ebook img

Exact and Heuristic Scheduling Algorithms PDF

202 Pages·2020·2.021 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Exact and Heuristic Scheduling Algorithms

E x a c t a n d H e u r is t ic S c h e d u lin g A lg o r it h m s • F r a n k W er Exact and n e r, L a r y s a B Heuristic u r t s e v a a n d Scheduling Y u r i S o t s k o v Algorithms Edited by Frank Werner, Larysa Burtseva and Yuri Sotskov Printed Edition of the Special Issue Published in Algorithms www.mdpi.com/journal/algorithms Exact and Heuristic Scheduling Algorithms Exact and Heuristic Scheduling Algorithms SpecialIssueEditors FrankWerner LarysaBurtseva YuriSotskov MDPI•Basel•Beijing•Wuhan•Barcelona•Belgrade•Manchester•Tokyo•Cluj•Tianjin SpecialIssueEditors FrankWerner LarysaBurtseva YuriSotskov Otto-von-Guericke-University UniversidadAutonomadeBaja NationalAcademyofSciencesof Magdeburg CaliforniaMexicali Belarus Germany Mexico Belarus EditorialOffice MDPI St.Alban-Anlage66 4052Basel,Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Algorithms (ISSN 1999-4893) (available at: https://www.mdpi.com/journal/algorithms/special issues/SchedulingAlgorithms). Forcitationpurposes,citeeacharticleindependentlyasindicatedonthearticlepageonlineandas indicatedbelow: LastName,A.A.; LastName,B.B.; LastName,C.C.ArticleTitle. JournalNameYear,ArticleNumber, PageRange. ISBN978-3-03928-468-9(Pbk) ISBN978-3-03928-469-6(PDF) (cid:2)c 2020bytheauthors. ArticlesinthisbookareOpenAccessanddistributedundertheCreative Commons Attribution (CC BY) license, which allows users to download, copy and build upon publishedarticles,aslongastheauthorandpublisherareproperlycredited,whichensuresmaximum disseminationandawiderimpactofourpublications. ThebookasawholeisdistributedbyMDPIunderthetermsandconditionsoftheCreativeCommons licenseCCBY-NC-ND. Contents AbouttheSpecialIssueEditors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii Prefaceto”ExactandHeuristicSchedulingAlgorithms”. . . . . . . . . . . . . . . . . . . . . . . ix MarcoAntonioJua´rezPe´rez,RodolfoEleazarPe´rezLoaiza, PerfectoMalaquiasQuinteroFlores,OscarAtrianoPonceandCarolinaFloresPeralta AHeuristicAlgorithmfortheRoutingandSchedulingProblemwithTimeWindows: ACase StudyoftheAutomotiveIndustryinMexico Reprintedfrom:Algorithms2019,12,111,doi:10.3390/a12050111 . . . . . . . . . . . . . . . . . . . 1 JuliaLangeandFrankWerner On Neighborhood Structures and Repair Techniques for Blocking Job Shop Scheduling Problems Reprintedfrom:Algorithms2019,12,242,doi:10.3390/a12110242 . . . . . . . . . . . . . . . . . . . 21 JiheneKaabi Modeling and Solving Scheduling Problem with m Uniform Parallel Machines Subject to UnavailabilityConstraints Reprintedfrom:Algorithms2019,12,247,doi:10.3390/a12120247 . . . . . . . . . . . . . . . . . . . 49 AlessandroAgnetis,FabrizioRossiandStefanoSmriglio SomeResultsonShopSchedulingwithS-PrecedenceConstraintsamongJobTasks Reprintedfrom:Algorithms2019,12,250,doi:10.3390/a12120250 . . . . . . . . . . . . . . . . . . . 61 JoseM.FraminanandRainerLeisten LinkingSchedulingCriteriatoShopFloorPerformanceinPermutationFlowshops Reprintedfrom:Algorithms2019,12,263,doi:10.3390/a12120263 . . . . . . . . . . . . . . . . . . . 73 YuriN.Sotskov,NataljaM.MatsveichukandVadzimD.Hatsura Two-Machine Job-Shop Scheduling Problem to Minimize the Makespan with Uncertain Job Durations Reprintedfrom:Algorithms2020,13,4,doi:10.3390/a13010004 . . . . . . . . . . . . . . . . . . . . 95 V´ıctorPacheco-Valencia,Jose´AlbertoHerna´ndez,Jose´Marı´aSigarretaandNodariVakhania SimpleConstructive,Insertion,andImprovementHeuristicsBasedontheGirdingPolygonfor theEuclideanTravelingSalesmanProblem Reprintedfrom:Algorithms2020,13,5,doi:10.3390/a13010005 . . . . . . . . . . . . . . . . . . . . 141 IliaTarasov,AlainHaitandOlgaBattaia AGeneralizedMILPFormulationforthePeriod-AggregatedResourceLevelingProblemwith VariableJobDuration Reprintedfrom:Algorithms2020,13,6,doi:10.3390/a13010006 . . . . . . . . . . . . . . . . . . . . 171 v About the Special Issue Editors Frank Werner studied Mathematics from 1975–1980and graduated fromthe TechnicalUniversity Magdeburg (Germany) with honors. He defended his Ph.D. thesis on the solution of special schedulingproblemsin1984with‘summacumlaude’andhishabilitationthesisin1989. In1992, he received a grant from the Alexander-von-Humboldt Foundation. Currently, he works as an extraordinary professor at the Faculty of Mathematics of the Otto-von-Guericke University Magdeburg(Germany). Heistheauthororeditoroffivebooksandhaspublishedmorethan280 papers in international journals. He is on the Editorial Board of 17 journals, in particular, he is the Editor-in-Chief of Algorithms and an Associate Editor of the International Journal of Production ResearchandJournalofScheduling. HewasamemberoftheProgramCommitteeofmorethan75 internationalconferences.Hisresearchinterestsareoperationsresearch,combinatorialoptimization, andscheduling. LarysaBurtsevagraduatedinEconomicCybernetics(1975)attheRostovStateUniversity(Russia) anddefendedherPh.D.thesisonControlinTechnicalSystems(TechnicalCybernetics),1989,atthe RadioelectronicsUniversityofKharkov(Ukraine). Since2000,sheworksasaprofessorresearcher attheEngineeringInstituteofUniversidadAuto´nomadeBajaCalifornia,Mexicali,Mexico. Shehas led the Laboratory of Scientific Computation since 2005. She has more than 70 publications in international journals and proceedings of congresses and 6 book chapters. Her research interests are discrete optimization, particularly combinatorial optimization, scheduling, and also packing problemsfordifferentapplications. SheisamemberoftheNationalSystemofResearchersofthe NationalCouncilforScienceandTechnologyofMexico(SNICONACYT)andaregularmemberof TheMexicanAcademyofComputation(AMEXCOMP). YuriN.Sotskov,Prof. D.Sc.,finishedsecondaryschoolwithagoldmedalin1966andgraduated fromtheFacultyofAppliedMathematicsoftheBelarusianStateUniversityinMinskin1971.In1980, hedefendedhisPh.D.thesisattheInstituteofMathematicsoftheNationalAcademyofSciencesof BelarusinMinsk.In1991,hedefendedhisD.Sc.thesisattheInstituteofCyberneticsoftheNational AcademyofSciencesofUkraineinKyiv.HehasthetitleofProfessorinApplicationofMathematical ModelsandMethodsinScientificResearch(RussianAcademyofSciences,1994).Hecurrentlyworks asaprincipalresearcherattheUnitedInstituteofInformaticsProblemsoftheNationalAcademy of Sciences of Belarus in Minsk. He has more than 350 publications: five scientific monographs, twotextbooks, morethan200papersininternationaljournals, books, andconferenceproceedings inEnglishonappliedmathematics,operationsresearch,graphtheory,andscheduling. Heisonthe Editorial Board of five journals. He has supervised eight Ph.D. scholars (defended). In 1998, he receivedtheNationalPrizeofBelarusinScienceandEngineering. vii Preface to ”Exact and Heuristic Scheduling Algorithms” Optimal scheduling is an important area of operations research and in particular of decision making. This research field covers a large variety of different solution approaches designed for particularproblems. Itisclearthatefficientalgorithmsarehighlydesirableforlarge-sizereal-world schedulingproblems. DuetotheNP-hardnessofthemajorityofschedulingproblems,practitioners oftenprefertouserathersimpleschedulingalgorithmssincelarge-sizeproblemsusuallycannotbe solvedexactlyinanacceptabletime. However,fastheuristicsmayproduceschedulesthefunction valuesofwhichmightbefarawayfromtheoptimalones. ThisbookisbasedonaSpecialIssueentitled“ExactandHeuristicSchedulingAlgorithms”. It isafollow-upbookofthebooklet,“AlgorithmsforSchedulingProblems”publishedin2018(ISBN 978-3-03897-119.1)andcontainsboththeoreticalandpracticalaspectsintheareaofdesigningefficient exact and heuristic scheduling algorithms. We hope that the articles contained in this book will stimulateresearcherstofindnewpracticaldirectionsforimplementingtheirschedulingalgorithms. InresponsetotheCallforPapers, weselectedeightsubmissions, allofwhichareofhighquality, reflectingtheinterestintheareaofdevelopingexactandheuristicalgorithmstosolvereal-world productionplanningandschedulingproblems. Asarule, allsubmissionshavebeenreviewedby threeexpertsintheDiscreteOptimizationandSchedulingarea. Thefirstarticledealswithareal-worlddistributionproblemarisinginthevehicleproduction industryinMexico.Thisproblemincludesboththeloadingandoptimalroutingofeachauto-carrier, where both the capacity constraints and the time windows have to be taken into account. The authorssuggestatwo-stageheuristicalgorithm.First,arouteisconstructedbyanoptimalinsertion heuristic. Thenafeasibleloadingisdetermined. Forthecomputationalexperiments,twoscenarios weregeneratedwith11differentinstancesofthedemand.Hereoneinstancedescribesarealproblem ofalogisticscompanyinMexico. Thealgorithmallowedtoobtaintheroutesandtheloadingofthe vehiclesforproblems with4400vehiclesand 44dealershipsconsidered. Theresultsshowed that thedevelopedalgorithmwassuccessfulinminimizingtotaltravelingdistance,loading/unloading operationsandtransportationcosts. The second article is devoted to the heuristic solution of job shop scheduling problems with blocking constraints and minimization of total tardiness. This problem has many applications in manufacturing, but also in railway scheduling. Due to the NP-hardness of the problem, the development of heuristics is of high relevance. In particular, a permutation-based heuristic is derived. Theauthorsusethreeinterchange-andshift-basedtransitionschemes. However,typical neighborhoodsappliedtojobshopproblemsoftengenerateblockinginfeasiblesolutions.Therefore, the core of this paper is to present two repair mechanisms that always generate neighbors being feasiblewithrespecttotheblockingconstraints.Characteristicsforthecomplexneighborhoodssuch astheaveragedistanceofaneighborareanalyzed. Thesuggestedneighborhoodsareembedded into a simulated annealing algorithm. Detailed computational results have been given for the modifiedLawranceinstanceswithupto30jobsand15machinesaswellasforhardtraininspired instanceswithupto20jobsand11machines.AcomputationalcomparisonwasmadewiththeMIP formulationgiveninanearlierpaperbyLangeandWernerinJournalofScheduling(2018). Itturned outthatforsmallinstances,theheuristicoftenobtainedanoptimalornear-optimalsolution,while forlargerinstancesseveralofthebestknownsolutionsbytheMIPsolverhavebeenimproved. ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.