting the exact controllability to the stabiliz­ ability, and some recent results of Conrad and Rao [1]. For the sake of brevity in the first nine chapters we consider only the wave equation. Maxwell’s equations and very simple plate models. In the last chapter we consider the internal stabilization of the Korteweg-de Vries equation : we prove a special case of a theorem in Komornik, Russell and Zhang [2]. The multiplier method, applied systematically in this book, is remarkably elementary and efficient. In the bibliography we have included some refer­ ences which use other approaches : see in particular the work of Bardos et VI al., Littmann, Russell, Joo and their references. We have also included some material concerning other equations. I wish to express my gratitude to - J.-L. Lions for his advice and numerous suggestions concerning the subject of this book, for his valuable remarks on a preliminary version of these notes and for his proposal to publish it in the collection RMA; - P. G. Ciarlet who also proposed the publication of this book in this collection and who gave me useful advice concerning the presentation of the material; - F. Conrad, A. Haraux, J. Lagnese, M. Pierre, B. Rao, D. L. Russell and E. Zuazua for many fruitful discussions; - the Mathematical Departments of Virginia Tech, the Universities of Strasbourg I, Nancy I, the Eotvos University of Budapest and the Institute of Mathematics and its Applications at the University of Minnesota, where my lectures were given and/or part of this book was written; - the students and colleagues following my lectures, in particular S. Kouemou-Patcheu who read the manuscript and made a number of useful remarks. Strasbourg, April 12, 1994 Vll TABLE OF CONTENTS P reface..............................................................................................................................v 0. Introduction. Vibrating strings....................................................................1 1. Linear evolutionary problems..........................................................................7 1.1. The diagram V CH = H^ C V *..................................................................7 1.2. The equation u" + Au = 0 ........................................................................10 1.3. The wave equation....................................................................................11 1.4. A Petrovsky system....................................................................................13 1.5. Another Petrovsky system........................................................................15 2. Hidden regularity. Weak solutions ................................................18 2.1. A special vector field .............................................................................18 2.2. The wave equation. The multiplier method.........................................19 2.3. The first Petrovsky system.....................................................................24 2.4. The second Petrovsky system....................................................................29 3. Uniqueness theorem s.......................................................................................35 3.1. The wave equation. Dirichlet condition.................................................35 3.2. The first Petrovsky system........................................................................40 3.3. The second Petrovsky system....................................................................44 3.4. The wave equation. Mixed boimdary conditions...................................47 4. Exact controllability. Hilbert uniqueness method . . . . 53 4.1. The wave equation. Dirichlet control.......................................................53 4.2. The first Petrovsky system........................................................................57 4.3. The wave equation. Neumann or Robin control.................................59 5. Norm inequalities.................................................................................................63 5.1. Riesz sequences............................................................................................63 5.2. Formulation of the results................................................ 65 5.3. Proof of theorem 5.3....................................................................................69 5.4. Proof of theorem 5.5..................................................................................73 6. New uniqueness and exact controllability results . . . . 75 6.1. A unique continuation theorem................................................................75 6.2. The wave equation. Dirichlet condition...................................................77 6.3. The first Petrovsky system........................................................................79 vni 6.4. The second Petrovsky system. Uniqueness theorems...........................81 6.5. The second Petrovsky system. Exact controllability...........................83 6.6. The wave equation. Neumann or Robin condition...............................85 7. Dissipative evolutionary system s..........................................................90 7.1. Maximal monotone operators................................ 90 7.2. The wave equation....................................................................................91 7.3. KirchhoiF plates............................................................................................97 8* Linear stabilization.........................................................................................103 8.1. An integral inequality..............................................................................103 8.2. Uniform stabilization of the wave equation I .................................104 8.3. Links with the exact controllability. Russell’s principle................108 8.4. Uniform stabilization of the wave equation I I .................................Ill 8.5. Strong stabilization. LaSalle’s principle ..............................................114 8.6. Uniform stabilization of the wave equation III ............................116 8.7. Uniform stabilization of Maxwell’s equations.....................................118 9. Nonlinear stabilization ...............................................................................124 9.1. A nonlinear integral inequality..............................................................124 9.2. Uniform stabilization of the wave equation I .....................................126 9.3. Uniform stabilization of the wave equation I I .....................................134 9.4. Uniform stabilization of KirchhoiF plates..............................................135 10. Internal stabilization of the Korteweg~de Vries equation 144 10.1. Well-posedness and conservation laws..................................................144 10.2. Uniform stabilization by linear feedbacks..........................................146 References....................................................................................................................152 0. Introduction. Vibrating strings Let I = (a, 6) be a bounded interval, T a positive number and consider the following problem, modelling among other things the small transversal vibrations of a string : {uit - u^x){x, t) = 0, (x, t)elx (0, T), (1) u{a^t) = Va{t) and u{b^t) = Vb{t)y t€[0,T], (2) u(a:,0) = u®(a:) and ut(x,0) = u^(a;), x £ I. (3) The problem (l)-(3) is said to be exactly controllable if for ’’arbitrarily” given initial ’’state” there exist suitable ’’control” fimctions Va and Vb such that the solution of (l)-(3) satisfies u(xjT) = ut{x,T) = 0, X £ I, (4) We say that the controls Va and vj drive the system to rest in time T. Naturally, we have to specify the functional spaces of the initial states and of the controls; the results depend on these choices. The solution of (l)-(3) is by definition a function u e C{[0,T];H\l))nC\[0,T]-,L^(I)) (5) satisfying (1) in the distributional sense, the equalities (2) pointwise, and the equalities (3) almost everywhere. (As for the usual properties of the Sobolev spaces applied in this book we refer e.g. to Lions and Magenes [1].) We have the following result : Theorem 0.1. — LetT = b - a and lei (г¿°,г¿^) £ H^{I) x L^(/) be such that u^{a) + u^{b) -f J ds = 0. (6) (0 Then there is a unique choice of functions cO c <u Va,Vb£ (7) QO. 8 such that the solution o/(l)-(3) satisfies (4). 2 Moreover^ Va and are given by the formulae a-f t / w^(s) ds, (8)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.