ebook img

Exact and Approximate Controllability for Distributed Parameter Systems: A Numerical Approach (Encyclopedia of Mathematics and its Applications (No. 117)) PDF

471 Pages·2008·10.99 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Exact and Approximate Controllability for Distributed Parameter Systems: A Numerical Approach (Encyclopedia of Mathematics and its Applications (No. 117))

Exact and Approximate Controllability for Distributed Parameter Systems Thebehaviorofsystemsoccurringinreallifeisoftenmodeledbypartial differentialequations.Thisbookinvestigateshowauserorobservercaninfluence thebehaviorofsuchsystemsmathematicallyandcomputationally.Athorough mathematicalanalysisofcontrollabilityproblemsiscombinedwithadetailed investigationofmethodsusedtosolvethemnumerically,thesemethodsbeing validatedbytheresultsofnumericalexperiments.InPartIofthebook,theauthors discussthemathematicsandnumericsrelatingtothecontrollabilityofsystems modeledbylinearandnonlineardiffusionequations;PartIIisdedicatedtothe controllabilityofvibratingsystems,typicalonesbeingthosemodeledbylinear waveequations;finally,PartIIIcoversflowcontrolforsystemsgovernedbythe Navier–Stokesequationsmodelingincompressibleviscousflow.Thebookis accessibletograduatestudentsinappliedandcomputationalmathematics, engineering,andphysics;itwillalsobeofusetomoreadvancedpractitioners. EncyclopediaofMathematicsanditsApplications AllthetitleslistedbelowcanbeobtainedfromgoodbooksellersorfromCambridge UniversityPress.Foracompleteserieslisting visit http://www.cambridge.org/uk/series/sSeries.asp?code=EOM 62 H.O.FattoriniInfiniteDimensionalOptimizationandControlTheory 63 A.C. ThompsonMinkowskiGeometry 64 R.B.BapatandT.E.S.RaghavanNonnegativeMatriceswithApplications 65 K.EngelSpernerTheory 66 D.Cvetkovic,P.Rowlinson,andS.SimicEigenspacesofGraphs 67 F.Bergeron,G.Labelle,andP.LerouxCombinationalSpeciesandTree-LikeStructures 68 R.GoodmanandN.WallachRepresentationsandInvariantsoftheClassicalGroups 69 T.Beth,D.Jungnickel,andH.LenzDesignTheory1,2ndedn 70 A.PietschandJ.WenzelOrthonormalSystemsforBanachSpaceGeometry 71 G.E.Andrews,R.Askey,andR.RoySpecialFunctions 72 R.TicciatiQuantumFieldTheoryforMathematicians 73 M.SternSemimodularLattices 74 I.LasieckaandR.TriggianiControlTheoryforPartialDifferentialEquationsI 75 I.LasieckaandR.TriggianiControlTheoryforPartialDifferentialEquationsII 76 A.A.IvanovGeometryofSporadicGroupsI 77 A.SchinzelPolynomialswithSpecialRegardtoReducibility 78 H.Lenz,T.Beth,andD.JungnickelDesignTheoryII,2ndedn ∗ 79 T.PalmerBanachAlgebrasandtheGeneralTheoryof -AlbegrasII 80 O.StormarkLie’sStructuralApproachtoPDESystems 81 C.F.DunklandY.XuOrthogonalPolynomialsofSeveralVariables 82 J.P.MayberryTheFoundationsofMathematicsintheTheoryofSets 83 C.Foias,O.Manley,R.Rosa,andR.TemamNavier–StokesEquationsandTurbulence 84 B.PolsterandG.SteinkeGeometriesonSurfaces 85 R.B.ParisandD.KaminskiAsymptoticsandMellin–BarnesIntegrals 86 R.McElieceTheTheoryofInformationandCoding,2ndedn 87 B.MagurnAlgebraicIntroductiontoK-Theory 88 T.MoraSolvingPolynomialEquationSystemsI 89 K.BichtelerStochasticIntegrationwithJumps 90 M.LothaireAlgebraicCombinatoricsonWords 91 A.A.IvanovandS.V.ShpectorovGeometryofSporadicGroupsII 92 P.McMullenandE.SchulteAbstractRegularPolytopes 93 G.Gierzetal.ContinuousLatticesandDomains 94 S.FinchMathematicalConstants 95 Y.JabriTheMountainPassTheorem 96 G.GasperandM.RahmanBasicHypergeometricSeries,2ndedn 97 M.C.PedicchioandW.Tholen(eds.)CategoricalFoundations 98 M.E.H.IsmailClassicalandQuantumOrthogonalPolynomialsinOneVariable 99 T.MoraSolvingPolynomialEquationSystemsII 100 E.OlivierandM.EuláliáVaresLargeDeviationsandMetastability 101 A.Kushner,V.Lychagin,andV.RubtsovContactGeometryandNonlinear DifferentialEquations 102 L.W.Beineke,R.J.Wilson,andP.J.Cameron.(eds.)TopicsinAlgebraicGraphTheory 103 O.StaffansWell-PosedLinearSystems 104 J.M.Lewis,S.Lakshmivarahan,andS.DhallDynamicDataAssimilation 105 M.LothaireAppliedCombinatoricsonWords 106 A.MarkoeAnalyticTomography 107 P.A.MartinMultipleScattering 108 R.A.BrualdiCombinatorialMatrixClasses 110 M.-J.LaiandL.L.SchumakerSplineFunctionsonTriangulations 111 R.T.CurtisSymmetricGenerationofGroups 112 H.Salzmann,T.Grundhöfer,H.Hähl,andR.LöwenTheClassicalFields 113 S.PeszatandJ.ZabczykStochasticPartialDifferentialEquationswithLévyNoise 114 J.BeckCombinatorialGames 115 L.BarreiraandY.PesinNonuniformHyperbolicity 116 D.Z.ArovandH.DymJ-ContractiveMatrixValuedFunctionsandRelatedTopics 117 R.Glowinski,J.-L.Lions,andJ.HeExactandApproximateControllabilityfor DistributedParameterSystems Exact and Approximate Controllability for Distributed Parameter Systems ANumericalApproach ROLAND GLOWINSKI UniversityofHouston JACQUES-LOUIS LIONS CollegedeFrance,Paris JIWEN HE UniversityofHouston cambridgeuniversitypress Cambridge,NewYork,Melbourne,Madrid,CapeTown,Singapore,SãoPaulo CambridgeUniversityPress TheEdinburghBuilding,CambridgeCB28RU,UK PublishedintheUnitedStatesofAmericabyCambridgeUniversityPress,NewYork www.cambridge.org Informationonthistitle:www.cambridge.org/9780521885720 ©R.Glowinski,J.-L.LionsandJ.He2008 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithout thewrittenpermissionofCambridgeUniversityPress. Firstpublished2008 PrintedintheUnitedKingdomattheUniversityPress,Cambridge LibraryofCongressCataloginginPublicationdata Glowinski,R. Exactandapproximatecontrollabilityfordistributedparametersystems:anumerical approach/RolandGlowinski,Jacques-LouisLions,JiwenHe. p. cm. Includesbibliographicalreferencesandindex. ISBN978-0-521-88572-0(hardback:alk.paper) 1.Controltheory.2.Distributedparametersystems.3.Differentialequations, Partial–Numericalsolutions.I.Lions,JacquesLouis.II.He,Jiwen.III.Title. QA402.3.G562008 (cid:2) 515.642–dc22 2007042032 CambridgeUniversityPresshasnoresponsibilityforthepersistenceor accuracyofURLsforexternalorthird-partyinternetwebsitesreferredto inthispublication,anddoesnotguaranteethatanycontentonsuch websitesis,orwillremain,accurateorappropriate. ToAndrée,Angela,andApril,andtoDorianLions LENSLARQUE-homonyms,withdefinitions. 1. Lencilorqua:avillageof657inhabitantsonVasselonaContinent,Reis,sixthplanet toGammaEridani. 2. Lanslarke: a predacious winged creature of Dar Sai, third planet of Cora, Argo Navis961. 3. Laenzle arc: the locus of a point generated by the seventh theorem of triskoïd dynamics,asdefinedbythemathematicianPaloLaenzle(907–1070). 4. Linslurk:amosslike... JackVance,TheFace.InTheDemonPrinces,VolumeII, TomDohertyAssociates,Inc.,NewYork,NY,1997 ThemostchallengingcourseItookinhighschoolwascalculus. BillClinton,MyLife,Knopf,NewYork,NY,2004 Therealtricktowritingabookiswriting.Untilyouhaveabook. AdamFelber,Schrödinger’sBall,RandomHouse,NewYork,NY,2006 Contents Preface pagexi Introduction 1 I.1 Whatitisallabout? 1 I.2 Motivation 2 I.3 Topologiesandnumericalmethods 3 I.4 Choiceofthecontrol 4 I.5 Relaxationofthecontrollabilitynotion 4 I.6 Variousremarks 5 PartI DiffusionModels 1 Distributedandpointwisecontrolforlineardiffusionequations 9 1.1 Firstexample 9 1.2 Approximatecontrollability 12 1.3 Formulationoftheapproximatecontrollabilityproblem 14 1.4 Dualproblem 15 1.5 Directsolutiontothedualproblem 17 1.6 Penaltyarguments 19 1.7 L∞costfunctionsandbang-bangcontrols 22 1.8 Numericalmethods 28 1.9 Relaxationofcontrollability 57 1.10 Pointwisecontrol 62 1.11 Furtherremarks(I):Additionalconstraintsonthestatefunction 96 1.12 Furtherremarks(II):Abisectionbasedmemorysavingmethodfor thesolutionoftimedependentcontrolproblemsbyadjointequation basedmethodologies 112 1.13 Furtherremarks(III):AbriefintroductiontoRiccatiequations basedcontrolmethods 117 viii Contents 2 Boundarycontrol 124 2.1 Dirichletcontrol(I):Formulationofthecontrolproblem 124 2.2 Dirichletcontrol(II):Optimalityconditionsanddualformulations 126 2.3 Dirichletcontrol(III):Iterativesolutionofthecontrolproblems 128 2.4 Dirichletcontrol(IV):Approximationofthecontrolproblems 133 2.5 Dirichletcontrol(V):Iterativesolutionofthefullydiscrete dualproblem(2.124) 143 2.6 Dirichletcontrol(VI):Numericalexperiments 146 2.7 Neumanncontrol(I):Formulationofthecontrolproblems andsynopsis 155 2.8 Neumanncontrol(II):Optimalityconditionsanddualformulations 163 2.9 Neumanncontrol(III):Conjugategradientsolutionofthe dualproblem(2.192) 176 2.10 Neumanncontrol(IV):Iterativesolutionofthe dualproblem(2.208),(2.209) 178 2.11 Neumanncontrolofunstableparabolicsystems: anumericalapproach 178 2.12 Closed-loopNeumanncontrolofunstableparabolicsystems viatheRiccatiequationapproach 223 3 ControloftheStokessystem 231 3.1 Generalities.Synopsis 231 3.2 FormulationoftheStokessystem.Afundamental controllabilityresult 231 3.3 Twoapproximatecontrollabilityproblems 234 3.4 Optimalityconditionsanddualproblems 234 3.5 Iterativesolutionofthecontrolproblem(3.19) 236 3.6 Timediscretizationofthecontrolproblem(3.19) 238 3.7 Numericalexperiments 239 4 Controlofnonlineardiffusionsystems 243 4.1 Generalities.Synopsis 243 4.2 Exampleofanoncontrollablenonlinearsystem 243 4.3 PointwisecontroloftheviscousBurgersequation 245 4.4 Onthecontrollabilityandthestabilizationofthe Kuramoto-Sivashinskyequationinonespacedimension 259 5 Dynamicprogrammingforlineardiffusionequations 277 5.1 Introduction.Synopsis 277 5.2 DerivationoftheHamilton–Jacobi–Bellmanequation 278 5.3 Someremarks 279 Contents ix PartII WaveModels 6 Waveequations 283 6.1 Waveequations:Dirichletboundarycontrol 283 6.2 Approximatecontrollability 285 6.3 Formulationoftheapproximatecontrollabilityproblem 286 6.4 Dualproblems 287 6.5 Directsolutionofthedualproblem 288 6.6 Exactcontrollabilityandnewfunctionalspaces 289 6.7 OnthestructureofspaceE 291 6.8 NumericalmethodsfortheDirichletboundarycontrollabilityofthe waveequation 291 6.9 ExperimentalvalidationofthefilteringprocedureofSection6.8.7 viathesolutionofthetestproblemofSection6.8.5 315 6.10 Somereferencesonalternativeapproximationmethods 319 6.11 Otherboundarycontrols 320 6.12 Distributedcontrolsforwaveequations 328 6.13 Dynamicprogramming 329 7 Ontheapplicationofcontrollabilitymethodstothesolutionofthe Helmholtzequationatlargewavenumbers 332 7.1 Introduction 332 7.2 TheHelmholtzequationanditsequivalentwaveproblem 332 7.3 Exactcontrollabilitymethodsforthecalculationoftime-periodic solutionstothewaveequation 334 7.4 Least-squaresformulationoftheproblem(7.8)–(7.11) 334 7.5 CalculationofJ(cid:2) 336 7.6 Conjugategradientsolutionoftheleast-squaresproblem(7.14) 337 7.7 Afiniteelement–finitedifferenceimplementation 340 7.8 Numericalexperiments 341 7.9 Furthercomments.Descriptionofamixedformulation basedvariantofthecontrollabilitymethod 349 7.10 Afinalcomment 355 8 Otherwaveandvibrationproblems.Coupledsystems 356 8.1 Generalitiesandfurtherreferences 356 8.2 CoupledSystems(I):aproblemfromthermo-elasticity 359 8.3 Coupledsystems(II):Othersystems 367

Description:
This book investigates how a user or observer can influence the behavior of systems mathematically and computationally. A thorough mathematical analysis of controllability problems is combined with a detailed investigation of methods used to solve them numerically; these methods being validated by t
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.