ebook img

Evolutionary history of the Afro-Madagascan Ixora species PDF

20 Pages·2013·0.84 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Evolutionary history of the Afro-Madagascan Ixora species

AnnalsofBotany112:1723–1742,2013 doi:10.1093/aob/mct222,availableonlineatwww.aob.oxfordjournals.org Evolutionary history of the Afro-Madagascan Ixora species (Rubiaceae): species diversification and distribution of key morphological traits inferred from dated molecular phylogenetic trees J.Tosh1,2,*,S.Dessein3,S.Buerki4,I.Groeninckx1,A.Mouly5,6,B.Bremer6,E.F.Smets1,7,8andP.DeBlock3 1LaboratoryofPlantSystematics,KULeuven,KasteelparkArenberg31,POBox2437,BE-3001Leuven,Belgium,2AshdownHouse School,ForestRow,EastSussexRH185JY,UK,3NationalBotanicGardenofBelgium,DomeinvanBouchout,BE-1860Meise, Belgium,4JodrellLaboratory,RoyalBotanicGardens,Kew,Richmond,SurreyTW93AE,UK,5LaboratoireChrono-environnement, UMRCNRS6249,Universite´deFranche-Comte´,16RoutedeGray,F-25030Besanc¸oncedex,France,6BergiusFoundation,Royal SwedishAcademyofSciencesandBotanyDepartment,StockholmUniversity,SE-10691,Stockholm,Sweden,7NationalHerbarium ofTheNetherlands,LeidenUniversityBranch,POBox9514,NL-2300RALeiden,TheNetherlandsand8NetherlandsCentrefor D BiodiversityNaturalis,POBox9517,NL-2300RALeiden,TheNetherlands o w *Forcorrespondence.E-mail:[email protected] n lo a d e Received:9April2013 Returnedforrevision:20May2013 Accepted:6August2013 Publishedelectronically:18October2013 d fro m †BackgroundandAimsPreviousworkonthepantropicalgenusIxorahasrevealedanAfro-Madagascanclade,butas http yetnostudyhasfocusedindetailontheevolutionaryhistoryandmorphologicaltrendsinthisgroup.Heretheevo- ://a lutionaryhistoryofAfro-MadagascanIxoraspp.(acladeofapprox.80taxa)isinvestigatedandthephylogenetictrees o b comparedwithseveralkeymorphologicaltraitsintaxaoccurringinMadagascar. .o x †MethodsPhylogeneticrelationshipsofAfro-MadagascanIxoraareassessedusingsequencedatafromfourplastid fo regions(petD,rps16,rpoB-trnCandtrnL-trnF)andnuclearribosomalexternaltranscribedspacer(ETS)andinternal rdjo transcribed spacer (ITS) regions. The phylogenetic distribution of key morphological characters is assessed. urn Bayesian inference (implemented in BEAST) is used to estimate the temporal origin of Ixora based on fossil als evidence. .o rg †KeyResultsTwoseparatelineagesofMadagascantaxaarerecovered,oneofwhichisnestedinagroupofEast a/ Africantaxa.DivergenceinIxoraisestimatedtohavecommencedduringthemidMiocene,withextensiveclado- t S genesisoccurringintheAfro-MadagascancladeduringthePlioceneonwards. toc k †ConclusionsBothlineagesofMadagascanIxoraexhibitmorphologicalinnovationsthatarerarethroughouttherest h o ofthegenus,includingatrendtowardspauciflorousinflorescencesandatrendtowardsextremecorollatubelength, lm s suggestingthatthesameecologicalandselectivepressuresareactingupontaxafrombothMadagascanlineages. U Novelecologicalopportunitiesresultingfromclimate-inducedhabitatfragmentationandcorollatubelengthdiver- niv sificationarelikelytohavefacilitatedspeciesradiationonMadagascar. ers ite Keywords:Rubiaceae,Ixora,Afro-Madagascan,molecularphylogenetics,moleculardating,biogeography,ETS, t o n ITS,petD,rps16,rpoB-trnC,trnL-trnF. M a rc h 3 , 2 0 1 INTRODUCTION 1998). In continental Africa, Ixora mainly occurs in the 4 Guineo-Congolian Regional Centre of Endemism (RCE) (fol- The pantropical genus Ixora is one of the largest genera in lowingWhite,1983),butalsointheAfromontanearchipelago- Rubiaceae,withapprox.530speciesofshrubsandsmalltrees likeRCE,andextendsintotheZambezianRCE,theSwahilian that typically grow in humid rain forest (Davis et al., 2009). RCE and the Swahilian/Maputaland regional transition zone The centre of species diversity for the genus is in South-East (RTZ)(DeBlock,1998).InMadagascar,Rubiaceaearemostnu- Asia,inparticularBorneo(Lorenceetal.,2007).Althoughno merousandspeciesrichintheevergreenhumidforests(Davis modern monograph of Ixora exists, there have been a number and Bridson, 2003). Ixora is no exception to this, occurring ofrevisionsfocusingonspecificgeographicalregions(e.g.De mostfrequentlyinthehumidevergreenforest(littoral,lowland Block, 1998, revision of continental African Ixora spp.; De and montane) on the eastern coast of Madagascar, although Block,2013,revisionofMadagascanIxoraspp.).Phylogenetic Ixora spp. also occur in the semi-deciduous forest of studiesofIxorahaveprimarilyfocusedonthetribalplacement Madagascar(DeBlock,2003,2013). and circumscription of the genus (Andreasen and Bremer, Ixora is one of the most easily recognizable genera in 1996,2000;Mouly,2007;Moulyetal.,2009a).Mostrecently, Rubiaceae,inpartduetotheoftenstrikinginflorescencesandtet- Moulyetal.(2009b)identifiedsomewell-supported,geograph- ramerous flowers (Fig. 1). Diagnostic features for the genus icallydefinedlineages,includingan‘Afro-Madagascan’clade. (adaptedfromDeBlock,2007)includearticulatedpetioles,nar- Thereareapprox.80Afro-MadagascanIxoraspp.distributed rowly tubular tetramerous flowers, bilobed stigmas, bilocular equallybetweencontinentalAfricaandMadagascar(DeBlock, ovaries and fruits (or, rarely, with more than two locules), #TheAuthor2013.PublishedbyOxfordUniversityPressonbehalfoftheAnnalsofBotanyCompany.Allrightsreserved. ForPermissions,pleaseemail:[email protected] 1724 Toshetal.—EvolutionaryhistoryoftheAfro-MadagascanIxoraspecies(Rubiaceae) A B C D E F D o w n lo a d e d G H fro m h ttp ://a o b .o x fo rd jo u rn a ls .o rg I J K a/ t S to c k h o lm s U n iv e rs ite t o n M a rc L M h 3 , 2 0 1 4 FIG.1. ExampleofmorphologicalvariationinIxora.(A)InflorescenceofIxoraregalis.(B)InflorescenceofIxoraelliotii.(C)InflorescenceofIxoraemirnensis.(D) PendulousinflorescenceofIxoramangabensis.(E)InflorescenceofIxoradensithyrsa.(F)InflorescenceofIxorasiphonantha.(G)FrontviewofaflowerofIxora guillotii.(H)FloweringbranchofIxorarakotonasoloi.(I)MaturefruitsofIxoraguillotii.(J)FruitsofIxoraquadrilocularis.(K)FloweringnodeofIxorahomolleae. (L)ArticulatepetiolesofIxorafinlaysoniana.(M)ArticulatepetiolesofIxorahomolleae. uniovulateloculesandseedswithalargeadaxialhilarcavity.In flowers (De Block, 1998, 2003). This is particularly the case contrast, identification at the species level is difficult, with for the African representatives of the genus, which De Block speciesdistinguishedonthebasisofminorandoftencontinuous (1998) described as ‘extremely homogeneous’ in theircharac- characters,typicallyinvolvingfeaturesoftheinflorescenceand ters. On Madagascar, there are several morphological traits Toshetal.—EvolutionaryhistoryoftheAfro-MadagascanIxoraspecies(Rubiaceae) 1725 occurringinIxorathatareabsentinthecontinentalAfricantaxa 25mL, and contained 1mL of each primer (100ng mL21), andrareinthegenusasawhole.Theseinclude:(1)reductionof 0.35mLofBiotaqDNApolymerase,2.5mLof10×NH reac- 4 thenumberofflowersperinflorescencetowardssolitaryflowers; tionbuffer,1.5mLof50mMMgCl2,2.5mLof10mMdNTPs, (2)increasefromtwo-tofour-locularovaries;and(3)increase 1mLofbovineserumalbumin(BSA;0.4%)and2mLoftotal towards large flowers (corolla tubes .15cm long) and fruits genomic DNA. Amplification of petD, rps16 and trnL-trnF (DeBlock,2007,2008,2013). used the following temperature profile: 948C for 3min; 32 Inthepresentstudy,wefurtherinvestigatethephylogenetic cycles of 948C for 1min, 508C for 1min, 728C for 1.5min; relationships of Madagascan and continental African Ixora finalextensionof728Cfor7min.Theamplificationprofilefor spp. using molecular sequence data from four plastid regions rpoB-trnCwas:948Cfor3min;32cyclesof948Cfor1min, (petD,rps16,rpoB-trnCandtrnL-trnF)andnuclearribosomal 538C for 1min, 728C for 2min; final extension of 728C for external transcribed spacer (ETS) and internal transcribed 7min. spacer (ITS) regions. The purpose of this study is to improve PCR mixesfornuclear regions were the same as forplastid taxon sampling of both African and Madagascan species in regions, except that 1mL of dimethylsulfoxide (DMSO) was orderto:(1)testexistinghypothesesconcerningtheevolutionary addedper25mL.TheITSamplificationprofilewas:948Cfor affinitieswithinandbetweenAfricanandMadagascanspecies; 3min;32cyclesof948Cfor1min,528Cfor1min,728Cfor (2)assessthedistributionofkeymorphologicalinnovationsof 1min;finalextensionof728Cfor7min.TheETSamplification D the Madagascan species on our molecular phylogenetic trees; profilewas:978Cfor1min;40cyclesof978Cfor10s,558Cfor ow n and(3)investigatetheageofspeciesdiversificationanddispersal 30s,728Cfor30s;finalextensionof728Cfor7min.Allamp- lo a usingmoleculardatingtechniques. lification products were purified using Nucleospin purification d e d columns and sent to Macrogen Inc. (Seoul, South Korea) for fro sequencing. m MATERIALS AND METHODS h ttp TaxonsamplingandDNApreparation Sequencealignmentandphylogeneticanalyses ://a o b Extensive fieldwork was undertaken in eastern and northern Contiguous sequences were assembled and edited using the .ox Madagascarinordertocollectherbarium,alcoholandDNAma- Stadensoftwarepackage(Stadenetal.,1998).Sequenceswere ford terial of Madagascan Ixora spp. This material was used in the manually aligned in MacClade v. 4.04 (Maddison and jou molecularandthemorphologicalstudy.Weincluded67Ixora Maddison,2002)withoutdifficultyduetolowlevelsofsequence rna accessions,representingapprox.50speciesthatoccurthrough- variation.Allvariablenucleotidepositionswereverifiedagainst ls.o oouutrtthaexognlobsaalmdpislitnrigbuitsiofnocoufstehdegoennuMsa(dTaagbalesc1a)n.IannpdarAtifcruiclaarn, tdhaetao;ripgointeanltieallelcytroinpfhoerrmogartiavmes.inGdaeplss wweerreetrceoadteeddaussminigssitnhge at Srg/ species. Where possible, we included multiple accessions for ‘simple indel coding’ method of Simmons and Ochoterena toc each Madagascan species to test species monophyly. (2000).Tominimizethetimeandcomputationaleffortrequired kh o Thirty-eight Madagascan accessions were included, represent- forphylogeneticanalyses,weexcludedduplicateaccessionsofa lm s ing24species.Weincluded16accessions(14species)fromcon- species if the sequences from each accession were identical U n tinental Africa, and from west and east tropical Africa. The acrossallsixdatasets. iv e rMemasacianriennge 1(t2woIxsopreacieacs)c,esNsieoontrsopaircealA(sfoiaunr a(cthcreesesiosnpsecfireosm), hoCmoonggernueeintyceteostfitmhepldeamtaensetetsdwinasPAasUsePs*sevd.u4.s0inbg10th(eSwpaorftfiotirodn, rsitet o three species) and Pacific Island (three species) taxa. 2003).Allconstantanduninformativecharacterswereexcluded. n M Vangueria madagascariensis, representing the closely related Onethousandpermutationcycleswererun,eachconsistingofa arc tribe Vanguerieae (e.g. Kainulainen et al., 2013) was selected heuristic maximum parsimony (MP) search of ten random se- h 3 asanoutgroup. quenceadditionreplicateswithTBR(treebisectionandrecon- , 2 0 TotalgenomicDNAwasisolatedfromeithersilicagelcollec- struction) branch swapping, holding ten trees at each step and 14 tions, fresh leaf material from the living collections of the savingnomorethanfivetreesperreplicate. NationalBotanicGardenofBelgium(NBGB)orherbariumma- MaximumparsimonyanalyseswereperformedwithPAUP* terial(BR,MO,P)usingastandardcetyltrimethylammonium v. 4.0b10. We conducted equal weighted parsimony heuristic bromide(CTAB)protocol(DoyleandDoyle,1987).Asreported tree searches on: (a) individual data sets; (b) a combined elsewhere (e.g. Rajaseger et al., 1997), Ixora leaves may be plastiddataset;and(c)acombinedplastid–nuclearDNAdata highlycoriaceousandcancontainhighlevelsofphenoliccom- set.Eachanalysisconsistedof1000randomsequenceaddition poundsthatmayaffectthequalityofisolatedDNA.Therefore, replicates,holdingtentreesateachstep,withTBRbranchswap- we purified isolated DNA using Nucleospin purification pingandMulTreesineffect,DELTRANoptimizationandsaving columns (Macherey-Nagel), following the manufacturer’s nomorethantentreesperreplicate.Supportforcladeswaseval- instructions. uated with 1000 full-heuristic bootstrap pseudo-replicates (Felsenstein,1985),usingthesamesettingsasoutlinedabove. Bayesian analyses were implemented in MrBayes 3.1 Amplificationandsequencing (HuelsenbeckandRonquist,2001).ThemodelofDNAsubstitu- Primers for amplification of plastid and nuclear ribosomal tion for each region was determined using Modeltest v. 3.06 DNA(nrDNA)regionsarelistedinTable2.PCRandcyclese- (PosadaandCrandall,1998)undertheAkaikeinformationcri- quencing was performed using a Perkin Elmer GeneAMPw terion(AIC;SupplementaryDataTableS1).Fourindependent 9700 thermocycler. Plastid PCR mixes were made up to Bayesian analyseswithfourchainswere runforeachdataset, 1726 Toshetal.—EvolutionaryhistoryoftheAfro-MadagascanIxoraspecies(Rubiaceae) TABLE 1. Taxonaccessiondata(onlyfirstcollectorlistedforvoucher) Taxon Voucher/Herbarium/Countryoforigin ETS ITS petD rps16 rpoB-trnC trnL-trnF Vangueriamadagascariensis VanCaekenberghe82(BR),Mozambique — — HG315109 HG315176 HG315244 HG315312 J.F.Gmel. IxoraaluminicolaSteyerm. Pre´vost4160(P),FrenchGuiana HG315378 HG315441 — HG315177 HG315245 — I.ambrensisDeBlock Gautier5006(BR),Madagascar HG315379 HG315442 HG315110 HG315178 HG315246 HG315313 I.amplidentataDeBlock* DeBlock976(BR),Madagascar HG315380 HG315443 HG315111 HG315179 HG315247 — I.ankazobensisDeBlock* Tosh30(BR),Madagascar HG315381 HG315444 HG315112 HG315180 HG315248 HG315314 I.ankazobensisDeBlock* Tosh245(BR),Madagascar HG315382 HG315445 HG315113 HG315181 HG315249 HG315315 I.ankazobensisDeBlock* DeBlock943(BR),Madagascar HG315383 HG315446 HG315114 HG315182 HG315250 HG315316 I.ankazobensisDeBlock* DeBlock857(BR),Madagascar HG315384 HG315447 HG315115 HG315183 HG315251 HG315317 I.ankazobensisDeBlock* Tosh256(BR),Madagascar HG315385 HG315448 HG315116 HG315184 HG315252 HG315318 I.batesiiWernham Dessein1455(BR),Cameroon — HG315449 HG315117 HG315185 HG315253 HG315319 I.borboniaeMouly& VanCaekenberghe42(BR),Mauritius HG315386 HG315450 HG315118 HG315186 HG315254 HG315320 B.Bremer I.brachypodaDC. Bradley1022(MO),Gabon HG315387 HG315451 HG315119 HG315187 HG315255 HG315321 I.brachypodaDC. Walters1437(MO),Gabon — HG315452 HG315120 HG315188 HG315256 HG315322 D I.brevifoliaBenth. Delpretes.n.(BR),Brazil HG315388 HG315453 HG315121 HG315189 HG315257 HG315323 ow I.capuronianaDeBlock* Tosh400(BR),Madagascar HG315389 HG315454 HG315122 HG315190 HG315258 HG315324 nlo I.caulifloraMontrouz. Mouly267(P),NewCaledonia HG315390 HG315455 HG315123 HG315191 HG315259 HG315325 ad I.chinensisLam. VanCaekenberghe316(BR),China — — HG315124 HG315192 HG315260 HG315326 ed I.collina(Montrouz.) Mouly236(P),NewCaledonia HG315391 HG315456 HG315125 HG315193 HG315261 HG315327 fro Beauvis. m IIB..lccorrceakmssiixpoersaBDoriavkineexDe GMroouelnyin6c5k9x(8P0),(CBoRm),oMroaIdsalagnadsscar HHGG331155339923 HHGG331155445578 HHGG331155112267 HHGG331155119945 HHGG331155226623 HHGG331155332289 http://ao I.cremixoraDrake DeBlock987(BR),Madagascar HG315394 HG315459 HG315128 HG315196 HG315264 HG315330 b.o I.densithyrsaDeBlock DeBlock1773(BR),Madagascar HG315395 HG315460 HG315129 HG315197 HG315265 HG315331 xfo I.elliotiiDrakeexDeBlock DeBlock1977(BR),Madagascar HG315396 HG315461 HG315130 HG315198 HG315266 HG315332 rd I.emirnensisBaker DeBlock1786(BR),Madagascar HG315397 HG315462 HG315131 HG315199 HG315267 HG315333 jo u I.emirnensisBaker DeBlock1788(BR),Madagascar HG315398 HG315463 HG315132 HG315200 HG315268 HG315334 rn I.ferrea(Jacq.)Benth. Merello1716(MO),Commonwealthof HG315399 HG315464 HG315133 HG315201 HG315269 HG315335 als Dominica(LesserAntilles) .org I.ferrea(Jacq.)Benth. Taylor11693(MO),PuertoRico HG315400 HG315465 HG315134 HG315202 HG315270 HG315336 a/ I.foliosaHiern Onana566(P),Cameroon HG315401 HG315466 HG315135 HG315203 HG315271 HG315337 t S I.foliicalyxGue´de`s Tosh352(BR),Madagascar HG315402 HG315467 HG315136 HG315204 HG315272 HG315338 to c I.foliicalyxGue´de`s DeBlock696(BR),Madagascar HG315403 HG315468 HG315137 HG315205 HG315273 HG315339 k h I.franciiSchltr. Mouly241(P),NewCaledonia HG315404 HG315469 HG315138 HG315206 HG315274 HG315340 olm I.guillotiiHoch. DeBlock2091(BR),Madagascar HG315405 HG315470 HG315139 HG315207 HG315275 HG315341 s I.guillotiiHoch. Tosh408B(BR),Madagascar HG315406 HG315471 HG315140 HG315208 HG315276 HG315342 U n I.guineensisBenth. Gereau5601(MO),Ghana HG315407 HG315472 HG315141 HG315209 HG315277 HG315343 iv e I.hartianaDeBlock Bamps4320(BR),Angola HG315408 HG315473 HG315142 HG315210 HG315278 HG315344 rs I.hierniiScott-Elliot Adam23101(P),SierraLeone HG315409 HG315474 HG315143 HG315211 HG315279 HG315345 ite I.hippoperiferaBremek. Dessein1669(BR),Cameroon HG315410 HG315475 HG315144 HG315212 HG315280 HG315346 t o n I.hippoperiferaBremek. VanValkenburg3083(WAG),Gabon HG315411 HG315476 HG315145 HG315213 HG315281 HG315347 M IG.ohvoameortlsl†eaeDeBlock& Tosh107(BR),Madagascar HG315412 HG315477 HG315146 HG315214 HG315282 HG315348 arch 3 GI.ohvoameortlsl†eaeDeBlock& Tosh207(BR),Madagascar HG315413 HG315478 HG315147 HG315215 HG315283 HG315349 , 20 1 I.lagenifructaDeBlock* DeBlock2036(BR),Madagascar HG315414 HG315479 HG315148 HG315216 HG315284 HG315350 4 I.macilentaDeBlock Dessein1404(BR),Cameroon HG315415 HG315480 HG315149 HG315217 HG315285 HG315351 I.mangabensisDC. Tosh128(BR),Madagascar HG315416 HG315481 HG315150 HG315218 HG315286 HG315352 I.mangabensisDC. Tosh130(BR),Madagascar HG315417 HG315482 HG315151 HG315219 HG315287 HG315353 I.mangabensisDC. DeBlock2040(BR),Madagascar HG315418 HG315483 HG315152 HG315220 HG315288 HG315354 I.mangabensisDC. DeBlock2053(BR),Madagascar HG315419 HG315484 HG315153 HG315221 HG315289 HG315355 I.masoalensisDeBlock* Razafimandimbison654(BR),Madagascar HG315420 HG315485 HG315154 HG315222 HG315290 HG315356 I.microphyllaDrake DeBlock985(BR),Madagascar HG315421 — HG315155 HG315223 HG315291 HG315357 I.minutifloraHiern Dessein1440(BR),Cameroon HG315422 HG315486 HG315156 HG315224 HG315292 HG315358 I.mocquerysiiDC. Malcomber2805(MO),Madagascar HG315423 HG315487 HG315157 HG315225 HG315293 HG315359 I.moramangensisDeBlock* Tosh255(BR),Madagascar HG315424 — HG315158 HG315226 HG315294 HG315360 I.moramangensisDeBlock* DeBlock837(BR),Madagascar HG315425 — HG315159 HG315227 HG315295 HG315361 I.narcissodoraK.Schum. DeBlock418(BR),Kenya HG315426 HG315488 HG315160 HG315228 HG315296 HG315362 I.nematopodaK.Schum. Dessein1449(BR),Cameroon HG315427 HG315489 HG315161 HG315229 HG315297 HG315363 I.nitens(Poir.)Mouly& Friedmann2631(P),Mauritius HG315428 HG315490 HG315162 HG315230 HG315298 HG315364 B.Bremer I.perrieriDeBlock* DeBlock841(BR),Madagascar HG315429 HG315491 HG315163 HG315231 HG315299 HG315365 I.perrieriDeBlock* Tosh232(BR),Madagascar HG315430 HG315492 HG315164 HG315232 HG315300 HG315366 I.platythyrsaBaker DeBlock773(BR),Madagascar HG315431 HG315493 HG315165 HG315233 HG315301 HG315367 Continued Toshetal.—EvolutionaryhistoryoftheAfro-MadagascanIxoraspecies(Rubiaceae) 1727 TABLE 1. Continued Taxon Voucher/Herbarium/Countryoforigin ETS ITS petD rps16 rpoB-trnC trnL-trnF I.praetermissaDeBlock Dessein1519(BR),Cameroon HG315432 HG315494 HG315166 HG315234 HG315302 HG315368 I.quadrilocularisDeBlock* Tosh85(BR),Madagascar HG315433 HG315495 HG315167 HG315235 HG315303 HG315369 I.rakotonasoloiDeBlock Tosh316(BR),Madagascar HG315434 HG315496 HG315168 HG315236 HG315304 HG315370 I.regalisDeBlock* DeBlock835(BR),Madagascar HG315435 HG315497 HG315169 HG315237 HG315305 HG315371 I.regalisDeBlock* DeBlock2083(BR),Madagascar HG315436 — HG315170 HG315238 HG315306 HG315372 I.scheffleriK.Schum. Luke9162(P),Tanzania HG315437 HG315498 HG315171 HG315239 HG315307 HG315373 I.siphonanthaOliv. Tosh389(BR),Madagascar HG315438 HG315499 HG315172 HG315240 HG315308 HG315374 I.sp.‘Brunei’ Malcomber2980(MO),Brunei — HG315500 HG315173 HG315241 HG315309 HG315375 I.sp.‘Malaysia’ Billiet7327(BR),Malaysia HG315439 HG315501 HG315174 HG315242 HG315310 HG315376 I.tanzaniensisBridson Luke9304(P),Tanzania HG315440 HG315502 HG315175 HG315243 HG315311 HG315377 *sp.nov.ined. †nom.nov.ined. D o w n TABLE 2. Amplificationprimersforplastidandnuclearregions lo a d e d Region Primer Primersequence(5’–3’) Reference fro m prpeotDB-trnC PPrpeeottBDB1-7F33685 CTATAAGCTACTCTCAYRGGCCGAYTTTTCYTTTTGTAAAAATTCAATGCGTAGTGGTGGAC LSho¨ahwneeatnadl.B(2o0r0sc5h)(2005) http://a o trnC-R CKACAAAAYCCYTCRAATTG b.o rps16 rps16-F AAACGATGTGGTARAAAGCAAC Shawetal.(2005) x fo rps16-R AACATCWATTGCAASGATTCGATA rd trnL–trnF trnL-c CGAAATCGGTAGACGCTACG Taberletetal.(1991) jo u trnF-f ATTTGAACTGGTGACACGAG rn ETS 18S-ETS GCAGGATCAACCAGGTGACA Negro´n-OrtizandWatson(2002) als ETS-ERIT CTTGTATGGGTTGGTTGGA BaldwinandMarkos(1998) .o rg ITS ITS1 TCCGTAGGTGAACCTGCGG Whiteetal.(1990) a/ ITS4 TCCTCCGCTTATTGATATGC t S to c k h o lm s startingfromrandomtrees,for5milliongenerations,sampling assessed the distribution of these morphological characters by U n trees every 1000 generations. TRACER v. 1.4 (Rambaut and mapping unambiguous character state changes onto our com- iv e Drummond,2007)wasusedtoassessifthesearchhadreached bined Bayesian MJ consensus tree using MacClade v. 4.04 rs ite stationarity and to check each parameter had an effective (MaddisonandMaddison,2002). t o sample size (ESS) .100. The initial 1250 (25%) trees were n M discardedasaconservativeburn-in.Post-burn-intreesfromthe a four independent analyses were pooled and summarized by a Divergencetimeestimation rch 3 50% majority rule consensus tree using PAUP* v4.0b10 to ABayesianapproachwasappliedtoinferthetemporalframe- , 2 0 obtainposteriorprobabilities(PPs). workoftheevolutionofIxora.Duetothelimitedfossilrecord 14 that could be unequivocally assigned to the most recent common ancestor of Ixora, an expanded family-level data set Morphologyandoptimizationofmorphologicalcharacters was constructed and divergence time estimation was inferred Thematerialforthetaxonomicalandmorphologicalstudyof based on fossils (see the following section for more detail). IxorainMadagascarconsistsofpreservedsamplesandherbar- This large-scale analysis allowed estimation of the temporal iummaterialofthefollowinginstitutions:BM,BR,G,K,MO, originofIxoratogetherwitha95%confidenceinterval,which P,S,TAN,TEF,UPS,W,WAGandZ(abbreviationsofinstitu- wassubsequentlyusedasapriortoperformasecondanalysisfo- tionsfollowHolmgrenetal.,1990).Intotal,.1000herbarium cusing only on this genus. The family-level data set included collections, each with several duplicates, were studied. representatives of all the major lineages in Rubiaceae (see Morphological terminology generally follows Robbrecht Appendix 1) and was based on the group II plastid introns (1988).FortheMadagascanspecies,morphologicalcharacters petD, rps16 and the trnL-trnF spacer (Groeninckx, 2009). In were scored on herbarium material available for this species. the large-scale analysis, a sub-set of taxa representative of the For the continental African species, morphological characters main clades in Ixora was included. These taxa were selected were taken from the revision of African Ixora (De Block, basedonpreliminaryphylogeneticanalyses.Weoptedforthis 1998).Wechosemorphologicaltraitsofinterest(i.e.uniflorous approachratherthanpoolingallthedatasetsandtaxatogether inflorescences,four-locularovaries,extremecorollatubelength) mainlytoavoidencounteringproblemsrelatedtomissingdata. andcharactersofpotentialtaxonomicsignificance(Table3).We In addition to the group II plastid introns, the Ixora data set 1 7 2 8 TABLE 3. Selectedmorphologicalcharacters Inflorescence Calyx Flower Taxon Sessile/pedunculate Lax/compact Tubelength(mm) Lobelength(mm) Number Corollatubelength(cm) Ovary T o s Africantaxa I.batesii Sessile Lax 0.4–0.5 0.4–0.6 30–70 0.5–1.3 Bilocular h e I.brachypoda Pedunculate Lax 0.4–0.8 0.3–1.0 50–200 3.3–11 Bilocular t a I.foliosa Pedunculate Compact 0.3–0.5 0.4–0.7 45–90 0.9–2.3 Bilocular l. I.guineensis Sessile Lax 0.3–0.8 0.2–0.6 30–90 0.5–2.3 Bilocular — I.hartiana Pedunculate Lax 0.2–0.5 0.3–0.6 9–30 1.2–2.4 Bilocular E I.hiernii Sub-sessile Lax 0.2–0.7 0.2–0.5 30–90 1.4–3.3 Bilocular vo I.hippoperifera Pedunculateorsessile Compact 0.2–0.4 0.2–0.4 30–120 1.6–2.7 Bilocular lu I.macilenta Sessile Lax 0.2–0.5 0.2–0.6 9–20 0.9–2.2 Bilocular tio I.minutiflora Sessile Compact 0.2–0.4 0.1–0.4 9–30 1.0–2.0 Bilocular n a I.narcissodora Sessile Lax 0.8–1.5 0.2–0.6 50–100 3.0–7.5 Bilocular r y I.nematopoda Pedunculate Lax 0.3–0.6 0.8–1.2 20–50 0,4–0,9 Bilocular h I.praetermissa Sessile Lax 0.2–0.5 0.3–0.8 30–70 1.1–2.5 Bilocular is I.scheffleri Pedunculate Compact 0.4–0.6 0.6–1.0 30–90 0.8–2.2 Bilocular tor I.tanzaniensis Sessile Compact 0.3–0.7 0.2–0.4 20–50 2.2–3.2 Bilocular y o Madagascantaxa(Clade2) II..admenpsliitdheynrtsaata PPeedduunnccuullaattee LCaoxmpact 00..25––01..40 02..55––41..025 509––16200 11.58––23.33 BBiillooccuullaarr fthe I.foliicalyx Sub-sessile Compact 2.0–4.0 1.5–6.0 45–90 3.5–8.5 Bilocular A I.guillotii Pedunculate Lax 0.5–1.0 0.75–2.5 50–150 5.0–8.0 Bilocular fro I.homolleae (Sub-)sessile Uniflorous 5.0–10 5.0–12 1 2.6–4.7 Four-locular -M I.lagenifructa Pedunculate Lax 5.0–8.0 1.5–2.0 3(–15) 3.5–6.5 Four-locular a I.microphylla (Sub-)sessile Lax 0.5–2.0 0.5–1.5 (1–)3–9 2.2–4.0 Bilocular da I.mocquerysii Pedunculate Compact 0.5–1.0 2.0–6.0 3–45 5.5–11(–16) Bilocular g a I.platythyrsa Pedunculate Lax 0.2–0.4 0.9–1.4 50–150 1.4–2.5 Bilocular s c I.quadrilocularis Pedunculate Lax 4.0–7.0 (3–)5–15 3(–9) 4.0–8.0 Four-locular a n I.regalis Pedunculate Lax 0.5–1(–1.5) 1–5(–9) 50–120 1.3–5.5 Bilocular I I.siphonantha Pedunculate Lax 0.5–1 3.0–11 12–80 (10–)15–22 Bilocular xo r Madagascantaxa(Clade3) I.ambrensis Pedunculate Lax 0.4–0.5 0.2–0.35 25–50 3.2–3.9 Bilocular a s I.ankazobensis Sessile(+pedunculate) Lax 0.5–0.75 0.3–0.75 7–18 4.0–6.3 Bilocular p e I.capuroniana Sessile Laxorcompact 0.3–0.6 0.1–0.8 40–90 1.5–3.5 Bilocular c I.crassipes Sub-sessile Lax 0.75–1.25 0 15–50 17–22.5 Bilocular ies I.cremixora Sessile Lax 0.2–0.75 ,0.3 50–120 4.5–7.8 Bilocular (R I.elliotii Sessile Lax 0.2–0.4 0.3–0.5 30–90 1.8–3.1 Bilocular u I.emirnensis Pedunculate Lax 0.2–0.3 0.3–0.4 9–50 1.0–1.5 Bilocular bia I.mangabensis Pedunculate Lax 0.2–0.5 0.5–1.0 9–30 2.0–3.2 Bilocular c e I.masoalensis Sessile Lax 0.5–2.0 0.5–1.5 8–25 2.2–4.0 Bilocular a I.moramangensis Pedunculate Lax 0.25–0.5 0.25–0.8 9–30 2.1–3.5 Bilocular e) I.perrieri Pedunculate Lax 0.3–0.5 0.2–0.4 30–90 4.5–7.5 Bilocular I.rakotonasoloi Sessile Uniflorous 0.3–0.5 0.3–0.5 1 2.2–2.8 Bilocular AdaptedfromDeBlock(1998,2013). 4102 ,3 hcraM no tetisrevinU smlohkcotS ta /gro.slanruojdrofxo.boa//:ptth morf dedaolnwoD Toshetal.—EvolutionaryhistoryoftheAfro-MadagascanIxoraspecies(Rubiaceae) 1729 included one additional plastid (rpoB-trnC) and two nuclear basedonfossilrecordsofpollenfromtheOligocene(Graham, (ETSandITS)regions.Theseregionsprovedusefultoresolve 2009);(d)thestemoftheGaliumandRubiacladewasassigned phylogeneticrelationshipsinIxorafurther. anoffsetof5.3Ma,followingthefirstoccurrenceoffossilpollen With the exception of the numberof runs and length of the duringthelateMioceneforthisgroup(Graham,2009);(e)the Monte Carlo Markov chain (MCMC), the settings of the stem of the Chiococca clade was calibrated with an offset of Bayesiananalyseswereidenticalforthetwodatasets.Aparti- 5.3MabasedonleafmaterialfromthelateMiocene(Graham, tioned Bayesian MCMC analysis was conducted in BEAST 2009);(f )thestemoftheEmmenopteryscladewassetwithan v.1.7witharelaxedlog-normalmolecularclockandaYulespe- offset of 48Ma, following the first record of Rubiaceae fruits ciationmodel.Thepartitionswereunlinkedforthemodelofevo- in the mid Eocene (Graham, 2009); and (g) an offset of lution,butlinkedfortheestimationofthemolecularclockand 14.5Ma was assigned to the Gardenia clade, based on pollen thetreetopology.Theotherparametersweresetasdefault(see datafromthemidMiocene(Graham,2009).Basedontheposter- Drummond and Rambaut, 2007). The best-fit models foreach iordistributionofthedatinguncertaintyonthestemofIxora,the DNAregionwerekeptidenticaltothoseintheMrBayesanalyses most recent common ancestor of the ingroup in the second (seeabove).Inthecaseofthefamily-leveldataset,fourrunsof BEASTanalysiswassetwithanormaldistribution,ameanof 10 million generations were performed, sampling a tree every 18Maandans.d.of2.5. 1000 generations. To improve the tree topology research, the D MrBayesconsensustreewasprovidedasthestartingtreeinthe ow n BEASTfamily-levelanalysis.InthecaseoftheIxoradataset RESULTS lo a (which was rooted using Vangueria infausta), two runs of 5 d The368novelsequencesgeneratedinthisstudywerecombined ed million generations were performed, sampling a tree every with31sequencespreviouslygeneratedbyMouly(2007),result- fro 1000generations,andtheanalyseswereseededwitharandom m tree. For each parameter, convergence of runs was confirmed ianpgprionxa.t5o0talIcxoomrabisnpepd.dLaetaveslestooff3g9e9nseetqicuevnacreias,tiroenprebseetwnteinegn http bytheexaminationoftheirrespectiveposteriordistributionsin species were generally low across all six regions investigated ://a TRACERv.1.4(RambautandDrummond,2004).Inaddition, ob we considered the MCMC sampling sufficient when the ESS (Table4).Thetotalnumberofpotentiallyparsimonyinformative .ox ow2lTen0rane0sgte4htA.)he.sns2Anae0ont0mtdoaufta9osxt5ririnemv%ge.us1Tmca.oR5fnt.cAe4filraCd(dbDeEeunrRruccnemr-veii.mdnni1tob(e.fni4rolvdirt(ayaRlenaaotdcrmnehRebnraaowumudnitetb,hsaaanuwmbdta,uesD2rdn0bira-0uuin7nmil)tbpmbrueaaosrnsiinnoecddhdg, fIhtpceonhiergrtastDhre1(aer13c(ms32ttIes..px43rrosoo%%rfrpaa))pon..sergTOptreicphoude.enrnfWlrttooaoafwxemgpoeeoo2nsbvtt1essapainernemritraivrcapbpeellidslnily1nitnt6agpyogaa,iernnitsnhdcvitemlatrurarEodnisaneTLpbdye-SitclmiriipnntfiuyrfFocolwtvrtismoepaed5lsqae8toutiaobevicnnsehcetcceahrehvsveseaevIirdTaotarhnSicines--. afordjournals.org/ of1millionwasapplied). ation in nine of these species. In contrast, varying amounts of t Sto intraspecific sequence divergence were observed in the other ck h Fossilcalibration five species; multiple accessions from these five species were olm Toestimateabsoluteagesforlineagedivergencesinthecase includedinallsubsequentphylogeneticanalyses. s U n ofthefamily-leveldataset,wehaveusedsevenfossilcalibration iv e points(seebelow)inRubiaceaetosetageconstraintsforseveral Phylogeneticanalyses rsite nodes.AsinBuerkietal.(2011),foreachcalibrationpoint,the t o n oldest fossil record was selected and the upper (younger) Plastiddatasets.Phylogeneticanalysesofindividualplastiddata M bound of the geological interval (Gradstein et al., 2004) in sets(petD,rpoB-trnC,rps16,trnL-trnF)generatedlargelyunre- arc which the fossil was foundwasused torepresent theage con- solvedandpoorlysupportedphylogenetictrees(datanotshown). h 3 straint.Inthefamily-levelBayesiananalysis,allthecalibration Thepartitionhomogeneitytestdidnotrevealanysignificantin- , 2 0 points were modelled as follows: log-normal distribution, congruencebetweenplastiddatasets(P¼0.69)andtherewas 14 mean¼0.5,s.d.¼1,offset¼agefossil(seebelow). nosupportedincongruence(BayesianPP.0.95),sothesefour Beforedetailingthefossilsusedhere,wewouldliketoreport regionswerecombinedforallsubsequentanalyses. thecurrentknowledgeonfossilrecordsthathavebeententatively Thecharacteristicsoftheindividualandcombinedplastiddata assignedtoIxora.PalaeobotanicalremainsofIxoraarepoorly setsarelistedinTable4.InboththeMPandBayesiananalyses known, and Graham (2009) reported the presence of Ixora (Fig.2),theAsianandPacificOceantaxaaresistertotherest pollen dating from the Miocene on the Marshall Islands of the genus [bootstrap (BS) 70, PP 1.00]. The Mascarene (Micronesia).Inhisstudy,Graham(2009)stressedthatthisevi- Ixora clade is in turn sister to the Neotropical and dencecouldbechallengedandthatfurtherstudieshavetobecon- Afro-MadagascanIxoraspp.(BS77,PP1.00).Thesisterrela- ducted to assign these pollen unequivocally to existing taxa. tionship between the three Neotropical Central–South Therefore,wehavenotconsideredthisrecordinourdivergence AmericantaxaandtheAfro-Madagascantaxaisweaklytomod- timeestimations.Thefollowingcalibrationpointswereselected: eratelysupportedintheMP(BS56)andBayesian(PP0.96)ana- (a) the stem group of Rubiaceae was set with an offset of 54 lyses (Fig. 2). In the Afro-Madagascan group, we identified a millionyears(Ma),followingthefirstoccurrenceofRubiaceae clade containing African and Madagascan taxa (BS 72, PP fossils during the Eocene (Malcomber, 2002); (b) the stem of 1.00; Clade 1) and an exclusively Madagascan clade (BS 59, theFarameacladewassetwithanoffsetof40Ma,basedondis- PP0.99;Clade2).Thereisalackofresolutionandweaknode tinctivediporatepollenfromthelateEocene(Graham,2009);(c) supportinClades1and2duetoapaucityofpotentiallyparsi- theCoprosmacladewasconstrainedwithanoffsetof23.8Ma mony informative characters (Table 4). In Clade 1 there is 1730 Toshetal.—EvolutionaryhistoryoftheAfro-MadagascanIxoraspecies(Rubiaceae) TABLE 4. Characteristicsofindividualandcombineddatasetsandtreestatistics petD trnL-trnF rps16 rpoB-trnC Plastid ETS ITS nrDNA Total Numberoftaxa 56 57 57 55 57 52 52 49 57 Totallength(bp) 1023 828 722 1016 3589 409 631 1040 4629 Non-parsimonyinformative 49 41 46 75 211 51 71 122 333 characters Potentiallyparsimonyinformative 24(2.3%) 21(2.5%) 21(2.9%) 33(3.2%) 99(2.7%) 55(13.4%) 58(9.2%) 108(10.4%) 212(4.6%) characters(%oftotal) Indels 3 2 1 3 9 0 0 0 9 Treelength 81 68 76 140 376 159 196 357 758 Consistencyindex 0.914 0.956 0.921 0.850 0.872 0.780 0.791 0.759 0.801 Retentionindex 0.955 0.969 0.917 0.811 0.889 0.898 0.819 0.839 0.849 Numberoftreessaved 100 68 511 4887 8722 1151 9580 3464 5362 D strong support for a clade of Madagascan and tropical East 1 is supported in both the Bayesian and MP analyses (BS 73, ow Africantaxa(BS85,PP1.00;Clade3). PP1.00)followingtheexclusionofI.nematopoda(notshown). nlo a In Clade 1, the group of I. foliosa and I. hippoperifera is d e snerqDuNeAncedsatfaorseVtas.ngWueeriwaemreaduangaabslceartioenosbist,aidnueEtToSamanpdlifiIcTaS- wiceaalkWlyesstu–pCpoenrtterdal(ABfSri5c7a,nPtPax0a.9a2re),wbeultltswupopoothrteerdg:rIo.guupisnoefetnrosips-, d from tAiosn oduifrficpurlitmiesaryandinatmerbesigtsuocuosnsceeqrunentcheereAadfrso,-rMesapdeacgtaivseclayn. II..hmairntuiatinfao,liIa.,mI.achiileernntiaiaannddII..pbraaetetesirim(iBssSa9(B2S, P8P5,1P.0P01).0a0n)d. http://a elementofIxora,phylogeneticanalysesfromseparateandcom- Supportforthesisterrelationshipsbetween thesethreeWest– ob bined nuclear DNA analyses were rooted using Asian and/or Central African clades, and between the widespread .ox Pacific Ocean Ixora spp. Relationships in the Afro- I. brachypoda, is weak or lacking (Fig. 3). Branch lengths ford Madagascan Clade were not affected by the root choice. The between these clades are short, which may be a contributing jo u characteristicsofthenuclearDNAdatasetsarelistedinTable4. factor in the phylogenetic uncertainty between these West– rna The topologyof the ETS phylogenetic tree (Supplementary CentralAfricanspecies(SupplementaryDataFig.S3). ls.o DthaetraeFarieg.soSm1)eidsisfifmerielnarcetos.tChlaatdoefst1heancdom2abriennedotpflualsltyidretcroeev,ebreudt PPN1e.s0t0e)d,icnoCmlpardiese1diosfthEeassttroAnfgrliycasnupapnodrtMedadCalgadasec3an(BsSpe1c0ie0s, at Srg/ in the ETS topology, with the deepest nodes in the (Fig. 3). The branch length subtending Clade 3 is relatively toc k Afro-Madagascan group being unresolved. Furthermore, there long, with eight synapomorphies (Supplementary Data Fig. h o isweaktomoderatesupport(BS78,PP0.93)forthesisterrela- S3).InClade3,theEastAfricanI.narcissodoraandI.tanzanien- lm s tionshipoftheGuineo-CongolianI.nematopodawithrespectto sis are sister to the Madagascan taxa (BS 66, PP 0.94). U n Neotropical Ixora and the remaining Afro-Madagascan Ixora PhylogeneticrelationshipsbetweentheseMadagascantaxaare iv e s(duipspcourstseeddibnytMheoEuTlySettoapl.o,l2o0g0y9(bB).SH9o4w,ePvPer1,.C0l0a)d.eT3heisIsTtrSontogply- pHooowrleyverr,etshoelrveedare(aFfigew. s3p;ecSieusprpelleamtioennstahriypstDhaattaareFwige.llsSu3p)-. rsitet o ologyispoorlyresolvedandweaklysupported,inparticularin ported,suchasI.elliotiiandI.rakotonasoloi (BS99,PP1.00) n M the MP strict consensus (Supplementary Data Fig. S2). Few andI.crassipesandI.cremixora(BS98,PP1.00).Theacces- arc clades are well supported in both MP and Bayesian analyses, sionsofI.mangabensisdidnotgrouptogetherinouranalyses, h 3 andClades1–3werenotrecovered. due to the presence of two distinct plastid haplotypes in the , 2 0 fouraccessionsofthisspecies. 14 Totalcombineddataset.Despitesometopologicalinconsisten- The monophyly of Clade 2, comprised exclusively of ciesbetweenthecombinedplastidandnuclearDNAdatasets, Madagascan taxa, is supported in the combined plastid– results from the simultaneous partition homogeneity test did nuclearDNAdataset(BS70,PP1.00).Therearetwomainsub- not reveal significant incongruence between data sets (P¼ cladesrecoveredintheMPstrictconsensusandBayesianmajor- 0.10).Thecombinedplastid–nuclearDNAdatasetcomprised ityruleconsensustrees,althoughsupportforthesesub-cladesis 4629characters.Intotal,212ofthe545variablecharactersare lacking (Fig. 3). Although the partition homogeneity test potentiallyparsimonyinformative(Table4). revealed no significant incongruence between individual data The Mascarene clade is sister to the Neotropical and sets, the phylogenetic placement of certain taxa (e.g. Afro-Madagascanspecies(BS84,PP1.00).Themonophylyof I. densithyrsa and I. regalis 2) differed between plastid and theAfro-Madagascangroupissupported(BS65,PP1.00),and nucleardatasets.Intheplastidphylogenetictree,I.regalis2is in this group there is support for Clades 1–3 (Fig. 3). In the nested in the group containing I. regalis 1, I. guillotii and Bayesian analysis, I. nematopoda and I. scheffleri are sister to I. amplidentata (Fig. 2). In contrast, I. regalis 2 is unresolved therestofClade1(PP1.00).Althoughthisrelationshipisrecov- in the ETS phylogenetic tree (Supplementary Data Fig. S1) eredintheMPstrictconsensus,itisnotsupportedbythebootstrap andsistertoI.homolleaeandI.quadrilocularisintheITSphylo- analysis. The phylogenetic position of I. nematopoda differs genetic tree (Supplementary Data Fig. S2). Similarly, between the ETS and the plastid and ITS data sets (Fig. 2; I. densithyrsa andI. mocquerysii demonstratedifferingphylo- SupplementaryDataFigsS1andS2).ThemonophylyofClade genetic affinities in the plastid and nuclear data sets (Fig. 2; Toshetal.—EvolutionaryhistoryoftheAfro-MadagascanIxoraspecies(Rubiaceae) 1731 V. madagascariensis 0·73/* I. aluminicola 1·00/56 I. ferrea Neotropical lxora I. brevifolia I. amplidentata 0·62/* I. guillotti 1·00/78 I. regalis 1 I. regalis 2 I. lagenifructa 1·00/75 II.. dheonmsoitlhleyarsea 1 e 2 Madagascan lxora 0·91/* d 0·99/59 0·98/60 II.. hqoumadorlilleoaceu la2ris Cla I. mocquerysii 1·00/77 I. foliicalyx 1·00/71 I. microphylla I. platythyrsa I. siphonantha I. ankazobensis 1 D 1·00/85 I. perrieri ow I. ankazobensis 2 nlo I. ankazobensis 3 ad 1·00/86 I. capuroniana ed 1·00/64 I. masoalensis fro I. emirnensis m 0·96/56 1.00/85 1·00/62 III... mccrraaesnmsgiixapoberesan 1sis 1 ade 3 MEaasdta Agfarisccaann l xaonrda http://ao I. cremixora 2 Cl b.o 1·00/96 I. elliotii xfo I. rakotonasoloi rd 1·00/70 0·99/52 II.. mmaonragmabaenngseinss 2is e 1 journa 1·00/99 III... antamanrbzcarisensnioesdnisosrisa Clad als.org/ I. batesii t S 1·00/66 I. guineensis toc k 1·00/67 I. hiernii h o I. minutiflora lm 1·00/100 I. brachypoda 1 s U I. brachypoda 2 n West and Central iv 1·00/100 1·00/72 0·86/54 II.. fhoipliopsoaperifera African lxora ersite 0·91/* I. hartiana t o 1·00/57 I. macilenta n M I. praetermissa a 0·70/* I. nematopoda rch I. scheffleri 3 1·00/100 I. nitens Mascarene lxora , 20 1 I. borboniae 4 I. cauliflora 1·00/100 I. collina Pacific lxora 0·99/60 I. francii 0·59/50 I. chinensis 1·00/97 I. sp. Malaysia Asian lxora I. sp. Brunei FIG.2. CombinedplastidBayesianmajorityruleconsensustree.Bayesianposteriorprobabilities.0.5andbootstrapvalues.50%areindicatedabovebranches(PP/ BS).Asterisks(*)denotenodesthathavebootstrapsupport,50intheMPanalysis.Clade1,‘Afro-Madagascanclade’;Clade2,‘Madagascanclade’;Clade3,‘East African–Madagascanclade’. Supplementary Data Figs S1 and S2). Exclusion of I. regalis I. regalis 1, I. guillotii, I. amplidentata, I. lagenifructa, 2andI.densithyrsa(datanotshown)fromtheBayesiananalyses I.siphonanthaandI.mocquerysii(PP0.95;notshown). results in increased support forthe twosub-cladesof Clade 2, with both sub-clades supported by a PP of 1.00. In the Distributionofkeymorphologicalcharacters first subclade, I. foliicalyx is sister to I. homolleae and I.quadrilocularis(PP1.00;notshown).Inthesecondsub-clade, The phylogenetic distribution of key morphological charac- I. microphylla and I. platythyrsa are sister to the group of tersisillustratedinFig.4.Pedunculateandsessileinflorescences 1732 Toshetal.—EvolutionaryhistoryoftheAfro-MadagascanIxoraspecies(Rubiaceae) V. madagascariensis 1·00/84 I. aluminicola 0·64/* I. brevifolia Neotropical lxora I. ferrea 0·92/* I. amplidentata 0·88/* I. lagenifructa 0·56/* I. guillotii 0·66/* I. regalis 1 0·67/* I. densithyrsa 2 0·69/* I. mocquerysii e Madagascan lxora I. siphonantha d 1·00/85 I. microphylla a 1·00/70 I. platythyrsa Cl I. foliicalyx 0·72/* 1·00/95 I. homolleae 1 1·00/84 1·00/99 I. homolleae 2 0·54/* I. quadrilocularis I. regalis 2 1·00/83 I. ankazobensis 1 0·94/* I. ankazobensis 2 1·00/54 I. ankazobensis 3 I. perrieri 1·00/98 I. capuroniana 0·99/* I. masoalensis Do I. emirnensis 3 w 0·94/66 1·00/98 II.. mcraasnsaigpaebsensis 1 de MEaasdta Agfarisccaann l xaonrda nloa 1·00/65 11··0000//9896 III... ccerrlleeiommtiiiixxoorraa 12 Cla ded fro 1·00/100 I. rakotonasoloi m I. mangabensis 2 1 h 1·00/78 I. moramangensis e ttp 0·55/* 0·60/* 1·00/851·10·00/01/0808 IIIII..... anthmamaaanrrbczctiiarialseennsnniaoestdanisosrisa Clad ://aob.oxfo I. praetermissa rd 0·55/* I. batesii jou 0·81/53 1·00/92 0·54/* I. hiernii rn 1·00/100 1·00/89 1·00/100 III... mgburianincuehtieyflpnoosraidsa 1 WAferiscta ann lxdo Craentral als.org 1·00/* 0·92/57 II.. bforlaiocshaypoda 2 at S/ I. hippoperifera to 0·77/* I. nematopoda c k I. scheffleri h o 1·00/100 I. nitens Mascarene lxora lm I. borboniae s 1·00/100 I. cauliflora U 0·67/60 I. collina Pacific lxora niv 0·92/61 I. francii e 1·00/970·89/59 II.. cshp.i nMeanlsaiyssia Asian lxora rsite I. sp. Brunei t o n FIG. 3. Combinedplastid–nuclearBayesianmajorityruleconsensus.Bayesianposteriorprobabilities.0.5andbootstrapvalues.50%areindicatedabove Ma branches.Asterisks(*)denotenodesthathavebootstrapsupport,50intheMPanalysis.Clade1,‘Afro-Madagascanclade’;Clade2,‘Madagascanclade’;Clade rc h 3,‘EastAfrican–Madagascanclade’. 3 , 2 0 1 4 occur in African taxa and both clades of Madagascan the Miocene–Pliocene boundary. Based on the three-gene taxa (Fig. 4A). All taxa from Clade 2 and the African Rubiaceae-wide data set (Supplementary Data Fig. S4, Table I. nematopoda and the Madagascan I. masoalensis (Clade3) S2),thecrownageforIxoreae(node152)isestimatedat16.67 possess calyx lobes .1mm long (Fig. 4B). Calyx tubes millionyearsold(9.67–27.55,95%highestposteriordensity; .1mmlongarefoundinallbuttwospeciesfromClade2,in hereafter HPD). The subsequent age estimates (discussed addition to the African I. narcissodora and the Madagascan below)arebasedontheresultsofthesecondarydatinganalysis I.masoalensisandI.crassipes(Fig.4C).Specieswithuniflorous (Fig.5;SupplementaryDataTableS3).Theonsetofdivergence inflorescences or corolla tubes .15cm long occur in both betweentheAsian-PacificOceanIxora(node59)andtherestof Madagascan clades, but species with four-locular ovaries are the genus is estimated at 15.37Ma (7.39–22.89, 95% HPD). onlyfoundinClade2(Fig.4D–F). The estimated age of divergence between the Neotropical and Afro-Madagascan taxa (node 66) is 9.51Ma (4.47–14.94, 95 % HPD), with the crown age for the Afro-Madagascan group Divergencetimeestimation (node 67) estimated at 7.95 million years old (3.71–12.52, 95 Theestimateddivergencetimesfornodesofinterestaresum- % HPD). The crown age of Clade 1 (node 68) is estimated at marizedinFig.5andSupplementaryDataFig.S4,TablesS2and 7.22 million years old (3.36–11.46, 95% HPD). The crown S3.Theonsetofdiversificationofthegenusstartedduringthe ageofClade2(node98)isestimatedat6.24millionyearsold mid Miocene, with the emergence of most of the lineages at (2.88–10.03, 95% HPD), with two separate periods of

Description:
ovaries and fruits (or, rarely, with more than two locules),. © The Author 2013. species distinguished on the basis of minor and often continuous characters, typically .. mapping unambiguous character state changes onto our com- . bound of the geological interval (Gradstein et al., 2004) in which
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.