Exact and Approximate Controllability for Distributed Parameter Systems Thebehaviorofsystemsoccurringinreallifeisoftenmodeledbypartial differentialequations.Thisbookinvestigateshowauserorobservercaninfluence thebehaviorofsuchsystemsmathematicallyandcomputationally.Athorough mathematicalanalysisofcontrollabilityproblemsiscombinedwithadetailed investigationofmethodsusedtosolvethemnumerically,thesemethodsbeing validatedbytheresultsofnumericalexperiments.InPartIofthebook,theauthors discussthemathematicsandnumericsrelatingtothecontrollabilityofsystems modeledbylinearandnonlineardiffusionequations;PartIIisdedicatedtothe controllabilityofvibratingsystems,typicalonesbeingthosemodeledbylinear waveequations;finally,PartIIIcoversflowcontrolforsystemsgovernedbythe Navier–Stokesequationsmodelingincompressibleviscousflow.Thebookis accessibletograduatestudentsinappliedandcomputationalmathematics, engineering,andphysics;itwillalsobeofusetomoreadvancedpractitioners. EncyclopediaofMathematicsanditsApplications AllthetitleslistedbelowcanbeobtainedfromgoodbooksellersorfromCambridge UniversityPress.Foracompleteserieslisting visit http://www.cambridge.org/uk/series/sSeries.asp?code=EOM 62 H.O.FattoriniInfiniteDimensionalOptimizationandControlTheory 63 A.C. ThompsonMinkowskiGeometry 64 R.B.BapatandT.E.S.RaghavanNonnegativeMatriceswithApplications 65 K.EngelSpernerTheory 66 D.Cvetkovic,P.Rowlinson,andS.SimicEigenspacesofGraphs 67 F.Bergeron,G.Labelle,andP.LerouxCombinationalSpeciesandTree-LikeStructures 68 R.GoodmanandN.WallachRepresentationsandInvariantsoftheClassicalGroups 69 T.Beth,D.Jungnickel,andH.LenzDesignTheory1,2ndedn 70 A.PietschandJ.WenzelOrthonormalSystemsforBanachSpaceGeometry 71 G.E.Andrews,R.Askey,andR.RoySpecialFunctions 72 R.TicciatiQuantumFieldTheoryforMathematicians 73 M.SternSemimodularLattices 74 I.LasieckaandR.TriggianiControlTheoryforPartialDifferentialEquationsI 75 I.LasieckaandR.TriggianiControlTheoryforPartialDifferentialEquationsII 76 A.A.IvanovGeometryofSporadicGroupsI 77 A.SchinzelPolynomialswithSpecialRegardtoReducibility 78 H.Lenz,T.Beth,andD.JungnickelDesignTheoryII,2ndedn ∗ 79 T.PalmerBanachAlgebrasandtheGeneralTheoryof -AlbegrasII 80 O.StormarkLie’sStructuralApproachtoPDESystems 81 C.F.DunklandY.XuOrthogonalPolynomialsofSeveralVariables 82 J.P.MayberryTheFoundationsofMathematicsintheTheoryofSets 83 C.Foias,O.Manley,R.Rosa,andR.TemamNavier–StokesEquationsandTurbulence 84 B.PolsterandG.SteinkeGeometriesonSurfaces 85 R.B.ParisandD.KaminskiAsymptoticsandMellin–BarnesIntegrals 86 R.McElieceTheTheoryofInformationandCoding,2ndedn 87 B.MagurnAlgebraicIntroductiontoK-Theory 88 T.MoraSolvingPolynomialEquationSystemsI 89 K.BichtelerStochasticIntegrationwithJumps 90 M.LothaireAlgebraicCombinatoricsonWords 91 A.A.IvanovandS.V.ShpectorovGeometryofSporadicGroupsII 92 P.McMullenandE.SchulteAbstractRegularPolytopes 93 G.Gierzetal.ContinuousLatticesandDomains 94 S.FinchMathematicalConstants 95 Y.JabriTheMountainPassTheorem 96 G.GasperandM.RahmanBasicHypergeometricSeries,2ndedn 97 M.C.PedicchioandW.Tholen(eds.)CategoricalFoundations 98 M.E.H.IsmailClassicalandQuantumOrthogonalPolynomialsinOneVariable 99 T.MoraSolvingPolynomialEquationSystemsII 100 E.OlivierandM.EuláliáVaresLargeDeviationsandMetastability 101 A.Kushner,V.Lychagin,andV.RubtsovContactGeometryandNonlinear DifferentialEquations 102 L.W.Beineke,R.J.Wilson,andP.J.Cameron.(eds.)TopicsinAlgebraicGraphTheory 103 O.StaffansWell-PosedLinearSystems 104 J.M.Lewis,S.Lakshmivarahan,andS.DhallDynamicDataAssimilation 105 M.LothaireAppliedCombinatoricsonWords 106 A.MarkoeAnalyticTomography 107 P.A.MartinMultipleScattering 108 R.A.BrualdiCombinatorialMatrixClasses 110 M.-J.LaiandL.L.SchumakerSplineFunctionsonTriangulations 111 R.T.CurtisSymmetricGenerationofGroups 112 H.Salzmann,T.Grundhöfer,H.Hähl,andR.LöwenTheClassicalFields 113 S.PeszatandJ.ZabczykStochasticPartialDifferentialEquationswithLévyNoise 114 J.BeckCombinatorialGames 115 L.BarreiraandY.PesinNonuniformHyperbolicity 116 D.Z.ArovandH.DymJ-ContractiveMatrixValuedFunctionsandRelatedTopics 117 R.Glowinski,J.-L.Lions,andJ.HeExactandApproximateControllabilityfor DistributedParameterSystems Exact and Approximate Controllability for Distributed Parameter Systems ANumericalApproach ROLAND GLOWINSKI UniversityofHouston JACQUES-LOUIS LIONS CollegedeFrance,Paris JIWEN HE UniversityofHouston cambridgeuniversitypress Cambridge,NewYork,Melbourne,Madrid,CapeTown,Singapore,SãoPaulo CambridgeUniversityPress TheEdinburghBuilding,CambridgeCB28RU,UK PublishedintheUnitedStatesofAmericabyCambridgeUniversityPress,NewYork www.cambridge.org Informationonthistitle:www.cambridge.org/9780521885720 ©R.Glowinski,J.-L.LionsandJ.He2008 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithout thewrittenpermissionofCambridgeUniversityPress. Firstpublished2008 PrintedintheUnitedKingdomattheUniversityPress,Cambridge LibraryofCongressCataloginginPublicationdata Glowinski,R. Exactandapproximatecontrollabilityfordistributedparametersystems:anumerical approach/RolandGlowinski,Jacques-LouisLions,JiwenHe. p. cm. Includesbibliographicalreferencesandindex. ISBN978-0-521-88572-0(hardback:alk.paper) 1.Controltheory.2.Distributedparametersystems.3.Differentialequations, Partial–Numericalsolutions.I.Lions,JacquesLouis.II.He,Jiwen.III.Title. QA402.3.G562008 (cid:2) 515.642–dc22 2007042032 CambridgeUniversityPresshasnoresponsibilityforthepersistenceor accuracyofURLsforexternalorthird-partyinternetwebsitesreferredto inthispublication,anddoesnotguaranteethatanycontentonsuch websitesis,orwillremain,accurateorappropriate. ToAndrée,Angela,andApril,andtoDorianLions LENSLARQUE-homonyms,withdefinitions. 1. Lencilorqua:avillageof657inhabitantsonVasselonaContinent,Reis,sixthplanet toGammaEridani. 2. Lanslarke: a predacious winged creature of Dar Sai, third planet of Cora, Argo Navis961. 3. Laenzle arc: the locus of a point generated by the seventh theorem of triskoïd dynamics,asdefinedbythemathematicianPaloLaenzle(907–1070). 4. Linslurk:amosslike... JackVance,TheFace.InTheDemonPrinces,VolumeII, TomDohertyAssociates,Inc.,NewYork,NY,1997 ThemostchallengingcourseItookinhighschoolwascalculus. BillClinton,MyLife,Knopf,NewYork,NY,2004 Therealtricktowritingabookiswriting.Untilyouhaveabook. AdamFelber,Schrödinger’sBall,RandomHouse,NewYork,NY,2006 Contents Preface pagexi Introduction 1 I.1 Whatitisallabout? 1 I.2 Motivation 2 I.3 Topologiesandnumericalmethods 3 I.4 Choiceofthecontrol 4 I.5 Relaxationofthecontrollabilitynotion 4 I.6 Variousremarks 5 PartI DiffusionModels 1 Distributedandpointwisecontrolforlineardiffusionequations 9 1.1 Firstexample 9 1.2 Approximatecontrollability 12 1.3 Formulationoftheapproximatecontrollabilityproblem 14 1.4 Dualproblem 15 1.5 Directsolutiontothedualproblem 17 1.6 Penaltyarguments 19 1.7 L∞costfunctionsandbang-bangcontrols 22 1.8 Numericalmethods 28 1.9 Relaxationofcontrollability 57 1.10 Pointwisecontrol 62 1.11 Furtherremarks(I):Additionalconstraintsonthestatefunction 96 1.12 Furtherremarks(II):Abisectionbasedmemorysavingmethodfor thesolutionoftimedependentcontrolproblemsbyadjointequation basedmethodologies 112 1.13 Furtherremarks(III):AbriefintroductiontoRiccatiequations basedcontrolmethods 117 viii Contents 2 Boundarycontrol 124 2.1 Dirichletcontrol(I):Formulationofthecontrolproblem 124 2.2 Dirichletcontrol(II):Optimalityconditionsanddualformulations 126 2.3 Dirichletcontrol(III):Iterativesolutionofthecontrolproblems 128 2.4 Dirichletcontrol(IV):Approximationofthecontrolproblems 133 2.5 Dirichletcontrol(V):Iterativesolutionofthefullydiscrete dualproblem(2.124) 143 2.6 Dirichletcontrol(VI):Numericalexperiments 146 2.7 Neumanncontrol(I):Formulationofthecontrolproblems andsynopsis 155 2.8 Neumanncontrol(II):Optimalityconditionsanddualformulations 163 2.9 Neumanncontrol(III):Conjugategradientsolutionofthe dualproblem(2.192) 176 2.10 Neumanncontrol(IV):Iterativesolutionofthe dualproblem(2.208),(2.209) 178 2.11 Neumanncontrolofunstableparabolicsystems: anumericalapproach 178 2.12 Closed-loopNeumanncontrolofunstableparabolicsystems viatheRiccatiequationapproach 223 3 ControloftheStokessystem 231 3.1 Generalities.Synopsis 231 3.2 FormulationoftheStokessystem.Afundamental controllabilityresult 231 3.3 Twoapproximatecontrollabilityproblems 234 3.4 Optimalityconditionsanddualproblems 234 3.5 Iterativesolutionofthecontrolproblem(3.19) 236 3.6 Timediscretizationofthecontrolproblem(3.19) 238 3.7 Numericalexperiments 239 4 Controlofnonlineardiffusionsystems 243 4.1 Generalities.Synopsis 243 4.2 Exampleofanoncontrollablenonlinearsystem 243 4.3 PointwisecontroloftheviscousBurgersequation 245 4.4 Onthecontrollabilityandthestabilizationofthe Kuramoto-Sivashinskyequationinonespacedimension 259 5 Dynamicprogrammingforlineardiffusionequations 277 5.1 Introduction.Synopsis 277 5.2 DerivationoftheHamilton–Jacobi–Bellmanequation 278 5.3 Someremarks 279 Contents ix PartII WaveModels 6 Waveequations 283 6.1 Waveequations:Dirichletboundarycontrol 283 6.2 Approximatecontrollability 285 6.3 Formulationoftheapproximatecontrollabilityproblem 286 6.4 Dualproblems 287 6.5 Directsolutionofthedualproblem 288 6.6 Exactcontrollabilityandnewfunctionalspaces 289 6.7 OnthestructureofspaceE 291 6.8 NumericalmethodsfortheDirichletboundarycontrollabilityofthe waveequation 291 6.9 ExperimentalvalidationofthefilteringprocedureofSection6.8.7 viathesolutionofthetestproblemofSection6.8.5 315 6.10 Somereferencesonalternativeapproximationmethods 319 6.11 Otherboundarycontrols 320 6.12 Distributedcontrolsforwaveequations 328 6.13 Dynamicprogramming 329 7 Ontheapplicationofcontrollabilitymethodstothesolutionofthe Helmholtzequationatlargewavenumbers 332 7.1 Introduction 332 7.2 TheHelmholtzequationanditsequivalentwaveproblem 332 7.3 Exactcontrollabilitymethodsforthecalculationoftime-periodic solutionstothewaveequation 334 7.4 Least-squaresformulationoftheproblem(7.8)–(7.11) 334 7.5 CalculationofJ(cid:2) 336 7.6 Conjugategradientsolutionoftheleast-squaresproblem(7.14) 337 7.7 Afiniteelement–finitedifferenceimplementation 340 7.8 Numericalexperiments 341 7.9 Furthercomments.Descriptionofamixedformulation basedvariantofthecontrollabilitymethod 349 7.10 Afinalcomment 355 8 Otherwaveandvibrationproblems.Coupledsystems 356 8.1 Generalitiesandfurtherreferences 356 8.2 CoupledSystems(I):aproblemfromthermo-elasticity 359 8.3 Coupledsystems(II):Othersystems 367
Description: