ebook img

Exact Amplitude-Based Resummation in Quantum Field Theory: Recent Results PDF

0.13 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Exact Amplitude-Based Resummation in Quantum Field Theory: Recent Results

Exact Amplitude-Based Resummation in Quantum Field Theory: Recent Results 2 1 0 2 n a J B.F.L.Ward∗† 2 BaylorUniversity E-mail:[email protected] ] h S.K. Majhi p - IndianAssociationfortheCultivationofScience p e E-mail: [email protected] h [ S.A. Yost‡ TheCitadel 1 v E-mail: [email protected] 5 1 5 Wepresentthecurrentstatusoftheapplicationofourapproachofexactamplitude-basedresum- 0 mationin quantumfield theoryto two areasofinvestigation: precisionQCD calculationsof all . 1 threeofusasneededforLHCphysicsandtheresummedquantumgravityrealizationbyoneofus 0 2 (B.F.L.W.)ofFeynman’sformulationofEinstein’stheoryofgeneralrelativity.Wediscussrecent 1 resultsastheyrelatetoexperimentalobservations. Thereisreasonforoptimismintheattendant : v comparisonoftheoryandexperiment. i X r a 10thInternationalSymposiumonRadiativeCorrections(ApplicationsofQuantumFieldTheoryto Phenomenology) September26-30,2011 Mamallapuram,India BU-HEPP-11-04, Dec.,2011 ∗Speaker. †WorksupportedinpartbyD.o.E.grantDE-FG02-09ER41600. ‡WorksupportedinpartbyD.o.E.grantDE-PS02-09ER09-01andgrantsfromTheCitadelFoundation. (cid:13)c Copyrightownedbytheauthor(s)underthetermsoftheCreativeCommonsAttribution-NonCommercial-ShareAlikeLicence. http://pos.sissa.it/ ExactAmplitude-BasedResummationinQuantumFieldTheory: RecentResults B.F.L.Ward 1. Introduction Withthestart-upoftheLHCtheeraofprecisionQCD,bywhichwemeanpredictionsforQCD processes at the total precision tag of 1% or better, is upon us and the need for exact, amplitude- based resummation of large higher order effects is paramount. Such resummation allows one to have better than 1% precision asarealistic goal asweshall show in whatfollows, sothat one can indeed distinguish new physics(NP) from higher order SM processes and can distinguish differ- ent models of new physics from one another as well. In a parallel development, the issue of the application of ordinary quantum field theoretic methods to Einstein’s theory of general relativity lends itself as well to a resummation approach, provided again that the resummation is an exact amplitude-based one, asone ofus(B.F.L.W.)has shown. Inwhatfollows, wepresent the status of thesetwoapplications ofexactamplitude-based resummationtheoryinquantum fieldtheory. Thetwoparadigmswhichwepresentarethenasfollows. First,inthenextSection,wepresent an approach toprecision LHCphysics which isan amplitude-based QED⊗QCD(≡QCD⊗QED) exact resummation theory [1] realized by MCmethods. Thestarting point isthen the well-known fullydifferential representation ds =(cid:229) dx dx F(x )F (x )dsˆ (x x s) (1.1) 1 2 i 1 j 2 res 1 2 Z i,j of a hard LHC scattering process using a standard notation so that the {F } and dsˆ are the j res respective parton densities and reduced hard differential cross section where we indicate the that latterhasbeenresummedforalllargeEWandQCDhigherordercorrectionsinamannerconsistent withachieving atotal precision tag of1% orbetter forthe total theoretical precision of(1.1). The key issue to precision QCD theory is then the determination of the value of the total theoretical precision of(1.1),whichwedenotebyD s . Itcanbedecomposed asfollows: th D s =D F⊕D sˆ (1.2) th res inanobviousnotationwhereD AisthecontributionoftheuncertaintyonAtoD s . Thetheoretical th precision D s validates theapplication ofagiven theoretical prediction toprecision experimental th observations, for the discussion of the signals and the backgrounds for both SM and NP studies, andmorespecificallyfortheoverallnormalization ofthecrosssectionsinsuchstudies. NPcanbe missed if acalculation with an unknown value of D s isused for such studies. This point cannot th beemphasized toomuch. By our definition, D s is the total theoretical uncertainty coming from the physical preci- th sion contribution and the technical precision contribution [2]: the physical precision contribution, D s phys, arises from such sources as missing graphs, approximations to graphs, truncations,....; th the technical precision contribution, D s tech, arises from such sources as bugs in codes, numerical th rounding errors, convergence issues, etc. Thetotaltheoretical erroristhengivenby D s =D s phys⊕D s tech. (1.3) th th th Thedesired value forD s depends onthespecific requirements ofthe observations. Asageneral th rule, one would like that D s ≤ fD s , where D s is the respective experimental error and th expt expt 2 ExactAmplitude-BasedResummationinQuantumFieldTheory: RecentResults B.F.L.Ward f . 1 so that the theoretical uncertainty does not significantly affect the analysis of the data for 2 physicsstudies inanadverseway. With the goal of achieving such precision in a provable way, we have developed the QCD⊗ QEDresummationtheoryinRefs.[1]forthereducedcrosssectionin(1.1)andfortheresummation oftheevolutionofthepartondensitiesthereinaswell. Inbothcases,thestartingpointisthemaster formula (cid:213) mj2d=s1¯rdek3s′kb=j′˜¯2j2eRS(Uk(2dMp4,Iy)R.4.(eQ.i,Cyk·E(Dp;1)k+(cid:229)′q,1¥n.−,.m.p=2,−0k′qn2!)1m−d!(cid:229)3Rpk2j(cid:213)1d−3nj(cid:229)q1=2k,′1j2d)k3+kj1Dj1QCED (1.4) n,m 1 n 1 m p0 q0 2 2 whereds¯ iseitherthereducedcrosssectiondsˆ orthedifferentialrateassociatedtoaDGLAP- res res CS [3,4] kernel involved in the evolution of the {F } and where the new (YFS-style [5]) non- j Abelian residuals b˜¯ (k ,...,k ;k′,...,k′ ) have n hard gluons and m hard photons and we show n,m 1 n 1 m thefinalstatewithtwohardfinalpartonswithmomenta p , q specifiedforageneric2f finalstate 2 2 fordefiniteness. TheinfraredfunctionsSUM (QCED), D aredefinedinRefs.[1,6,7]. This IR QCED simultaneousresummationofQEDandQCDlargeIReffectsisexact. Moreover,theresidualsb˜¯ n,m allowarigorous partonshower/MEmatchingviatheirshower-subtracted counterparts bˆ˜¯ [1]. n,m Theresultin(1.4)alsoallowsusananexact,amplitude-basedresummationapproachtoFeyn- man’s formulation of Einstein’s theory, as one of us (B.F.L.W.) has shown in Refs. [8] via the followingrepresentation oftheFeynmanpropagators inthattheory: i iD ′ (k)= F (k2−m2−S +ie ) s ieB′g′(k) = (k2−m2−S ′+ie ) s ≡iD ′ (k)| . F resummed for scalar fields with an attendant generalization for spinning fields [8]. We stress that there are no approximations in (1.5). The formula for B′′(k) is given in Refs. [8] and is presented below. g Wenow discuss the two paradigms opened by (1.4) for precision QCDfor the LHCand for exact resummation ofEinstein’s theoryinturn. 2. PrecisionQCDforthe LHC We first stress that the methods we emply for resummation of the QCD theory are fully con- sistent with the methods in Refs. [9,10]. This can be seen by considering the application of the latter methods to the 2→ n processes [f] at hard scale Q, f (p ,r )+ f (p ,r )→ f (p ,r )+ 1 1 1 2 2 2 3 3 3 f (p ,r )+···+ f (p ,r ),wherethe p,r label4-momentaandcolorindicesrespectively, 4 4 4 n+2 n+2 n+2 i i byAbyatetal. inRef.[11],wheretherespectiveamplitude isrepresented as C M[f] =(cid:229) M[f](c ) {ri} L L {ri} L (2.1) C =J[f](cid:229) S H[f](c ) , LI I L {ri} L 3 ExactAmplitude-BasedResummationinQuantumFieldTheory: RecentResults B.F.L.Ward where repeated indices are summed, and the functions J[f],S , and H[f] are respectively the jet LI I function, thesoftfunction whichdescribes theexchange ofsoftgluons betweentheexternal lines, andthehardcoefficientfunction. Thelatterfunctions’infraredandcollinearpoleshavebeencalcu- lated to 2-loop order in Refs. [11]. Tomake contact between eqs.(1.4,2.1), identify inthe specific application Q¯′Q → Q¯′′′Q′′+m(G) in (1.4) f = Q,f = Q¯′,f = Q′′,f = Q¯′′′,{f ,···,f } = 1 2 3 4 5 n+2 {G ,···,G }, in (2.1), where we use the obvious notation for the gluons here. This means that 1 m n=m+2. Then,touseeq.(2.1)ineq.(1.4), oneobservesthefollowing: I. Byits definition ineq.(2.23) ofRef. [11], the anomalous dimension of the matrix S does not LI contain any of the diagonal effects described by our infrared functions SUM (QCD) and IR D ,where QCD SUM (QCD)=2a ´ B +2a B˜ (K ), IR s QCD s QCD max d3k 2a B˜ (K )= S˜ (k)q (K −k), s QCD max Z k0 QCD max d3k D = S˜ (k) e−iy·k−q (K −k) , (2.2) QCD QCD max Z k h i wherethereal IRemission function S˜ (k)and thevirtual IRfunction ´ B aredefined QCD QCD eqs.(77,73) inRef.[6]. Notethat(1.4)isindependent ofK . max II.Byitsdefinitionineqs.(2.5)and(2.7)ofRef.[11],thejetfunctionJ[f]containstheexponential ofthevirtualinfrared function a ´ B ,sothatwehavetotakecarethatwedonotdouble s QCD countwhenweuse(2.1)in(1.4)andintheequations inRefs.[1,6,7]thatleadthereto. In this way we get the following realization of our approach using the results in Ref. [11]: In our result in eq.(75) in Ref. [6] for the contribution to (1.4) of m-hard gluons for the process under studyhere, dsˆm= e2a s´ BQCD (cid:213) m d3kj d (p +q −p −q −(cid:229)m k) m! Z (k2+l 2)1/2 1 1 2 2 i j=1 j i=1 d3p d3q r¯(m)(p ,q ,p ,q ,k ,···,k ) 2 2, (2.3) 1 1 2 2 1 m p0q0 2 2 wecanidentify theresidual r¯(m) asfollows: r¯(m)(p ,q ,p ,q ,k ,···,k )=(cid:229) |M[f]|2 1 1 2 2 1 m colors,spin {ri} ≡spins,(cid:229){ri},{ri′}hc{sri}{ri′}|J¯[f]|2L(cid:229)C=1L(cid:229)′C=1SL[fI]HI[f](cL){ri}(cid:16)SL[f′I]′HI[′f](cL′){ri′}(cid:17)†, (2.4) where here we defined J¯[f] =e−a s´ BQCDJ[f], and we introduced the color-spin density matrix for the initial state, hcs, so that hcs = hcs , suppressing the spin indices, i.e., hcs only {ri}{ri′} {r1,r2}{r1′,r2′} depends on the initial state colors and has the obvious normalization implied by (2.3). Proceed- ing then according to the steps in Ref. [6] leading from (2.3) to (1.4) restricted to QCD, we get the corresponding implementation of the results in Ref. [11] in our approach, without any double countingofeffects. Thisprovesthatthenewnon-Abelianresidualsb˜¯ in(1.4)transcendthoseof m,n anAbelianmasslessgaugetheoryasintroduced inRef.[5]. 4 ExactAmplitude-BasedResummationinQuantumFieldTheory: RecentResults B.F.L.Ward AswehaveexplainedinRefs.[1],thesenewnon-Abelianresidualsallowrigorousshower/ME matching viatheirshowersubtracted analogs: b˜¯ →bˆ˜¯ (2.5) m,n m,n wherethebˆ˜¯ havehadalleffectsintheshowersassociated tothe{F }removedfromthem. m,n j Whentheformulain(1.4)isapplied tothecalculation ofthekernels, P ,intheDGLAP-CS AB theory itself, wegetanimprovement oftheIRlimitofthesekernels, anIR-improved DGLAP-CS theory [6,7] in which large IR effects are resummed for the kernels themselves. The resulting newresummedkernels, Pexp asgiveninRef.[6,7]andasillustrated below,yieldanewresummed AB schemeforthePDF’sandthereduced crosssection: F , sˆ →F′, sˆ′for j j 1+(1−z)2 Pgq(z)→Pgeqxp(z)=CFFYFS(gq)e12dq z zgq,etc., withthesamevaluefors in(1.1)withimprovedMCstability asdiscussed inRef.[12]. Here,the YFS [5] infrared factor is given by FYFS(a)=e−CEa/G (1+a) where CE is Euler’s constant and we refer the reader to Ref. [6,7] for the definition of the infrared exponents g , d as well as for q q exp thecomplete setofequations forthenewP . C isthequadratic Casimirinvariant forthequark AB F colorrepresentation. The basic physical idea underlying the new kernels is illustrated in Fig. 2 as it was already shown by Bloch and Nordsieck [13]: an accelerated charge generates a coherent state of very G(z−Pjξj) ☛(cid:0) ✡✁ ☛(cid:0) ✡✁ ☛(cid:0) ✡✁ ☛(cid:0) ✡✁ ☛(cid:0) SoftGluonCloud ☛✡(cid:0)✁ ✡✁ zG1(ξ1)}|Gℓ(ξℓ{) ☛☛✡(cid:0)(cid:0)✁ ✡✁ ☛(cid:0) ··· ☛(cid:0) ☛(cid:0) ✡✁ ✡✁ ✡✁ ☛(cid:0) ☛(cid:0) ☛(cid:0) ✲ ✡✈✁ ✡✈✁ ✡✈✁ ✲ q q(1−z) q→q(1−z)+G⊗G1···⊗Gℓ, ℓ=0,··· ,∞ Figure1: Bloch-Nordsiecksoftquantaforanacceleratedcharge. soft massless quanta oftherespective gaugefieldsothatonecannot know whichoftheinfinityof possiblestatesonehasmadeinthesplittingprocessq(1)→q(1−z)+G⊗G ···⊗G , ℓ=0,···,¥ 1 ℓ illustrated inFig.2. Thenewkernels takethiseffectintoaccount. The new MC Herwiri1.031 [12] gives the first realization of the new IR-improved kernels in the Herwig6.5 [14] environment. Here, we compare it with Herwig6.510, both with and without the MC@NLO [15] exact O(a ) correction, in Fig. 2 in relation to D0 data [16] on the Z boson s p in single Z production and the CDF data [17] on the Z boson rapidity in the same process all T at the Tevatron. We see [12] that the IR improvement improves the c 2/d.o.f in comparison with the data in both cases for the soft p data and that for the rapidity data it improves the c 2/d.o.f T 5 ExactAmplitude-BasedResummationinQuantumFieldTheory: RecentResults B.F.L.Ward (a) (b) Vector boson rapidity Generated Z transverse momentum. 0.6 66 < MZ/g* < 116, plt > 20 0.12 DGLAP 0.11 DGLAP−CS 0.5 IR.Imp.DGLAP−CS −1c) 0.1 IR.Imp.DGLAP V/0.09 0.4 e G 0.3 (dpt00..0078 / sd0.06 0.2 · 0.05 s1/ 0.1 0.04 0.03 00 0.5 1 1.5 2 2.5 3 0 2 4 6 8 10 12 14 Y(Z) Z/g* p (GeV/c) t Figure 2: From Ref. [12], comparison with FNAL data: (a), CDF rapidity data on (Z/g ∗) production to e+e− pairs, the circular dots are the data, the light(dark) lines are HERWIG6.510(HERWIRI1.031); (b), D0 p spectrum data on (Z/g ∗) production to e+e− pairs, the circular dots are the data, the dark trian- T gles are HERWIRI1.031, the light triangles are HERWIG6.510. In both (a) and (b) the dark squares are MC@NLO/HERWIRI1.031,andthelightsquaresareMC@NLO/HERWIG6.510,whereMC@NLO/Xde- notes the realization by MC@NLO of the exact O(a ) correction for the generatorX. These are untuned s theoreticalresults. before the application of the MC@NLO exact O(a ) correction and that with the latter correc- s tion the c 2/d.o.f’s are statistically indistinguishable. Moreimportantly, this theoretical paradigm can be systematically improved in principle to reach any desired D s . The suggested accuracy th at the 10% level shows the need for the NNLO extension of MC@NLO, in view of our goals for this process. We are currently developing the analogous applications for the new kernels for Herwig++ [18], Herwiri++, for Pyhtia8 [19] and for Sherpa [20]. In addition we are currently analysizing recent LHCdata using Herwiri1.031/MC@NLO, Herwiri++/Powheg [21] as weshall reportelsewhere[22]. 3. Resummed Quantum Gravity Oneofus(B.F.L.W.)hasrecentlycontinuedhisapplicationofexactamplitude-basedresumma- tion theory to Feynman’s formulation of Einstein’s theory, as described in Refs. [8]. In particular, inRef.[23],hehasarrivedatafirstprinciples prediction ofthecosmological constant thatisclose totheobservedvalue[24,25],r L ∼=(2.368×10−3eV(1±0.023))4,aswenowrecapitulate. InRef.[23],usingthedeepUVresult k 2|k2| m2 B′′(k)= ln , (3.1) g 8p 2 (cid:18)m2+|k2|(cid:19) itisshownthattheUVlimitofNewton’sconstant, G (k),isgivenby N 360p g = lim k2G (k2)= ∼=0.0442, (3.2) ∗ N k2→¥ c2,eff 6 ExactAmplitude-BasedResummationinQuantumFieldTheory: RecentResults B.F.L.Ward where[8,23]c ∼=2.56×104 fortheknownworld. Inaddition,itisshownthatthecontribution 2,eff ofascalarfieldtoL is d4k (2k2)e−lc(k2/(2m2))ln(k2/m2+1) L =−8p G 0 s N2R(2p )4 k2+m2 1 (3.3) ∼=−8p G , N(cid:20)G264r 2(cid:21) N where r =ln 2 and we have used the calculus of Refs. [8,23]. We note that the standard equal- l c time (anti-)commutation relations algebra realizations then show that a Dirac fermion contributes −4timesL toL . ThedeepUVlimitofL thenbecomes s L (k)−→k2l , ∗ k2→¥ l ∗=−c228,e8f0f (cid:229) (−1)Fjnj/r 2j (3.4) j ∼=0.0817 whereF isthefermionnumberof jandr =r (l (m )). Ourresultsfor(g ,l )agreequalitatively j j c j ∗ ∗ withthoseinRefs.[26,27]. For reference, we note that, if we restrict our resummed quantum gravity calculations above forg ,l tothepuregravitytheorywithnoSMmatterfields,wegettheresults ∗ ∗ g =.0533, l =−.000189. ∗ ∗ We see that our results suggest that there is still significant cut-off effects in the results used for g , l 1 in Refs. [26,27], which already seem to include an effective matter contribution when ∗ ∗ viewed from our resummed quantum gravity perspective, as an artifact of the obvious gauge and cut-off dependencies of the results. Indeed, from a purely quantum field theoretic point of view, thecut-offactionis 1 D S(h,C,C¯;g¯)= <h,Rgravh>+<C¯,RghC> (3.5) k 2 k k where g¯ is the general background metric, which is the Minkowski space metric h here, andC,C¯ aretheghostfieldsandtheoperators Rgrav, Rgh implementthecoursegraining astheysatisfythe k k limits lim R =0, k p2/k2→¥ lim R →Z k2, k k p2/k2→0 for some Z [26]. Here, the inner product is that defined in the second paper in Refs. [26] in its k Eqs.(2.14,2.15,2.19). The result is that the modes with p.k have a shift of their vacuum energy bythecut-off operator. Thereisnodisagreement inprinciple between ourgaugeinvariant, cut-off independent resultsandthegaugedependent, cut-offdependent resultsinRefs.[26,27]. 1InthefirstpaperinRef.[27],(g∗,l ∗)≈(0.27,0.36). 7 ExactAmplitude-BasedResummationinQuantumFieldTheory: RecentResults B.F.L.Ward 3.1 AnEstimateofL ToestimatethevalueofL today,wetakethenormal-ordered formofEinstein’s equation, :Gmn :+L :gmn :=−8p GN :Tmn :. (3.6) Thecoherent state representation ofthethermal density matrixthen givestheEinstein equation in the form of thermally averaged quantities with L given by our result above in lowest order. Tak- ing the transition time between the Planck regime and the classical Friedmann-Robertson-Walker regimeatt ∼25t fromRefs.[27],weintroduce tr Pl L (t ) r L (ttr)≡ 8p G t(rt ) N tr (3.7) = −MP4l(ktr)(cid:229) (−1)Fnj 64 r 2 j j andusethearguments inRefs.[28](t isthetimeofmatter-radiation equality) toget eq r L (t0)∼= −MP4l(1+c2,eff6k4t2r/(360p MP2l))2(cid:229) (−1r)2Fnj j j t2 t2/3 × tr ×( eq )3 (cid:2)te2q t02/3 (cid:3) (3.8) −M2 (1.0362)2(−9.197×10−3)(25)2 ∼= Pl 64 t2 0 ∼=(2.400×10−3eV)4. wherewetaketheageoftheuniversetobet ∼=13.7×109 yrs. Inthelatterestimate,thefirstfactor 0 in the square bracket comes from the period from t to t (radiation dominated) and the second tr eq factorcomesfromtheperiodfromt tot (matterdominated)2. Thisestimateshouldbecompared eq 0 withtheexperimental result[24,25]3 r L (t0)|expt ∼=(2.368×10−3eV(1±0.023))4. Inclosing, two ofus(B.F.L.W.,S.A.Y.)thankProf. IgnatiosAntoniadisforthesupportandkindhospitality ofthe CERNTHUnitwhilepartofthisworkwascompleted. References [1] C.Glosser,S.Jadach,B.F.L.WardandS.A.Yost,Mod.Phys.Lett.A19(2004)2113;B.F.L.Ward,C. Glosser,S.JadachandS.A.Yost,inProc.DPF2004,Int.J.Mod.Phys.A20(2005)3735;inProc. ICHEP04,vol.1,eds.H.Chenetal.,(World.Sci.Publ.Co.,Singapore,2005)p.588;B.F.L.Wardand S.Yost,preprintBU-HEPP-05-05,inProc.HERA-LHCWorkshop,CERN-2005-014;inMoscow 2006,ICHEP,vol.1,p.505;ActaPhys.Polon.B38(2007)2395;arXiv:0802.0724, PoS(RADCOR2007)(2007)038;B.F.L.Wardetal.,arXiv:0810.0723,inProc.ICHEP08; arXiv:0808.3133,inProc.2008HERA-LHCWorkshop,DESY-PROC-2009-02,eds.H.JungandA. DeRoeck,(DESY,Hamburg,2009)pp.180-186,andreferencestherein. 2Themethodoftheoperatorfieldforcesthevacuumenergiestofollowthesamescalingasthenon-vacuumexcita- tions. 3SeealsoRef.[29]forananalysisthatsuggestsavalueforr L (t0)thatisqualitativelysimilartothisexperimental result. 8 ExactAmplitude-BasedResummationinQuantumFieldTheory: RecentResults B.F.L.Ward [2] SeeforexampleS.Jadachetal.,inPhysicsatLEP2,vol.2,(CERN,Geneva,1995)pp.229-298. [3] G.AltarelliandG.Parisi,Nucl.Phys.B126(1977)298;Yu.L.Dokshitzer,Sov.Phys.JETP46(1977) 641;L.N.Lipatov,Yad.Fiz.20(1974)181;V.GribovandL.Lipatov,Sov.J.Nucl.Phys.15(1972) 675,938;seealsoJ.C.CollinsandJ.Qiu,Phys.Rev.D39(1989)1398. [4] C.G.Callan,Jr.,Phys.Rev.D2(1970)1541;K.Symanzik,Commun.Math.Phys.18(1970)227,and inSpringerTractsinModernPhysics,57,ed.G.Hoehler(Springer,Berlin,1971)p.222;seealsoS. Weinberg,Phys.Rev.D8(1973)3497. [5] D.R.Yennie,S.C.Frautschi,andH.Suura,Ann.Phys.13(1961)379;seealsoK.T.Mahanthappa, Phys.Rev.126(1962)329,forarelatedanalysis. [6] B.F.L.Ward,Adv.HighEnergyPhys.2008(2008)682312. [7] B.F.L.Ward,Ann.Phys.323(2008)2147. [8] B.F.L.Ward,Mod.Phys.Lett.A17(2002)2371;OpenNucl.Part.Phys.J2(2009)1;J.Cos. Astropart.Phys.0402(2004)011;Mod.Phys.Lett.A23(2008)3299. [9] G.Sterman,Nucl.Phys.B281,310(1987);S.CataniandL.Trentadue,Nucl.Phys.B327,323(1989); ibid.B353,183(1991). [10] SeeforexampleC.W.Bauer,A.V.ManoharandM.B.Wise,Phys.Rev.Lett.91(2003)122001;Phys. Rev.D70(2004)034014;C.LeeandG.Sterman,Phys.Rev.D75(2007)014022. [11] S.M.Abyatetal.,Phys.Rev.D74(2006)074004. [12] S.Josephetal.,Phys.Lett.B685(2010)283;Phys.Rev.D81(2010)076008. [13] F.BlochandA.Nordsieck,Phys.Rev.52(1937)54. [14] G.Corcellaetal.,hep-ph/0210213;J.HighEnergyPhys.0101(2001)010;G.Marchesinietal., Comput.Phys.Commun.67(1992)465. [15] S.FrixioneandB.Webber,J.HighEnergyPhys.0206(2002)029;S.Frixioneetal.,arXiv:1010.0568. [16] V.M.Abasovetal.,Phys.Rev.Lett.100(2008)102002. [17] C.Galea,inProc.DIS2008,London,2008,http://dx.doi.org/10.3360/dis.2008.55. [18] M.Bahretal.,arXiv:0812.0529andreferencestherein. [19] T.Sjostrand,S.MrennaandP.Z.Skands,Comput.Phys.Commun.178(2008)852-867. [20] T.Gleisbergetal.,J.HighEnergyPhys.0902(2009)007. [21] P.Nason,J.HighEnergyPhys.0411(2004)040. [22] A.Mukhopadhyayetal.,toappear. [23] B.F.L.Ward,arXiv:1008.1046;PoS(ICHEP10)(2010)477. [24] A.G.Riessetal.,Astron.Jour.116(1998)1009;S.Perlmutteretal.,Astrophys.J.517(1999)565. [25] C.Amsleretal.,Phys.Lett.B667(2008)1. [26] M.Reuter,Phys.Rev.D57(1998)971;O.LauscherandM.Reuter,ibid.66(2002)025026;A. BonannoandM.Reuter,ibid.62(2000)043008,andreferencestherein. [27] A.BonannoandM.Reuter,Phys.Rev.D65(2002)043508;Jour.Phys.Conf.Ser.140(2008) 012008,andreferencestherein. [28] V.BranchinaandD.Zappala,G.R.Gravit.42(2010)141;arXiv:1005.3657,andreferencestherein. [29] J.Sola,J.Phys.A41(2008)164066. 9

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.