ebook img

Evolution of solar-type stellar wind PDF

0.18 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Evolution of solar-type stellar wind

AstronomischeNachrichten,14January2013 Evolution of solar-type stellar wind TakeruK.Suzuki1,⋆ DepartmentofPhysics,NagoyaUniversity,Furo-cho,Chikusa,Nagoya,Aichi,606-8602,Japan ReceivedXXXX,acceptedXXXX PublishedonlineXXXX 3 1 0 Keywords Magnetohydrodynamics(MHD),solarwind,stars:chromospheres,stars:winds,waves,turbulence. 2 Byextendingourself-consistentMHDsimulationsforthesolarwind,westudytheevolutionofstellarwindsofsolar-type n stars from early main sequence stage to red giant phase. Young solar-type stars are active and the mass loss rates are a largerbyupto ∼100timesthanthatof thepresent-day sun. Weinvestigatehow thestellarwindisaffectedwhenthe J magneticfieldstrengthandfluctuationamplitudeatthephotosphereincrease.Whilethemasslossratesensitivelydepends 0 ontheinput energyfromthesurfacebecauseoftheglobal instabilityrelatedtothereflectionandnonlineardissipation 1 ofAlfve´nwaves,itsaturatesat∼100timesbecausemostoftheenergyisusedupfortheradiativelossesratherthanthe kineticenergyofthewind.Aftertheendofthemainsequencephasewhenthestellarradiusexpandsby∼10times,the ] steadyhotcorona withtemperature 106 K,suddenly disappears. Chromospheric materials,withhot bubblesembedded R owingtothermalinstability,directlystreamout;theredgiantwindisnotasteadystreambutstructuredoutflow. S . Copyrightlinewillbeprovidedbythepublisher h p - o 1 Introduction hoc ‘coronal base’ or ‘upper chromosphere’ but the pho- r tosphere where there are much observationalinformation1 t s Theoriginoftheenergywhichdrivesthesolarwindisbe- (e.g.Fujimura&Tsuneta2009;Matsumoto&Kitai2010). a lieved to be in the surfaceconvectionzone.Turbulentmo- Therefore,mass loss rate can be directly determinedas an [ tionassociatedwiththeconvectionexcitesvariousmodesof outputofthesurfaceproperties. 1 wavesthatpropagateupwardly.Magneticfieldlines,which Thistypeofwindisnotuniquetothesolarwind.Main v arealsoaconsequenceofdynamoprocessesinthesurface sequence stars with mass comparable to or less than the 9 5 convectivemotion(e.g.Yoshimura1975;Parker1993),play solar mass possess surface convection zones, and the stel- 3 as a guideforthe upgoingwaves.Amongvarioustypesof larwindsemanatingfromthesestarsbysimilarmechanism 2 waves,theAlfve´nwaveisthemostreliablecandidatewhich (e.g.Cranmer&Saar2011).Observationsofasterospheres 1. transferstheenergyfromthesurfaceconvectionto theup- oflow-masstointermediate-massstarsshowthatthemass 0 perregionwherethesolarwindisacceleratedbecauseitcan lossratesofyoungstarsaremuchlargerupto ∼100times 3 travelalongerdistanceduetotheincompressivenature(e.g. ofthepresentsolarvalue(Woodetal.2002,2005). 1 Alazraki&Couturier1971;Belcher1971;Hollweg1973). Redgiantstarsalsohavesurfaceconvectionzones.Alfve´n : v Alfve´nwaveshavebeenextensivelystudiedinthe con- wavespossiblyplayaroleindrivingthestellarwindsfrom Xi textofdrivingthesolarwind.ThedissipationofAlfve´n red giantstars (e.g. Hartmann& MacGregor1980;Holzer waves is a key to understand the acceleration of the solar etal.1983). r a wind because it controlsthe energyand momentum trans- Inthispaper,wediscussstellarwindsoriginatingfrom ferfrom the waves to the gas. Varioustypesof dissipation surfaceconvectionzones.Inparticularwefocusonhowthe mechanisms have been investigated such as ion-cyclotron masslossrateisdeterminedfromthephotosphericproper- resonance(e.g.Axford&McKenzie1992;Kohletal.1998), ties,basedonourMHDsimulations. turbulentcascade(e.g.Matthaeusetal.1996;Verdini&Velli 2007), and the nonlinear mode conversion to compressive modes (e.g. Kudoh & Shibata 1999) by using steady-state 2 Ourprevious works forthepresent-day models(e.g.Cranmer&vanBallegooijen2007)ordynam- solarwind icalsimulations(e.g.Suzuki&Inutsuka2005). Among others, we have carried out magnetohydrody- Inthissection,webrieflysummarizeourMHDsimulations namical(MHD)simulationscoveringfromthephotosphere forthesolarwind.In Suzuki& Inutsuka(2005,2006),we to the sufficiently outer region where the solar wind is al- performedself-consistentone-dimensional(1D)simulations readyaccelerated(Suzuki&Inutsuka2005,2006;Matsumoto that handle the propagation, reflection, and dissipation of & Suzuki 2012).One of the greatest advantage of our dy- MHDwavesinanindividualsuper-radiallyopenmagnetic namicalsimulationsisthattheinnerboundaryisnotanad 1 Recentsteady-statecalculations(e.g.Verdini&Velli2007;Cranmer ⋆ Correspondingauthor:e-mail:[email protected] &vanBallegooijen2007)alsoincludethephotosphere. Copyrightlinewillbeprovidedbythepublisher 2 TakeruK.Suzuki:Evolutionofstellarwind fluxtubefromthephotospheretothesolarwindregion.We 1000 tookintoaccountradiativecoolingandthermalconduction toexaminethecoronalheatingwithoutadhocassumptions andthreecomponentsofmagneticfieldandvelocitytotreat 100 Alfve´nwaves. We injected transverse fluctuationsfrom the s) m/ photosphereand run the simulationsuntilthe quasi-steady k v( 10 states were achieved.A main result of these papersis that the input of the transverse fluctuations with ∼ 1 km/s at thephotospherenaturallydrivesthesolarwindwhichisob- Young Sun 1 reference servedtoday. 1 10 TheAlfve´nwaveswhichareexcitedfromthephotosphere R/R⊙ aremostlyreflectedbackdownwardbecauseofthechange oftheAlfve´nspeed(Moore1991),butroughly10%ofthe 10-6 Young Sun initialPoyntingfluxassociatedwiththeAlfve´nwavespene- 10-8 reference tratestothecoronaandcontributestotheheatingoftheso- 10-10 larwind.ThemainchannelofthedissipationoftheAlfve´n 10-12 wavesisthegenerationofcompressivewaves,particularly 3cm) 10-14 slowMHDwaves(Kudoh&Shibata1999).Thesteepening g/ ρ( 10-16 of the wave fronts leads to the shock dissipation of these excitedcompressivewaves.Ingeneral,however,inthe1D 10-18 simulationstheshockdissipationtendstobeoverestimated 10-20 becausethewavesareconfinedintheindividualfluxtubes 10-22 10-4 10-3 10-2 10-1 100 101 withoutleakage. (R-R⊙)/R⊙ InMatstumoto&Suzuki(2012),weextendedtotwodi- mensional(2D) simulations. The biggest differenceis that we can treat the leakage of the waves to neighboring flux 106 tubes. Cascading Alfve´nicturbulence can be also handled, althoughit isrestrictedto the 2Dspace. Inthe 2D simula- tion, the effect of compressive waves is suppressed, while K)105 theturbulentcascadebecomescomparablyimportantinthe T( dissipationoftheAlfve´nwaves.Theoveralldissipationrate of the Alfve´nwavesis comparableto that of the 1D cases, 104 andasaresult,the1Dand2Dsimulationsgivesimilarmass Young Sun reference lossratesandterminalvelocities. 10-4 10-3 10-2 10-1 100 101 In the following sections, we extend these simulations (R-R⊙)/R⊙ from the present-day solar wind to more active solar-type stars (§3)and red giantstars (§4).Because the 2D and 1D Fig.1 Comparisonofthewindstructures.Thesolidlines simulationsyieldsimilarglobalpropertiesofthewinds,we arethewindstructurefortheactivecase (seetext)andthe usethe1Dsimulationstosavecomputationaltime. dashed lines are the wind structure of the reference case. From top to bottom,velocity,density, and temperatureare displayed. 3 Mass lossfrom youngactivesolar-type stars photosphereandasuper-radialexpansionfactor f = 1000 Youngsolar-typestarsaregenerallyveryactive.TheX-ray tomatchrecentHINODEobservations(Tsunetaetal.2009; fluxisupto∼1000timeslargerthanthepresentSun(e.g. Ito et al. 2010), and inject fluctuations, δv = 1.4 km s−1 Gu¨del 2004), and the transition region flux is also much fromthephotosphere.Thisreferencecase wellreproduces larger (Ayres 1997). Observation of young main sequence theaverageglobalpropertiesofthepresent-daysolarwind. starsshowverystrongmagneticfieldswithanorderofkG Weperformmorethan30simulationrunswithdifferentB0, orevenlarger(e.g.,Donati&CollierCameron1997;Saar& f,andδv. Brandenburg1999).Themasslossrateisalsomuchhigher Figure1 showsthe stellarwindstructurewhich adopts butseemssaturatedaround∼100timesofthepresentsolar B0 = 2kG,δv = 2.8kms−1,andf = 1000(solidlines, level(Woodetal.2002;2005). labeled as ‘Young Sun’) in comparison with the reference Inthissection,weinvestigatehowthesolaratmosphere case (dashed lines). This active case gives the mass loss reactstoincreasesofmagneticfieldstrengthandfluctuation rate,M˙ =4×10−13M⊙/yr,whichis20timeslargerthan amplitudeatthephotoshere.Asthereferencecasewesetup 2×10−14 M⊙/yrobtainedfromthereferencecase(≈the a magnetic flux tube with field strength B0 = 1 kG at the presentvalue).SincetheinjectedPoyntingflux(∝ B0δv2) Copyrightlinewillbeprovidedbythepublisher ANheaderwillbeprovidedbythepublisher 3 0.1 1 Q (cid:17)3 (cid:17)3 2M/dt)v/2Lwave 0.01 (cid:17)(cid:17)(cid:17)(cid:17)(cid:17) Qs L/LUV+Xwave 0 0.0.11 (cid:17)(cid:17)(cid:17)(cid:17)(cid:17) d ( 0.001 0.001 1028 1029 1030 1031 1032 1028 1029 1030 1031 1032 L (erg/s) L (erg/s) wave wave Fig.2 Energeticsofstellarwindderivedfromthesimulations;eachdatapointindicateseachrun.Theleftpanelshows thefractionsofthekineticenergyfluxesonthetotalinputPoyntingfluxesfromthephotospheres,andtherightpanelshows thefractionsofthetotalradiativelossesfromthetransitionregionsandcoronaeonthetotalinputPoyntingfluxes. in the active case is only 8 times larger,the mass loss rate 100 quite sensitively depends on the energy input. This is be- cause of the global instability involved with the reflection (cid:0)(cid:18) PPPq andnonlineardissipationofAlfve´nwaves(seeSuzuki2012 un) 10 (cid:0)(cid:0) S fordetails). nt (cid:0) e The location of the transition region in the active case es 1 (cid:0) pr (cid:0) isat≈ 1.1R⊙,whichismuchhigherthantheheightofthe dt(/ transition region of the reference case (≈ 1.003R⊙). This dM/ 0.1 is becausein theactivecase morematerialis liftedupdue tothelargerenergyinjectionfromthephotosphereandthe temperature cannot increase easily owing to the larger ra- 0.01 103 104 105 106 107 108 diativecooling.Hence,thechromosphereextendstohigher F (erg/cm2s) TR+Corona altitude in the active case. Interestinglyenough,the obser- vation of a young solar-like star, CoRot-2a, by using the Fig.3 Mass loss rate normalized by the present solar Rossiter-McLaughlin effect shows that this star possesses valueonradiativefluxfromtransitionregionandcorona. anextendedchromosphereofupto1.16timesofthestellar radius(Czeslaetal.2012). al.(2002,2005).AsexpectedfromFig.2,themasslossrate Figure2displaysthefractionsofthekineticenergyflux ofthe stellarwind,M˙ v2, (left)andtheradiativelossfrom ispositivelycorrelatedwithradiativefluxinitially,whileit 2 eventually saturates, or even slightly decreases. The main the transitionregionandcorona(right)ofeachrunagainst reasonofthesaturationisthatmostoftheinputenergiesare thetotalinjectedPoyntingenergyassociatedwithAlfve´n exhaustedfortheradiativelossesbesidesreflectioninthese waves,Lwave,fromthephotosphere.Bothpanelsshowlarge saturatedcases.Namely,theincreaseof M˙ ismainlydone scatters in the vertical direction, reflecting varieties of f. bytheincreaseofdensity,whichenhancesradiativelosses. Thesumsofthesetwofractionsaremuchlessthanunityin Finally, no more energy remains for the kinetic energy of alltheruns,becausemostoftheinputenergiesarereflected the stellar wind. We discuss this saturation mechanism in backdownward. more detail in a forthcomingpaper (Suzukiet al. 2012, in Theleftpanelshowsthatthefractionofthekineticen- preparation). ergy flux initially increases with increasing input energy; theincreaseofthekineticenergyofthestellarwindismore rapidthanlinearontheinputenergy,whichisrelatedwith 4 Masslossfrom redgiants the global instability owing to the reflection and nonlin- eardissipationofAlfve´nwavesasexplainedabove(Suzuki Afterthe hydrogenin the core is exhausted,a star evolves 2012).However,iteventuallysaturatesanddecreasesonin- to a red giant stage. Because red giant stars have surface creasingLwave.Ontheotherhand,theradiativelossshows convectionzones,itisexpectedthatthefluctuationsthesur- saturationaswellbuttheoverturningtrendisnotsodistinc- faceswouldgiveasignificantcontributiontothestellarwinds. tive. On the other hand, the expansion of the radius largely af- Combiningthesetwopanels,wecangettherelationbe- fectsthedynamicsthroughthechangeofthesurfacegravity. tween radiativefluxandmassloss rate(Fig.3),whichcan We have carriedoutMHD simulationsforredgiantwinds bedirectlycomparedwiththefigurespresentedinWoodet (Suzuki2007),ofwhichwebrieflysummarizetheresults. Copyrightlinewillbeprovidedbythepublisher 4 TakeruK.Suzuki:Evolutionofstellarwind because the onset locations of the winds are around sev- eral stellar radii (Harper et al.2009). Through the stellar evolution, the mass loss rate increases due to the increase of the stellar surface (∝ R2) and the increase of the den- sity.Fromthemainsequencestartothereadgiantstarwith R⋆ =31R⊙,themasslossrateincreases105−106times. Acknowledgements. Thiswork wassupported inpart byGrants- in-AidforScientificResearchfromtheMEXTofJapan,22864006. References Alazraki,G.,Couturier,P.:1971,A&A,13,380 Axford,W.I.,McKenzie,J.F.:1992,SolarWindVII,proc.of3rd COSPARcoll.,1 Ayres,T.R.:1997,JGR,102,1641 Belcher,J.W.:1971,ApJ,168,509 Cranmer,S.R.,Saar,S.H.:2011,ApJ,741,54 Cranmer, S.R.,van Ballegooijen, A.A.,Edgar, R.J.:2007, ApJS, 171,520 Crowley,C.,Espey,B.R.,McCandiss,S.R.:2008,ApJ,675,711 Czesla,S.etal.:2012,A&A,539,150 Donati,J.-F.,CollierCameron,A.:2009,ARA&A,47,333 Fujimura,D.,Tsuneta,S.:2009,ApJ,702,1443 Gu¨del,M.,Guinan,E.F.,Skinner,S.L.:1997,ApJ,483,947 Fig.4 Fromthetoptothebottom,radialoutflowvelocity, Harper,G.M.etal.:2009,ApJ,701,1464 v (km s−1), temperature, T (K), and density,ρ(g cm−3), Hartmann,L.,MacGregor,K.B.:1980,ApJ,242,260 r Hollweg,J.V.:1973,ApJ,181,547 areplotted.Thedotted,dash-dotted,solid,anddashedlines Holzer,T.E.,Fløa,T.,Leer,E.:1983,ApJ,275,808 are the results of stellar radii, R = R⊙ (the present Sun), Ito, H., Tsuneta, S.,Shiota, D., Tokumaru, M., Fujiki, K.: 2010, 3.1R⊙(sub-giant),10R⊙(redgiant),and31R⊙(redgiant), ApJ,719,131 respectively. Kudoh,T.,Shibata,K.:1999,ApJ,514,493 Kohl,J.L.:1998,ApJ,501,L127 Landini,M.,Monsignori-Fossi,B.C.:1990,A&AS,82,229 Figure4presentstheevolutionofstellarwindsofa1M⊙ Linsky,J.L.,Haisch,B.M.:1979,ApJ,229,L27 starfrommainsequencetoredgiantstages.Thesurfaceam- Matthaeus,W.H.,Zank,G.P.,Oughton,S.,Mullan,D.J.,Dmitruk, plitudeisestimatedfromtheconvectiveflux(Renzinietal. P.:1999,ApJ,523,L93 1977),whereasthisshouldbetestedbycomparisonwithre- Matsumoto,T.,Kitai,R.:2010,ApJ,716,L19 Matsumoto,T.,Suzuki,T.K.:2012,ApJ,749,8 centlyobservedchromosphericfluxes(e.g.Pe´rezMartine´z Moore, R.L.,Suess, S.T.,Musielak, Z.E.,An,A.-H.:1991, ApJ, etal.2011).Themiddlepanelshowsthattheaveragetem- 378,347 perature drops suddenly from T ≃ 7× 105K in the sub- Parker,E.N.:1993,ApJ,408,707 giantstar(dash-dotted)toT ≤ 105Kintheredgiantstars, Pe´rezMartine´z,M.I.,Schro¨der,K.-P.,Cuntz,M.:2011,MNRAS, whichisconsistentwiththeobserved“dividingline”(Lin- 414,418 sky&Haisch1979).Themainreasonofthedisappearance Renzini, A., Cacciari, C., Ulmschneider, P., Schmitz, F.: 1977, of the steady hot coronae is that the sound speed (≈ 150 A&A,61,39 km s−1) of ≈ 106 K plasma exceeds the escape speed, Saar,S.H.,Brandenburg,A.:1999,ApJ,524,295 Schro¨der,K.-P.,Cuntz,M.:2005,ApJ,630,L73 vesc(r) = p2GM⋆/r, at a few stellar radii in the red gi- Suzuki,T.K.:2007,ApJ,659,1592 ant stars; the hotcoronacannotbe confinedby the gravity Suzuki,T.K.:2012,Earth,Planets,andSpace,64,201 any more in the atmospheresof the red giant stars. There- Suzuki,T.K.,Inutsuka,S.:2005,ApJ,632,L49 fore,thematerialflowsoutbeforeheateduptocoronaltem- Suzuki,T.K.,Inutsuka,S.:2006,JGR,111,A06101 perature as an extended chromosphere(Schro¨der& Cuntz Tsuneta,S.etal.:2008,ApJ,688,1374 2005)withintermittenthotbubbles(Suzuki2007;Crowley Verdini,A.,Velli,M.:2007,ApJ,662,669 etal.2008).Inaddition,thethermalinstabilityoftheradia- Wood, B.E., Mu¨ller, H.-R., Zank, G.P., Linsky, J.L.: 2002, ApJ, 574,412 tive cooling function (Landini & Monsignori-Fossi 1990) Wood,B.E.,Mu¨ller,H.-R.,Zank,G.P.,Linsky,J.L.,Redfield,S.: plays a role in the sudden decrease of temperature; since 2002,ApJ,628,L143 thegaswithT = 105−106 Kisunstable,thetemperature Yoshimura,H.:1975,ApJS,201,740 quicklydecreasesfromthesubgianttoredgiants. The densities of the winds increase with stellar evolu- tion due to the decrease of the surface gravity. The wind velocitiesaremuchsmallerthanthesurfaceescapespeeds, Copyrightlinewillbeprovidedbythepublisher

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.