ebook img

Evolutionary Equations: Picard's Theorem for Partial Differential Equations, and Applications PDF

321 Pages·2022·3.657 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Evolutionary Equations: Picard's Theorem for Partial Differential Equations, and Applications

Operator Theory Advances and Applications 287 Christian Seifert Sascha Trostorff Marcus Waurick Evolutionary Equations Picard's Theorem for Partial Differential Equations, and Applications OperatorTheory: Advances andApplications Volume287 Foundedin1979byIsraelGohberg Editors: JosephA.Ball(Blacksburg,VA,USA) AlbrechtBöttcher(Chemnitz,Germany) HarryDym(Rehovot,Israel) HeinzLanger(Wien,Austria) ChristianeTretter(Bern,Switzerland) AssociateEditors: HonoraryandAdvisoryEditorialBoard: VadimAdamyan(Odessa,Ukraine) LewisA.Coburn(Buffalo,NY,USA) WolfgangArendt(Ulm,Germany) J.WilliamHelton(SanDiego,CA,USA) B.MalcolmBrown(Cardiff,UK) MarinusA.Kaashoek(Amsterdam,NL) RaulCurto(Iowa,IA,USA) ThomasKailath(Stanford,CA,USA) KennethR.Davidson(Waterloo,ON,Canada) PeterLancaster(Calgary,Canada) FritzGesztesy(Waco,TX,USA) PeterD.Lax(NewYork,NY,USA) PavelKurasov(Stockholm,Sweden) BerndSilbermann(Chemnitz,Germany) VernPaulsen(Houston,TX,USA) MihaiPutinar(SantaBarbara,CA,USA) IlyaSpitkovsky(AbuDhabi,UAE) Subseries LinearOperatorsandLinearSystems Subserieseditors: DanielAlpay(Orange,CA,USA) BirgitJacob(Wuppertal,Germany) AndréC.M.Ran(Amsterdam,TheNetherlands) Subseries AdvancesinPartialDifferentialEquations Subserieseditors: Bert-WolfgangSchulze(Potsdam,Germany) JeromeA.Goldstein(Memphis,TN,USA) NobuyukiTose(Yokohama,Japan) IngoWitt(Göttingen,Germany) Moreinformationaboutthisseriesathttps://link.springer.com/bookseries/4850 Christian Seifert (cid:129) Sascha Trostorff (cid:129) Marcus Waurick Evolutionary Equations Picard’s Theorem for Partial Differential Equations, and Applications ChristianSeifert SaschaTrostorff InstitutfürMathematik MathematischesSeminar TechnischeUniversitätHamburg Christian-Albrechts-UniversitätzuKiel Hamburg,Germany Kiel,Germany MarcusWaurick InstitutfürAngewandteAnalysis TUBergakademieFreiberg Freiberg,Germany ISSN0255-0156 ISSN2296-4878 (electronic) OperatorTheory:AdvancesandApplications ISBN978-3-030-89396-5 ISBN978-3-030-89397-2 (eBook) https://doi.org/10.1007/978-3-030-89397-2 ©TheEditor(s)(ifapplicable)andTheAuthor(s)2022.Thisbookisanopenaccesspublication. Open Access This bookis licensed under the terms of the Creative Commons Attribution 4.0Inter- nationalLicense(http://creativecommons.org/licenses/by/4.0/), whichpermitsuse,sharing,adaptation, distribution andreproduction inanymediumorformat,aslong asyougive appropriate credit tothe originalauthor(s)andthesource,providealinktotheCreativeCommonslicenseandindicateifchanges weremade. Theimages or other third party material in this book are included in the book’s Creative Commons license,unlessindicatedotherwiseinacreditlinetothematerial.Ifmaterialisnotincludedinthebook’s CreativeCommonslicenseandyourintendeduseisnotpermittedbystatutoryregulationorexceedsthe permitteduse,youwillneedtoobtainpermissiondirectlyfromthecopyrightholder. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. Thisbookis published underthe imprint Birkhäuser, www.birkhauser-science.com, bythe registered companySpringerNatureSwitzerlandAG. Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface The theory of evolutionary equations has its origins in the seminal paper [82] by RainerPicard,workingattheTechnischeUniversitätDresden,Germany.Allthree of us were students at this university at the time. Thus, we were lucky enough to learnthetheoryofevolutionaryequationsfromitsearlydayson.Wetookandstill taketheopportunitytobepartofthecontinuouslygrowinggroupofpeopleactively developingthe theory further. In fact, both the PhD and the habilitation theses of S.T. and M.W. are concerned with generalisations of the initial theory as well as opening up new directions of research. It is also an aim of these lecture notes to presentsomeoftheselatestresultsinacoherenttext. In generalterms, the theoryof evolutionaryequationsprovidesa Hilbertspace method to understand differential equations. It comprises a unified approach to solving both ordinary and partial differential equations as well as to show generalwell-posednessresultsfor both stationaryand nonstationary,thatis, time- dependentproblems.Besideswell-posednesstheoremsforlargeclassesofdifferen- tialequations(includingnonlinearproblems),thetheoryaddressesquantitativeand qualitativequestionsrelatedtoexponentialstability,homogenisationandregularity. Thislistisboundtogetlongerinfuture.Thegeneralapproach,furthermore,allows for either a comparison or unification (depending on the context) of approaches initially tailored for particular types of equations, such as parabolic, hyperbolic or elliptic. In particular, mixed type equations can be considered and understood withthepresentedperspective.Thus,manyfundamentalequationsofmathematical physics such as the heat equation, wave equation, Maxwell’s equations and the equationsofelasticitytheorycanbetreatedusingthismethod. The abovementioned equations fitting into a general solution theory posed a surprising fact (at least for us). Even more so as the general problem class of evolutionaryequationsbases on fourratherelementaryobservationsbeingshortly summarisedasfollows: (cid:129) the (distributional, time) derivative can be realised as a boundedly invertible, normaloperatorinexponentiallyweightedL -spaces, 2 v vi Preface (cid:129) manyequationsofmathematicalphysics(includingtheabove)canbewrittenas asumoftwounboundedoperators:oneoftheminvolvingfirstorderdifferential operatorsinspaceandtheotheroneafirstorderdifferentialoperatorintime, (cid:129) theintroductionofabstractso-called‘materiallaws’or‘materiallawoperators’ as coefficients of the time derivative describes both heterogeneous media and couplingeffects, (cid:129) the solution mechanism is based on monotonicity of both the sum of the mentionedunboundedoperatorstogetherwithitsadjointcomputedinthespace- timeHilbertspace;inmanycases,thismonotonicityreadilyfollowsfromtheone ofthetimederivativesmultipliedwiththemateriallawoperator. The last observationis particularlystriking in as much as the monotonicityof the timederivativemultipliedwiththemateriallawoperatorisrathereasilyobtainedin manyapplications.Thisprovidesawell-posednesscriterionthatisbothelementary andgeneral,oftenleadingtogeneralisationsofknownsolutioncriteriaforparticular situations.Fromanappliedperspective,thesecriteriacanoftenbeverifiedwithout divingintotheintricaciesofmoreinvolvedsolutionmethodsand,thus,theexisting numericalmethodsforevolutionaryequationscanbeusedtonumericallysolvethe consideredequationathand. In the context of time-dependent equations and related topics, there is a well- established format of introducingvarious subjects to advancedmaster or diploma students as well as PhD students, namely the Internet Seminar on Evolution Equations. Since 1997, it has been organised by various groups from Germany, Hungary, Italy, the UK and the Netherlands, providing virtual lectures as well as supervised student projects. In the academic year 2019–2020, we organised the InternetSeminar focussing on evolutionaryequations. The present book is an extendedversionofthelecturenotesforthevirtuallectures.Assuch,itpresentsa thoroughintroductiontothetheoryofevolutionaryequationsandthecorresponding solution theory and provides many properties, different classes of examples and properties of solutions, taking the reader from the early beginning of Picard’s theoremto(almost)thestate-of-the-artinthistheory. As the text is based on weekly virtual lectures, each chapter of the book is intendedto(roughly)compriseaselectionofmaterialthatcovers4hoflecturesand 2hofexerciseclasses.Hence,thisbookcoversmaterialforoneortwosemesters.It isintendedformasterordiplomastudentsaswellasPhDstudentsandresearchers and requires only basic knowledge on functional analysis, foundations in Hilbert space theory and complex analysis in one variable. The needed amount of these is similar to the ones providedin basic courses on these topics. Apart from these prerequisites,thematerialofthebookisself-contained.Attheendofeachchapter, we appended7 exercisesof varyingdifficulties from easy to challengingand also wecommentedonfurtherreadingand/oronthewidercontextofthecontentsofthe chapter. We are indebted to Rainer Picard for introducing this theory to us more than a decade ago and for his past and ongoing support in many areas. We are very gratefultotheparticipantsofthe23rdInternetSeminarforreadingthemanuscript, Preface vii working with the material and thus checking large parts of the present text. In particular, we cordially thank Jürgen Voigt, Hendrik Vogt and Michael Doherty fortheirvaluablecomments,whichledtomanyimprovements.M.W.thanksJussi Behrndt for the invitation on a guest professorship at the TU Graz at the end of 2020andthebeginningof2021.Thisguestappointmentledtothepresentationof the course at TU Graz with many interested students, in particular, Julia Hauser, PeterSchlosser,GeorgStenzelandRaphaelWatschinger,studyingthematerialand providingusefulfeedbackthathelpedtoprofoundlyimprovethetext.Wethankthe anonymousreferees for their comments that led to further improvements. All the remainingmistakesareourown. We thank Christiane Tretter, Editor of the Operator Theory series, for her encouragementandguidance.Moreover,wethankDorothyMazlumforhersupport during the earlier stages of the manuscript (and its submission) as well as Daniel Jagadisan for the completion and final submission process. Last but not the least, we thank the TU Bergakademie Freiberg for providing the open access costs for thismanuscript,thusmakingthefinalversionoftheselecturenoteseasilyavailable aroundtheworldwithoutfurthercosts. Hamburg,Germany ChristianSeifert Kiel,Germany SaschaTrostorff Freiberg,Germany MarcusWaurick August2021 Contents 1 Introduction................................................................. 1 1.1 FromODEstoPDEs................................................. 1 1.2 Time-independentProblems......................................... 4 1.3 EvolutionaryEquations.............................................. 5 1.4 ParticularExamplesandtheChangeofPerspective................ 6 1.5 ABriefOutlineoftheCourse ....................................... 9 1.6 Comments ............................................................ 11 Exercises ..................................................................... 12 References.................................................................... 12 2 UnboundedOperators ..................................................... 15 2.1 OperatorsinBanachSpaces ......................................... 15 2.2 OperatorsinHilbertSpaces.......................................... 18 2.3 ComputingtheAdjoint............................................... 21 2.4 TheSpectrumandResolventSet.................................... 23 2.5 Comments ............................................................ 29 Exercises ..................................................................... 29 References.................................................................... 29 3 TheTimeDerivative........................................................ 31 3.1 Bochner–LebesgueSpaces........................................... 31 3.2 TheTimeDerivativeasaNormalOperator......................... 42 3.3 Comments ............................................................ 47 Exercises ..................................................................... 48 References.................................................................... 49 4 OrdinaryDifferentialEquations.......................................... 51 4.1 TheDomainof∂ andtheSobolevEmbeddingTheorem........ 51 t,ν 4.2 ThePicard–LindelöfTheorem....................................... 54 4.3 DelayDifferentialEquations ........................................ 60 4.4 Comments ............................................................ 64 ix x Contents Exercises ..................................................................... 64 References.................................................................... 66 5 TheFourier–LaplaceTransformationandMaterialLaw Operators.................................................................... 67 5.1 TheFourierTransformation ......................................... 67 5.2 TheFourier–LaplaceTransformationandItsRelation totheTimeDerivative................................................ 72 5.3 MaterialLawOperators.............................................. 74 5.4 Comments ............................................................ 80 Exercises ..................................................................... 81 References.................................................................... 83 6 SolutionTheoryforEvolutionaryEquations............................ 85 6.1 FirstOrderSobolevSpaces.......................................... 85 6.2 Well-PosednessofEvolutionaryEquationsandApplications ..... 88 6.3 ProofofPicard’sTheorem........................................... 97 6.4 Comments ............................................................ 99 Exercises ..................................................................... 100 References.................................................................... 101 7 ExamplesofEvolutionaryEquations..................................... 103 7.1 Poro-ElasticDeformations........................................... 103 7.2 FractionalElasticity.................................................. 107 7.3 TheHeatEquationwithDelay....................................... 110 7.4 DualPhaseLagHeatConduction ................................... 111 7.5 Comments ............................................................ 113 Exercises ..................................................................... 114 References.................................................................... 116 8 CausalityandaTheoremofPaleyandWiener ......................... 119 8.1 ATheoremofPaleyandWiener .................................... 119 8.2 ARepresentationResult ............................................. 125 8.3 Comments ............................................................ 128 Exercises ..................................................................... 128 References.................................................................... 129 9 InitialValueProblemsandExtrapolationSpaces ...................... 131 9.1 WhatareInitialValues?.............................................. 131 9.2 ExtrapolatingOperators.............................................. 133 9.3 EvolutionaryEquationsinDistributionSpaces..................... 138 9.4 InitialValueProblemsforEvolutionaryEquations................. 140 9.5 Comments ............................................................ 147 Exercises ..................................................................... 147 References.................................................................... 148

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.