ebook img

Evolution of Structural and Optical Properties of ZnO Nanorods Grown on Vacuum Annealed Seed ... PDF

17 Pages·2017·8.2 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Evolution of Structural and Optical Properties of ZnO Nanorods Grown on Vacuum Annealed Seed ...

nanomaterials Article Evolution of Structural and Optical Properties of ZnO Nanorods Grown on Vacuum Annealed Seed Crystallites WaqarKhan1 ID,FasihullahKhan1,HafizMuhammadSalmanAjmal1,NoorUlHuda1, JiHyunKim2andSam-DongKim1,* 1 DivisionofElectronicsandElectricalEngineering,DonggukUniversity,Seoul100-715,Korea; [email protected](W.K.);[email protected](F.K.);[email protected](H.M.S.A.); [email protected](N.U.H.) 2 SchoolofAdvancedMaterialsScienceandEngineering,SungkyunkwanUniversity,Suwon-Si, Gyeonggi-Do16419,Korea;[email protected] * Correspondence:[email protected];Tel.:+82-2-2260-3800;Fax:+82-2-2277-8735 Received:26December2017;Accepted:23January2018;Published:26January2018 Abstract: Inthisstudy,theambientconditionfortheas-coatedseedlayer(SL)annealingat350◦Cis variedfromairornitrogentovacuumtoexaminetheevolutionofstructuralandopticalproperties ofZnOnanorods(NRs). TheNRcrystalsofhighsurfacedensity(~240rods/µm2)andaspectratio (~20.3)showgreatlyenhanced(002)degreeoforientationandcrystallinequality,whengrownon theSLsannealedinvacuum,comparedtothoseannealedinairornitrogenambient. Thisisdueto thevacuum-annealedSLcrystalsofahighlypreferredorientationtoward(002)andlargegrainsizes. X-rayphotoelectronspectroscopyalsorevealsthatthehighestO/Znatomicratioof0.89isobtained inthe caseof vacuum-annealedSL crystals, whichis dueto theeffective desorptionof hydroxyl groups and other contaminants adsorbed on the surface formed during aqueous solution-based growthprocess. Nearbandedgeemission(ultravioletrangeof360–400nm)ofthevacuum-annealed SLsisalsoenhancedby44%and33%ascomparedtothoseannealedinairandnitrogenambient, respectively,inphotoluminescencewithsignificantsuppressionofvisiblelightemissionassociated withdeepleveltransition. DuetothisimprovementofSLopticalcrystallinequality,theNRcrystals grownonthevacuum-annealedSLsproduce~3timeshigherultravioletemissionintensitythanthe othersamples. Insummary,itisshownthattheZnONRspreferentiallygrowalongthewurtzite c-axisdirection,therebyproducingthehighcrystallinequalityofnanostructureswhentheygrow onthevacuum-annealedSLsofhighcrystallinequalitywithminimizedimpuritiesandexcellent preferred orientation. The ZnO nanostructures of high crystalline quality achieved in this study canbeutilizedforawiderangeofpotentialdeviceapplicationssuchaslaserdiodes,light-emitting diodes,piezoelectrictransducersandgenerators,gassensors,andultravioletdetectors. Keywords: ZnO nanorods; vacuum annealing; photoluminescence; hydrothermal process; surfacedefects 1. Introduction Semiconductingmetaloxideshavebeenintensivelydevelopedforoptoelectronicsandsensor material applications of various transduction platforms in last several decades due their unique materialpropertiesofopticaltransparencybasedonwideenergybandgapandchemiresistivebehavior dependingonspecificgasadsorptiononthesurface[1]. Futuremicroelectronicstechnologyutilizing thesenewfunctionsofmetaloxidewillthereforeleadtoavarietyofchallengingapplicationsand theirnewconsequentindustrialmarket. Amongmanysemiconductingmetaloxides,ZnOhasbeen Nanomaterials2018,8,68;doi:10.3390/nano8020068 www.mdpi.com/journal/nanomaterials Nanomaterials2018,8,68 2of17 highlightedandextensivelyinvestigatedinrecentyearsforitsdistinctivepropertiesandpotential applicationsinoptoelectronics,gassensors,andenergyharvestingapplications[1–5]. Ithasadirect bandgapof~3.37eVatroomtemperature(RT),alargeexcitonbindingenergyof60meV,thermaland chemicalstability,piezoelectricity,radiationhardness,andtheoptionofwetchemicaletching[4–7]. NumerousmethodshavebeeninvestigatedforthesynthesisofZnOcrystalsthusfar,buttypical methodsadoptedforthefabricationofZnOnanostructuresincludevaporphaseepitaxy,pulsedlaser deposition,spraypyrolysis,molecularbeamepitaxy,andchemicalvapordepositiontechniques[3,8–11]. However, most of these process schemes require complicated facilities and high thermal budget whichultimatelyhinderlow-costandlargescalefabricationonflexiblesubstrates. Amongvarious growth methods for the ZnO nanorods (NRs), a synthesis technique in aqueous solution such as hydrothermalmethodisverypromisingbecausetheycanproceedatrelativelylowthermalbudget allowinglow-costandlarge-scalerolltorollfabrication[4,7,12,13]. ZnOalsoprovideawidevarietyof nanostructuremorphologiessuchasNRs,nanowires,nano-belts,andnano-flowersformanypractical applications [8–13]. Fabrication of nano-scale ZnO materials with special morphology and high crystallinequalityisofgreatinterestformaterialssciencebecauseofitssignificanceinthescientific researchandpotentialintheminiaturizedtechnologicalapplications. Drawbackofhydrothermaltechniqueishoweverthepresenceofhugevolumeofdefectsonthe surfaceofgrownnanostructuresaffectingthestructuralandopticalpropertiesofZnOnanostructures. Theoptimizationofopticalandstructuralpropertiescanbeachievedbyfullyunderstandingthegrowth mechanismofnanostructuresandhowthedefectsinthecrystalsbehavethroughthepost-surface treatment. However,themorphologicalcontrolandcrystalstructureevolutiontoalowdefect-density nanostructures remain challenging to material scientists. In order to suppress the defects in ZnO nanostructures, great amount of research effort has been made by using post growth annealings; for example, Qui et al. post-treated the as-grown ZnO nanowires at 550 ◦C in different ambient conditionsandreportedtheenhancementofZnOnanocrystalstothehighcrystallinequalitythrough vacuumannealing[6],howeversufficientunderstandinghowthismethodcontributedtothechange incrystallinequalitywasnotachieved. Inthisstudy,weinvestigatehowthepost-annealingambientfortheZnOseedlayer(SL),which servesasaplatformforthesubsequentnanocrystalnucleation,affectsthecrystallinequalityofZnONR growth. TodevelophydrothermalmethodtosynthesizehighcrystallinequalityZnOmicrostructures withasimplepost-annealingprocessatrelativelylowtemperaturewillbehighlydesirabledueto itseasilycontrollablecondition. Inaddition,thepossibledefectannihilationmechanisminZnONR crystals during the post-annealing is expected to further investigate. If material properties can be preciselytunedbydeployingdefectchemistry,wecansatisfythepreciserequirementsforapplications throughanunderstandingofthedefectformationmechanism. Forthispurpose,weinvestigatedin thisstudytheroleofannealingambientandtheevolutionofdefectsinas-annealedSLsaswellasZnO NRcrystalsbyusingvarioussurfacecharacterizationtechniquesincludingX-raydiffraction(XRD), photoluminescence(PL),X-rayphotoelectronspectroscopy(XPS),fieldemissionscanningelectron microscopy(FE-SEM),Fouriertransforminfrared(FT-IR)spectroscopy,atomicforcemicroscopy(AFM), andtransmissionelectronmicroscopy(TEM). 2. ExperimentalProcedure ZnONRsweregrownonp-Si(100)substrate(2×2cm2,0.01Ω-cmresistivityofborondoping) usinganaqueoussolutionmethodinthefollowingway. Afterthesurfacecleaningbyacetoneand isopropylalcoholsequentiallytoremovedustandorganiccontaminants,thesubstrateswererinsedby de-ionized(DI)wateranddriedwithnitrogen(N )purgefollowedbymoistureremovalonhot-plate 2 at120◦Cfor2min. AqueoussolutionrouteforthegrowthsofZnONRsconsistsofthefollowingtwo steps. First,acolloidalsol-gelwaspreparedbymixingzincacetatedehydrate[Zn(CH COO) ·2H O] 3 2 2 inanorganicsolventof1-propanoltoforma10mMconcentratesolution. Afterconstantlysonicating thesolutionfor30min,itwaskeptatroomtemperaturelongerthan5–6hforthesol-gelstabilization. Nanomaterials2018,8,68 3of17 Nanomaterials 2018, 8, x FOR PEER REVIEW 3 of 17 tThhei ssoslo-lguetli ostnabfoilrizthateioZnn. OThSiLs sgorlouwtitohnw foars tthhee nZnspOin S-Lco gartoewdtohn wthaes stuhebnst rsaptien-acto3a0t0ed0 ropnm thfeo rsu30bsstraantde abta 3k0e0d0 artp1m0 0fo◦rC 3f0o sr a1nmd ibna,kaendd atth 1e0c0o °aCti nfogr w1 amsirne, paenadte tdhe1 0cotaimtinegs twoaasc rheipeveaeteadt h1i0c ktinmeesss otof a~c2h0ienvme aa ftthericaknnneessa loinf g~.2T0h nemSL a-fgtreor wannnseaamlipnlge.s Twheer eSLp-ogsrto-awnnn esaalmedplaets 3w50er◦eC pinosat-aconnnveaelcetdio natf u3r5n0a °cCe wini tah cthonreveecdtiifofner efunrtnaamceb wienitths tohfrevea cduiuffmere(n5t0 ammTboirern)t,sa otmf voaspcuhuermic (a5i0r ,manTdorNr),2 .atPmoosst-pahnenreica lainirg, sanfodr Nth2e. Paos-scto-aantendeaSliLnsgsw feorre thcaer arise-cdoaotuetdn SoLtso wnelyret ocarrermiedo voeutt hneoto orgnalyn itco rreesmidouvael sthaen odrguannwica rnetseidduraelasc atinodn ubnyw-parnotdeudc trsearcetmioani nbiyn-gpirnodthuectcsr yresmtaalsinbiuntga ilns othtoe cinryvsetsatlisg abtuet haolswo ttho eincvryessttaigllaitnee hqouwal itthye ocfrythsetaSllLinies qinuflaulietyn ceodf btyheth eSLan nise ailinnfgluaemncbeiden tbiyn ctohnen eacntinoenalwinitgh tahmebmieantet riianl cchoanrancetcetriiosnti cswoifthth ethZen OmNatRersiatol cbheagrarocwternisatfitcesr owfa trhdes .ZnO NRs to be grown afterwards. IInn tthhee sseeccoonndd sstteepp,, wwee iimmmmeerrsseedd tthhee ssuubbssttrraatteess ttoo ggrrooww tthhee NNRR ccrryyssttaallss iinn aann eeqquuiimmoollaarr ggrroowwtthh ssoolluuttiioonn ofo(2f5 m(2M5 )zmincMn)i traztienhce xanhiytrdartaet e(hZenx(aNhOy3d)r2a·6tHe 2O(Z,9n9(%N)Oa3n)d2·6(H252Om,M )9h9e%xa) meatnhdyl en(e2t5e trammMine) h(HexMamT)e(tChy6Hlen12eNte4t,ra9m9.5in%e) (iHnM25T0) m(Cl6DHI12wNa4,t e9r9.a5s%il)l uins t2r5a0te mdli nDFI iwguarteer1 a.sA iflltuerstcroamtedp lient eFsigtiurrrien 1g. oAfftthere cgormowptlhetseo sltuitriroinng, tohfe tsheee dg-rgorwowthn ssoulubtsitornat, etshwe esereedp-lgarcoewdnu pssuibdsetrdaotwesn winerae bpelaakceedr fuoprsthideeN dRowgrno wint ha, baenadktehre fobre tahkee rNwRa gsrsoewaltehd, awnidth thaen baeluakmeirn wumas fsoeiallaendd wpitlhac aend aolnumaihnoutmpl faoteil aatn9d0 p◦lCacfeodr o5n–6 ah h.oFt ipnlaaltley, atht e90g r°oCw fonrZ 5n–O6 hN. RFisnwalelyre, twhea sghreodwwn iZthnOD INwRast ewrearned wpausrhgeedd wwiitthh DNI2 wgaatse.r and purged with N2 gas. TToo eexxpplloorree tthhee eevvoollvveedd mmoorrpphhoollooggiieess aanndd ccrryyssttaalllliinnee ssttrruuccttuurreess ooff tthhee aass--ggrroowwnn NNRRss,, wwee ppeerrffoorrmmeedd FFEE--SSEEMM ((HHiittaacchhii SS--44880000SS,, ooppeerraatteedd aatt 1155 kkVV,, SSuuwwoonn,, KKoorreeaa)) aanndd ccrroossss--sseeccttiioonnaall TTEEMM ((HHiittaacchhii 99550000 aatt 330000 KKVV)) aannaallyyssiiss wwiitthh sseelleecctteedd aarreeaa eelleeccttrroonn ddiiffffrraaccttiioonn ((SSAAEEDD)).. CCrryyssttaalllliinnee qquuaalliittyy aanndd pprreeffeerrrreedd oorriieennttaattiioonnw weerreei ninvveestsitgigaatetdedb ybyX XRRDD(D (D8A8 dAvdavnacnecsep sepctercotmroemteerteorf Bofr uBkreurkAerX ASXwSi twhiCthu CKuα 1K.5α4 01.Å54r0a dÅia triaodni,aStieoonu, l,SKeoourel,a )Kfoorreeaa)c hfoSr Leaanchd NSLR asanmd pNleRs psraempparleeds upnredpearrdedif feurnednterc odnidffietiroennst . cPoLndspiteiocntrso. sPcLo pspye(cMtrFoPsc-o3pDy B(Mio,FPA-s3yDlu Bmio,R Aessyealurcmh ,RSeusewaorcnh,, KSuowreoan),e Kxcoirteead) bexycaite3d2 5b-yn am 32li5n-enmH eliCnde HlaesCerdw laassearl swoacsa rarliseod coaurrtieadt RoTutt oaet xRaTm tion eexthaemoinpeti ctahlep orpotpiceartli epsroopfethrteiessa mofp tlhees .sCamhepmleisc.a lCbhoenmdiicnagl baonnddsintogi cahniodm setotricichiaonmaelytrsiics awnearleysdiso nweerbey dXoPnSe ubysi nXgPSP HusIin50g0 P0HVIe r5s0a00P rVoebresa( UPlrvoabce- P(HUIlv,aScu-wPHonI,, SKuowreoan), sKpoecretrao)m speteecrtrwomithetmer ownoitchh rmoomnaotcohrrAoml Katαor( 1A4l8 6K.6α e(V14)8a6n.6o deeV)( 2a5n.0odWe, (1255.k0V W).,T 1h5e kbVo)n. dTihneg bcoonnfidginugr actoionnfsigoufrtahteioZnnsO ofS Lthcer yZsntaOls SwLe rceryinsvtaelsst iwgaetreed ibnyvFesTt-iIgRatsepde cbtryo sFcTo-pIRy (sIpFSe6ct6rvo/sscoapnyd H(IFySp6e6rvio/ns a3n0d00 H, Byrpuekrieorn). 3A00F0M, B(rNu8k-eNr)E. OASF,MB r(uNk8e-rN)EinOnSo, nB-rcuoknetra)c itnm noodne-cwonatsacatl smoocdaerr wieads oaulstot ocaerxraiemdi nouett htoe esxuarmfacineem thoerp shuorfloacgeie msoofrpthheolSoLgsieasn onfe tahleed SiLns dainffneeraelnetda imn bdiiefnfetrceonnt daimtiobniesn.t conditions. FFiigguurree 11.. PPrroocceessss ffllooww ooff ZZnnOO nnaannoorrooddss ((NNRRss)) ggrroowwtthh wwiitthh tthhrreeee ddiiffffeerreenntt ppoosstt--aannnneeaalliinngg aammbbiieenntt ccoonnddiittiioonnss ((vvaaccuuuumm,, aaiirr aanndd NN22)) ffoorr tthhee sseeeedd llaayyeerrss ((SSLLss)).. 3. Results and Discussion 3. ResultsandDiscussion The growth morphology of the ZnO NRs was first examined by FE-SEM, and Figure 2a–c show ThegrowthmorphologyoftheZnONRswasfirstexaminedbyFE-SEM,andFigure2a–cshow the top views of the NRs grown on SLs annealed under three different ambient conditions of vacuum, thetopviewsoftheNRsgrownonSLsannealedunderthreedifferentambientconditionsofvacuum, aaiirr,, aanndd NN2,, rreessppeeccttiivveellyy.. AAvveerraaggee lleennggtthhss ooff tthhee NNRRss wweerree 11~~11..33 μµmm aass sshhoowwnn iinn tthhee ccrroossss--sseeccttiioonnaall 2 view in Figure 2d, and the NRs grown on the vacuum-annealed SLs exhibited the fastest growth rate. Shown in Figure 2e–g are the histograms of NR diameter distributions, and it was shown that the Nanomaterials2018,8,68 4of17 view in Figure 2d, and the NRs grown on the vacuum-annealed SLs exhibited the fastest growth Nanomaterials 2018, 8, x FOR PEER REVIEW 4 of 17 rate. ShowninFigure2e–garethehistogramsofNRdiameterdistributions,anditwasshownthat tshtaetissttaitciss toicfs NofRN dRiadmiaemtere twerewree raelsaol ssoigsnigifnicifiancatlnyt layffaefcfetecdte dbyb yththe eSSLL aannnneeaalilningg ccoonnddiittiioonn. .TTaabbllee 11 ssuummmmaarriizzeedd tthhee mmoorrpphhoollooggyy ssttaattiissttiiccss ooff tthhee NNRRss ggrroowwnn uunnddeerr tthhrreeee ddiiffffeerreenntt ccoonnddiittiioonnss.. TThhee NNRRss ggrroowwnn oonn SSLLss aannnneeaalleedd iinn vvaaccuuuumm sshhoowweedd tthhee ssmmaalllleesstt mmeeaann ddiiaammeetteerr ooff 6655 nnmm;; oonn tthhee ootthheerr hhaanndd,, tthhee llaarrggeerr ddiiaammeetteerrss ooff 8800 aanndd 111155 nnmm wweerree mmeeaassuurreedd iinn tthhee ccaasseess ooff aannnneeaalliinnggss iinn aaiirr aanndd NN22 aammbbiieenntt ccoonnddiittiioonn,, rreessppeeccttiivveellyy.. AAssppeecctt rraattiioo ooff tthhee NNRRss wwaass ddeeccrreeaasseedd ffrroomm 2200..33 ((vvaaccuuuumm)) ttoo 1133..77 ((aaiirr)) aanndd 88..88 ((NN22)) ddeeppeennddiinngg oonn tthhee aannnneeaalliinngg aammbbiieenntt.. TThhee NNRRss aallssoo eexxhhiibbiitteedd tthhee mmaaxxiimmuumm ssuurrffaaccee ddeennssiittyy ((~~224400 rrooddss//µμmm22)) iinn ththeec acsaesoe fovfa cvuaucmuu-amn-naenanlienagli,nbgu,t bthuet dtehnes idtyenwsaitsys iwgnaisfi csaignntliyficreadnutlcye drebdyu3c3e–d6 2b%y i3n3–th6e2%ca isne sthoef cdaifsfeesr eonf tdaimffebrieenntt acmonbdieitniot ncos.nditions. (a) (b) (c) (d) (e) (f) Figure2.Cont. Nanomaterials2018,8,68 5of17 Nanomaterials 2018, 8, x FOR PEER REVIEW 5 of 17 Nanomaterials 2018, 8, x FOR PEER REVIEW 5 of 17 (g) (g) Figure 2. Field emission scanning electron microscopy (FE-SEM) (top view) of the ZnO NRs grown FFiigguurree 22.. FFiieelldd eemmiissssiioonn ssccaannnniinngg eelleeccttrroonnm micicroroscsocoppyy( F(EFE-S-ESEMM)()t o(tpopv ivewiew)o)f otfh ethZen ZOnON RNsRgsr ogwronwonn on SLs annealed in (a) vacuum; (b) air; and (c) nitrogen. Cross-sectional views of the ZnO NRs are oSnL sSaLnsn aenanleedaliend( ain) v(aac) uvuamcu;u(bm);a (ibr;) aanidr; (acn)dn i(tcro) gneitnr.oCgerons. sC-sreocstsio-sneacltivoinewals voifewthse oZfn tOheN ZRnsOa rNesRhso awren shown in (d). Histogram for the diameter distribution of NRs grown on SLs annealed in (e) vacuum; sinho(wd)n. Hini s(tdo)g. rHaimstofogrratmhe fdoira tmhee tdeiradmisettreirb duitsiotrnibouftNioRn sogf rNoRwsn gornowSLns oann SnLesa laendniena(leed) vinac (ueu) vma;c(ufu)amir;, (f) air, and (g) nitrogen. (afn) dai(rg, )anndit r(ogg) enni.trogen. Table 1. Morphologies of the ZnO NRs (measured by FE-SEM) prepared under three different SL TTaabbllee 11.. MMoorrpphhoollooggiieess ooff tthhee ZZnnOO NNRRss ((mmeeaassuurreedd bbyy FFEE--SSEEMM)) pprreeppaarreedd uunnddeerr tthhrreeee ddiiffffeerreenntt SSLL annealing ambient conditions. annealingambientconditions. annealing ambient conditions. Annealing Diameter Mean Standard Deviation of NR Density Aspect AnAnenanleianlgin g DiaDmiaemteert er MeManea n StanSdtaanrdda DrdeDvieavtiiaotnio nof NNRRD Deennsistyity AspeActsRpaeticot Ambient for SL Range (nm) Diameter (nm) Diameter (nm) (rods/μm2) Ratio of NR AmAbmiebnite nfotrf oSrLS L RanRgaen g(enm(nm) ) DiaDmiaemteert e(rn(mnm) ) DoifaDmiaemteert (enrm(n)m ) ((rroodds/sµ/μmm2)2) RoaftNioR of NR Vacuum 50–110 65 11.8 ~240 20.3 VacVuaucumu m 50–5101–011 0 65 65 111.18. 8 ~~224400 20.230.3 Air 60–130 80 12.0 ~160 13.7 AirA ir 60–6103–013 0 80 80 121.20. 0 ~~116600 13.173.7 Nitrogen 70–190 115 20.4 ~90 8.8 NitNroitgreonge n 70–7109–019 0 1151 15 202.04. 4 ~~9900 8.88.8 We obtained well aligned NRs normal to the substrates with pure wurtzite hexagonal faces as WWee oobbttaaiinneedd wweellll aalliiggnneedd NNRRss nnoorrmmaall ttoo tthhee ssuubbssttrraatteess wwiitthh ppuurree wwuurrttzziittee hheexxaaggoonnaall ffaacceess aass shown in each micrograph of Figure 2a–c. The degree of NR c-axis alignment was more prominent sshhoowwnn iinn eeaacchh mmiiccrrooggrraapphh ooff FFiigguurree2 2aa––cc..T Thheed deeggrereeeo offN NRRc -ca-xaixsisa laiglingmnmenetnwt wasams moroerper pomroimneinnetnint in the case of vacuum-annealing than the other cases. Figure 3a,b respectively represent the θ-2θ XRD itnh ethcea csaesoef ovf avcaucuumum-a-nannenaelainligngth tahnanth theeo oththeerrc caasseess..F Fiigguurree 33aa,,bb rreessppeeccttiivveellyy rreepprreesseenntt tthhee θθ--22θθ XXRRDD spectra obtained from the SLs annealed under three different ambient conditions and the NRs grown ssppeeccttrraa oobbttaaiinneedd ffrroomm tthhee SSLLss aannnneeaalleedd uunnddeerr tthhrreeee ddiiffffeerreenntt aammbbiieenntt ccoonnddiittiioonnss aanndd tthhee NNRRss ggrroowwnn atop each SL. aattoopp eeaacchh SSLL.. (a) (b) (a) (b) Figure 3. θ-2θ X-ray diffraction (XRD) patterns of (a) the SLs annealed in three different ambients; Figure 3. θ-2θ X-ray diffraction (XRD) patterns of (a) the SLs annealed in three different ambients; aFnigdu (rbe) 3th.eθ -Z2nθOX N-raRy gdroifwfrnac otino nea(cXhR dDif)fepraetntte rSnLs. of(a)theSLsannealedinthreedifferentambients; and (b) the ZnO NR grown on each different SL. and(b)theZnONRgrownoneachdifferentSL. From the XRD patterns, it was shown that all reflections were in perfect agreement with the From the XRD patterns, it was shown that all reflections were in perfect agreement with the reporFterodm intdheexeXsR oDf JpCaPttDerSn fsi,leits w(caasrds hnouwmnbethr a3t6a-1ll45re1fl) efoctri othnes hweexraegionnaple prfheacstea gZrneOem. Ienn etawchit hcatshee, reported indexes of JCPDS files (card number 36-1451) for the hexagonal phase ZnO. In each case, trheep omrtoesdt iinntdeenxsees poefaJkCs PaDloSngfi l(e0s02(c)a orrdiennutamtiboenr w36e-r1e4 o5b1s)efrovretdh efrohmex athgeo nSaLlsp, ahnadse thZins Ore.pInreeseanchts ctahsaet, the most intense peaks along (002) orientation were observed from the SLs, and this represents that othuer mZonsOt isneteends cerpyesataklsliatelos nhga(v0e0 2a) porrieefnetraretido nowrieenretaotbiosner valeodnfgr ocm-axthise. SELssp,eacniadlltyh,i sthreep dreesgernetes othf a(t0o0u2)r our ZnO seed crystallites have a preferred orientation along c-axis. Especially, the degree of (002) preferred orientation was the most strong from the SLs annealed in vacuum (at 2θ = 34.44°) with no preferred orientation was the most strong from the SLs annealed in vacuum (at 2θ = 34.44°) with no visible reflection from other planes, while fairly significant (100) reflections were also observed from visible reflection from other planes, while fairly significant (100) reflections were also observed from Nanomaterials2018,8,68 6of17 ZnOseedcrystalliteshaveapreferredorientationalongc-axis. Especially,thedegreeof(002)preferred orientation was the most strong from the SLs annealed in vacuum (at 2θ = 34.44◦) with no visible reflectionfromotherplanes,whilefairlysignificant(100)reflectionswerealsoobservedfromtheSLs whenannealedinotherambientconditions[14]. Thedegreeoforientation,F(hkl),canbegivenbythe followingequation:[15] (P(hkl)− P (hkl)) F(hkl) = 0 (1) (1− P (hkl)) 0 whereP(hkl)=I(hkl)/ΣI(hkl),P (hkl)=I (hkl)/Σ(I (hkl),I(hkl)isthemeasuredpeakintensityfrom 0 0 0 (hkl)plane,andI (hkl)isthereferencepeakintensityof(hkl)planegivenbyJCPDScardNo. 36-1451. 0 AssummarizedinTable2,thehighestvalueofF(002)wasobtainedfromtheSLsannealedinvacuum, whereasmuchlowerdegreeoforientationsweremeasuredfromtheSLcrystalsannealedinairandN 2 ambients. TheexcellentF(002)valueinthecaseofvacuumannealingsuggeststhatthegasmolecules and/orcontaminantspresentintheannealingambientcanplayaveryimportantroleintheSLcrystal growthandgraincoalescenceprocess[14–16]. Theaveragegrainsizedwascalculatedfromfullwidthathalfmaximum(FWHM)of(002)peak byusingDebye-Schererformula:[15,16] d = (0.94λ)/(βCosθ) (2) whereλistheX-raywavelength(0.154nm),βisFWHMinradians,andθistheBragg’sdiffraction angle. ThegrainsizesofSLcrystalscalculatedbythismethodwere55.6nm(vacuum),30.4nm(air), and28.3nm(N )ineachdifferentannealingambientconditionasshowninTable2. Annealingin 2 vacuumcanpromotethegraingrowthandintergranularcoalescenceoftheSLcrystalsthroughthe grainboundarydiffusion,therebyproducinglargegrainsizesduringthepost-annealing. However, gasmoleculesandcontaminantsinthegrainboundariesintroducedduringtheannealinginairorN 2 ambientscansuppresstheintergranulardiffusionfortheevolutionarySLcrystalgrowth[12,15,16]. Table2.ParametersoftheZnOSLcrystalsextractedbyXRDanalysis. AnnealingAmbient (002)2θ (002) GrainSize (002)Spacing Degreeof(002) forSL (◦) FWHM(◦) (nm) (Å) Orientation Vacuum 34.44 0.156 55.6 2.600 0.98 Air 34.53 0.303 30.4 2.594 0.66 Nitrogen 34.54 0.304 28.3 2.593 0.61 TheXRDpatternsfortheNRsgrownontheSLsannealedunderdifferentenvironmentwerealso showninFigure3b. Singlestrongpeak(2θ=34.47◦)along(002)orientationwasobservedfromthe NRsgrownontheSLsannealedinvacuum, andnootherpeaklinkedtoanydifferentorientation wasfound. ThisrevealsthattheZnONRcrystals,inthiscase,growdominantlyalongc-axisinthe verticaldirectiontothesubstrate. Ontheotherhand,weobtainedweakbutvisibleadditionalpeaks from(100)and(101)planesat31.7◦ and36.4◦,respectively,withadominantpeakfrom(002)fromthe NRsgrownontheSLsannealedinairandN . Theintensityof(002)peakmeasuredfromthevacuum 2 annealingwassignificantlyreducedby2.5and7.6timesinthecasesofairandN ambientannealing, 2 respectively. Thisdepictsthatthec-axisalignmentoftheZnONRgrowthwasconsiderablyeffected bytheannealingambientconditionfortheSLs. Aswasdiscussedearlier,theSLcrystalsannealedin vacuumstatehaveahighlypreferredorientationtoward(002)andlargegrainsizes. Assuggestedby manyformerresearchers,eachcrystallinesurfaceoftheSLgrainactsasanucleiforthegrowthofNRs, andtheZnONRstendtodominantlygrowalongthe[001]directionbecauseofitslowersurfacefree energy(1.6J/m2)thanthoseof(100)(3.4J/m2)and(101)(2.0J/m2)planes[17,18]. Thiscanexplain whywehaveastrongc-axisalignmentalongverticaldirectiontothesubstratewhentheZnONRs grownonthevacuum-annealedSLs. Nanomaterials2018,8,68 7of17 TEMdark-field(DF)analyseswerecarriedoutfortheNRstructuresgrownunderthreedifferent SLannealingconditions. Figure4a–cshowstheDFimagesoftheNRcrystalsinthebottomrows,and cleardifferencesincontrastwerefoundfromeachNRcrystalcorrespondingtotheirplaneindexes diffracted on the SAED patterns. As shown in Figure 4a, most of the NR crystals grown on the Nanomaterials 2018, 8, x FOR PEER REVIEW 7 of 17 vacuum-annealedSLswerebrightasobservedunder(002)diffractioncondition,whereasonlyfew NNRRss sshhoowweedd tthhee bbrriigghhtt ddiiffffrraaccttiioonn ccoonnttrraasstt uunnddeerr ((110000)) oorr ((110022)) ddiiffffrraaccttiioonn ccoonnddiittiioonn.. TThhee ssaammpplleess pprreeppaarreedd uunnddeerr ddiiffffeerreenntt aannnneeaalliinngg aammbbiieennttss ((ssuucchh aass aaiirr oorr NN22)) sshhoowweedd qquuiittee ddiiffffeerreenntt ccoonnttrraasstt ddiissttrriibbuuttiioonn iinn NNRRss ddeeppeennddiinngg uuppoonn tthhee SSLL aannnneeaalliinngg ccoonnddiittiioonn aass sshhoowwnn iinn FFiigguurree 44bb,,cc.. DDeessppiittee tthhee lliimmiittaattiioonn ooff TTEEMM aannaallyyssiiss iinn vveerryy llooccaall aarreeaass,, tthhiiss oobbsseerrvvaattiioonn wwaass iinn ggoooodd aaggrreeeemmeenntt wwiitthh tthhee rreessuullttss ooff XXRRDD aannaallyyssiiss ooff hhiigghheerr ssttaattiissttiiccaall rreelliiaabbiilliittyy.. (a) (b) Figure4.Cont. Nanomaterials2018,8,68 8of17 Nanomaterials 2018, 8, x FOR PEER REVIEW 8 of 17 Nanomaterials 2018, 8, x FOR PEER REVIEW 8 of 17 (c) (c) Figure 4. Cross-sectional TEM micrographs of the ZnO NRs grown on SLs annealed in (a) vacuum, Figure4. Cross-sectionalTEMmicrographsoftheZnONRsgrownonSLsannealedin(a)vacuum, (bFi)g auirre, a4n. dC r(ocs) sn-sietrcotigoenna la TmEbMie nmtsic. rBorgirgahpt-hfsie oldf tihme aZgneOs aNnRd st hgreoirw sne loenct eSdL sa arenan eealelecdtr oinn (da)i fvfraaccutiuomn , (b)air,and(c)nitrogenambients.Bright-fieldimagesandtheirselectedareaelectrondiffraction(SAED) (S(bA)E aDir), paantdte r(cn)s nairter orgeesnp eacmtivbeielyn tssh. oBwring hint- f(iteoldp -liemfta)g aens da n(tdo pth-reigirh st)e.l eDcaterdk faireelda eimleactgreosn a dreif fsrhaocwtionn patternsarerespectivelyshownin(top-left)and(top-right).Darkfieldimagesareshownaccordingto a(cScAorEdDin) gp atott eerancsh adrief freersepnet cdtiivfferlayc tsihoonw cnon idni t(itoonp -olef fpt)l aanned in(tdoepx-r iingh (tb)o. tDtoamrk rfoiewlds) iwmiatghe (st oapre-c sehnotewr)n eachdifferentdiffractionconditionofplaneindexin(bottomrows)with(top-center)theircomposite thaceciro rcdoimngp otsoi teea vcihe wdisf fienr tehnrte de idffirfafecrteionnt ccoolnodrsit. ion of plane index in (bottom rows) with (top-center) viewsinthreedifferentcolors. their composite views in three different colors. As shown in Figure 5, we performed AFM for each scanning area (20 × 20 μm2) of the SLs As shown in Figure 5, we performed AFM for each scanning area (20 × 20 µm2) of the SLs anneaAlesd sihno wdinff eirne nFti gaumreb i5e,n tws.e Tpheer fAorFmMe dc hAarFaMct efroirz aetaiocnhs srceavnenailnegd asrigean i(f2ic0a n×t l2y0 rμedmu2c) eodf stuhref aScLes annealedindifferentambients. TheAFMcharacterizationsrevealedsignificantlyreducedsurface raonungehanleedss ifnr odmif ftehree nStL afmilmbise nantsn. eTahleed A inF Mva ccuhuarma cctoermizpaatrioends t ore tvheoaslee da nsnigenaliefidc ainnt alyir roerd Nuc2e. dT hseu rrfoaocte roughnessfromtheSLfilmsannealedinvacuumcomparedtothoseannealedinairorN . Theroot mroeuangh snqeusasr fer oromu gthhen eSsLs foilfm SLs aannnneeaalleedd iinn vvaaccuuuumm cwoamsp faoruendd t oto t hboe s1e. 3a4n nnmea,l ewdh iinle a tihr oosre N o22f. STLh efi lrmoost meansquareroughnessofSLannealedinvacuumwasfoundtobe1.34nm,whilethoseofSLfilms amnneeaanl esdq uianr ea irro aungdh nNe2s sa mofb SiLen atn wneearele d1. 8in4 vaancdu u2.m05 wnams ,f oreusnpde cttoiv beel y1.. 3T4h nism e,n whahnilcee tmhoenset ooff SsLu rffialmces annealedinairandN ambientwere1.84and2.05nm, respectively. Thisenhancementofsurface samnonoetahlende sisn fariorm a ntdh eN 22v aacmubuimen-ta nwneerael e1d.8 4S La ncdr y2s.0ta5l sn mca, nr ebspe ecdtuivee ltyo. Tthheis heinghhaenr ce(0m0e2n) td oefg srueerf aocfe smoothnessfromthevacuum-annealedSLcrystalscanbeduetothehigher(002)degreeoforientation osrmieonotathtinoens as s forobmse rvtheed bvya couuurm X-RaDnn aenaalelyds iSs L[1 9c]r.y stals can be due to the higher (002) degree of asobservedbyourXRDanalysis[19]. orientation as observed by our XRD analysis [19]. (a) (a) Figure5.Cont. Nanomaterials2018,8,68 9of17 Nanomaterials 2018, 8, x FOR PEER REVIEW 9 of 17 (b) (c) Figure 5. Atomic force microscopy (AFM) images of ZnO SLs annealed in (a) vacuum; (b) air, and (c) Figure 5. Atomic force microscopy (AFM) images of ZnO SLs annealed in (a) vacuum; (b) air, Nitrogen ambient. and(c)Nitrogenambient. Wide scan XPS spectra for the SLs annealed in different ambient conditions are shown in Figure 6aW inid ae rsacnagneX oPfS 0s–p1e1c5t0r aeVfo.r MthaeinS Lcsonasntniteuaelnedts ionf dZifnf earnendt Oam exbhieinbittc voanrdioituios npshaorteoeshleocwtronni npFeaigkus roef6 a inadrifafnergeenot fco0r–e1-1le5v0eelsV .aMnda sinpicno-norsbtiittuael nsptsliottfinZgns aans dwOelle axsh Aibuitgvera rpieoaukssp, ahnodto seolmecetr tornacpese aokf scaorfbdoinff aerree nt corael-sloe vdeeltsecatnedd isnp tihne- oSrLb cirtaylstsaplsl.i tFtiignugrse a6sb wsheolwl ass twAou cgleearrp ceoarke-sl,evaenld Zsno pmeaektsr oafc e2sp1o/2f (1c0a4r4b.o4n eVa)r eanadls o det2epc3t/e2 d(1i0n21th.3e eSVL) scerpyastraaltse.dF biyg usprein6-borsbhitoawl ssptlwittoincgl efoarr ecaocrhe -SleLv cerlyZstnalp aenankesaolefd2 ipn1 /v2ac(u10u4m4,. 4aierV, a)nadn d 2p3N/22. (T1h02e 1p.3eaekV l)ocsaetpioanras,t esdymbymseptriinc -sohrabpitea olfs pthleit tpienagkfso, ranedac shpiSnL ocrrbyitsatla slpalnitntienagl evdaliunev (2a3c.u1u emV), aoifr t,haen d N .ZTnh 2epp deoaukblolecta ctoionnfisr,msys mthmate tZrnic issh parpeeseonftt hase Zpnea2+k csh,eamndicaspl isntaoter binit aZlnsOpl istttoinicghvioamlueetr(y2 3in.1 aelVl )caosfetsh e 2 Zn[21p6]d. Houobwleetvceor,n 2fipr1m/2 spethaka toZf nthies SpLr easnennetaalsedZ inn2 +vacchueummic walasst ashteifitnedZ bnyO 0s.1to7i ecVhi otom heitgrhyeirn eanlelrcgays,e asn[d1 6]. Hotwhiesv sehri,f2t pis attpriebaukteodf ttoh ae hSLighanern oexaildedizaintiovna csutautem owf Zans sehleimfteedntb iyn 0th.1e7 ZenVOt coohreig mheartreixn.e rgy,andthis 1/2 shiftisaTtotr eibxuamteidneto thae hcihgahnegreo oxfi cdhiezmatiicoanl ssttaattee ionf SZLn ZenlOem creynsttainls,t hwee ZobnsOercvoerde mmoarter icxlo.sely O1s peaks deTcoonevxoalmutiende itnhteoc thharneeg eseopfacrhateem siactaelllsittea tpeeianksS LofZ OnaO, Ocbr,y asntadl sO,cw aes sohboswernv eind Fmigourerec 6loc–seel. yOOa, 1wshpiechak s is the lowest energy peak at ~530.3 eV, corresponds to the O2− ion in the wurtzite structure of deconvolutedintothreeseparatesatellitepeaksofO ,O ,andO asshowninFigure6c–e.O ,whichis a b c a thehleoxwaegsotneanl eZrgnyOp. eBaekcaauts~e 5O30a .i3s eaV ,gcooordre mspeoansudrset ooft hsetoOic2h−ioimonetirnict hoexywguenrt zpirteessetnrucec tiunr ethoef wheuxratzgioten al ZnOstr.uBcetucareu, sewOe evisalauagtoedo dthme esatsouicrheioomf settoryic hoifo meaecthr icZnoOxy gSeLn cpryrestsaelns cebyi nutshinegw ∫uOrat/∫zZitne isntr uecatcuhr e, a corresponding annealing condition [16,20–22], where ∫Oa and ∫Zn(cid:82) respe(cid:82)ctively represent the peak weevaluatedthestoichiometryofeachZnOSLcrystalsbyusing O / Znineachcorresponding a curve integration of Oa and Zn. It is o(cid:82)bserved i(cid:82)n Table 3 that the percentage contribution of Oa in Ot annealingcondition[16,20–22],where O and Znrespectivelyrepresentthepeakcurveintegration (Ot = Oa + Ob + Oc) is the highest in the caase of vacuum-annealing. Each percentage value of Oa, Ob, ofO andZn. ItisobservedinTable3thatthepercentagecontributionofO inO (O =O +O +O ) anad Oc in Table 3 was obtained by ∫Ok/∫Ot, where ∫Ok is the curve integration aof inditvidutal Oa1s satebllite c isthehighestinthecaseofvacuum-annealing. EachpercentagevalueofO ,O ,andO inTable3was peak (k = (cid:82)a, b, o(cid:82)r c), and ∫Ot(cid:82) is the curve integration of total O1s peak. aAlthbough ZncO is oxygen- obtainedby O / O,where O isthecurveintegrationofindividualO1ssatellitepeak(k=a,b, deficient matekrial int nature, butk the highest O/Zn atomic ratio of 0.89 was found in the case of (cid:82) orcv)a,caunudm-aOntniesatlhede cSuLr vcreyisnttaelsg,r aasti oshnoowfnto itna lTOa1bslep 3e,a wk.hAiclhth ios uegvhenZ nhOighisero xthyagne nth-doesefi coife notthmera taesr-ial innaantnuerael,edb uZtntOhe nhaingohceryststOal/s Zgnroawtonm biyc hraytdirooothfe0r.m89alw maesthfooudns d[2i3n].t hOeb c(~a5s3e1o.2f evVac) uisu mtho-aungnhet atloe dbeS L crystals,asshowninTable3,whichisevenhigherthanthoseofotheras-annealedZnOnanocrystals Nanomaterials2018,8,68 10of17 grownbyhydrothermalmethods[23]. O (~531.2eV)isthoughttobeoriginatedfromO2– ionsin b theoxyNgaenonmadteerifialcs i2e01n8t, 8r, ex gFOioRn PEwERit RhEiVnIEtWh e ZnOmatrix[20,21]. ThehigherbindingenergyO1c0 ocfo 1m7 ponent (~532.1eV)isassociatedwiththepresenceoflooselyboundoxygensuchas–CO ,–OHspeciesonthe 3 originated from O2– ions in the oxygen deficient region within the ZnO matrix [20,21]. The higher surfaceofZnOcrystals. OneinterestingobservationisthattheSLcrystalsannealedinvacuumshow binding energy Oc component (~532.1 eV) is associated with the presence of loosely bound oxygen significantreductioninO contributioncomparedtothoseannealedinotherambientsasshownin such as –CO3, –OH speccies on the surface of ZnO crystals. One interesting observation is that the SL Figurec6rcy–setalasn adnnTeaableled 3i.n Tvhaicsuhumig hshsouwp psrigensisfiicoannto freOduccptieornc einn tOagc ecoonftrtihbeutvioanc ucuommp-aarnend etaol etdhossaem plesis mostlikanenlyeadleude itno otthheere fafmecbtiievnetsd aess oshrpowtion nino fFOigu2,reC 6Oc–3e, oarnOd HTagblreo u3.p Tshaids shoigrbh esdupopnretshseiosnu orff aOcec formed duringpoeurcrenwtaegteo orfg tahne ivcascuoulumt-iaonnn-ebaalesde dsapmrpolcese siss m[2o3s]t .liAkeslys duume mto athriez eefdfecitnivTea dbelseor3p,ttiohne oOf Oc2p, eCrOce3, ntageof or OH groups adsorbed on the surface formed during our wet organic solution-based process [23]. thevacuum-annealedsampleshavealmosthalvedinvaluecomparedtothoseofthesamplesannealed indiffeAresn stuammmbaireiznetds .in Table 3, the Oc percentage of the vacuum-annealed samples have almost halved in value compared to those of the samples annealed in different ambients. (a) (b) (c) (d) (e) Figure 6. (a) Wide scan X-ray photoelectron spectroscopy (XPS) spectra of ZnO SLs annealed in three Figure6.(a)WidescanX-rayphotoelectronspectroscopy(XPS)spectraofZnOSLsannealedinthree different ambients; (b) High resolution spectra of Zn-2p of the SLs; O1s core level spectra obtained differentambients;(b)HighresolutionspectraofZn-2poftheSLs;O1scorelevelspectraobtained fro mtheZnOSLsannealedin(c)vacuum;(d)air,and(e)nitrogenambientarede-convolutedinto threedistantsatellitepeaks.

Description:
varied from air or nitrogen to vacuum to examine the evolution of structural and optical properties Introduction. Semiconducting metal oxides have been intensively developed for optoelectronics and sensor material applications of various transduction platforms in last several decades due their uni
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.