ebook img

Evolution of Phase Transitions: A Continuum Theory PDF

259 Pages·2006·1.924 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Evolution of Phase Transitions: A Continuum Theory

P1:JZP 0521661471pre CUNY389/Abeyaratne 0521661471 January25,2006 11:20 EVOLUTION OF PHASE TRANSITIONS This work began with the authors’ exploration of the applicability of the finite deformation theory of elasticity when various standard assumptions suchasconvexityoftheenergyorellipticityofthefieldequationsofequi- librium are relinquished. The finite deformation theory of elasticity turns outtobeanaturalvehicleforthestudyofphasetransitionsinsolidswhere thermal effects can be neglected. This is a valuable work for those inter- estedinthedevelopmentandapplicationofcontinuum-mechanicalmodels thatdescribethemacroscopicresponseofmaterialscapableofundergoing stress- or temperature-induced transitions between two solid phases. The focusisontheevolutionofphasetransitions,whichmaybeeitherdynamic orquasi-static,controlledbyakineticrelationthatintheframeworkofclas- sicalthermomechanicsrepresentsinformationthatissupplementarytothe usualbalanceprinciplesandconstitutivelawsofconventionaltheory.The book should be of interest to mechanicians, material scientists, geophysi- cists,andappliedmathematicians. Rohan Abeyaratne is the Quentin Berg Professor of Mechanics and Head of the Department of Mechanical Engineering at MIT. He received his bachelor’sdegreefromtheUniversityofCeylonandhisdoctoratefromthe CaliforniaInstituteofTechnology.AmonghishonorsaretheE.O.E.Pereira GoldMedal(1975),DenHartogDistinguishedEducator(1995),MacVicar Fellowship (2000), Fellow, American Academy of Mechanics (1996) and Fellow, American Society of Mechanical Engineers (1998). His primary researchinterestisinnonlinearphenomenainmechanics. JamesK.KnowlesistheWilliamR.KenanProfessorofAppliedMechanics, Emeritus,attheCaliforniaInstituteofTechnology.HereceivedhisS.B.and Ph.D.degreesfromMIT,andheholdsanhonorarySc.D.degreefromthe National University of Ireland. He is a Fellow of the American Academy of Mechanics (AAM), the American Association for the Advancement of ScienceandtheAmericanSocietyofMechanicalEngineers(ASME).Heis apastpresidentofAAM,andheisarecipientofMIT’sGoodwinMedalfor teaching,theEringenMedaloftheSocietyofEngineeringScienceandthe KoiterMedaloftheASME.Hisprimaryresearchinterestsareinnonlinear phenomena in continuum mechanics, and in analytical issues in fracture mechanicsandthetheoryofelasticity. i P1:JZP 0521661471pre CUNY389/Abeyaratne 0521661471 January25,2006 11:20 ii P1:JZP 0521661471pre CUNY389/Abeyaratne 0521661471 January25,2006 11:20 EVOLUTION OF PHASE TRANSITIONS A Continuum Theory ROHAN ABEYARATNE MassachusettsInstituteofTechnology JAMES K. KNOWLES CaliforniaInstituteofTechnology iii cambridge university press Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo Cambridge University Press The Edinburgh Building, Cambridge cb2 2ru, UK Published in the United States of America by Cambridge University Press, New York www.cambridge.org Informationonthistitle:www.cambridge.org/9780521661478 © Cambridge University Press 2006 This publication is in copyright. Subject to statutory exception and to the provision of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published in print format 2006 isbn-13 978-0-511-54713-3 OCeISBN isbn-13 978-0-521-66147-8 hardback isbn-10 0-521-66147-1 hardback Cambridge University Press has no responsibility for the persistence or accuracy of urls for external or third-party internet websites referred to in this publication, and does not guaranteethatanycontentonsuchwebsitesis,orwillremain,accurateorappropriate. P1:JZP 0521661471pre CUNY389/Abeyaratne 0521661471 January25,2006 11:20 TotheC7:Gina,Kenny,Kevin,Kristen,Liam,Linus,&Nina; andtheJ4:Jackie,John,Jeff,&Jamey. v P1:JZP 0521661471pre CUNY389/Abeyaratne 0521661471 January25,2006 11:20 vi P1:JZP 0521661471pre CUNY389/Abeyaratne 0521661471 January25,2006 11:20 Contents Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . pagexiii PartI Introduction 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 1.1 Whatthismonographisabout 3 1.2 Someexperiments 7 1.3 Continuummechanics 9 1.4 Quasilinearsystems 10 1.5 Outlineofmonograph 11 PartII PurelyMechanicalTheory 2 Two-WellPotentials,GoverningEquations andEnergetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1 Introduction 19 2.2 Two-phasenonlinearlyelasticmaterials 20 2.3 Fieldequationsandjumpconditions 25 2.4 Energeticsofmotion,drivingforceanddissipation inequality 27 3 EquilibriumPhaseMixturesandQuasistatic Processes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32 3.1 Introduction 32 3.2 Equilibriumstates 33 3.3 Variationaltheoryofequilibriummixtures ofphases 37 3.4 Quasistaticprocesses 42 3.5 Nucleationandkinetics 44 3.6 Constantelongationrateprocesses 47 3.7 Hysteresis 53 vii P1:JZP 0521661471pre CUNY389/Abeyaratne 0521661471 January25,2006 11:20 viii CONTENTS 4 Impact-InducedTransitionsinTwo-Phase ElasticMaterials . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.1 Introduction 59 4.2 Theimpactproblemfortrilineartwo-phase materials 61 4.2.1 Theconstitutivelaw 61 4.2.2 Theimpactproblem 64 4.3 Scale-invariantsolutionsoftheimpactproblem 66 4.3.1 Solutionswithoutaphasetransition 66 4.3.2 Solutionswithaphasetransition:Thetwo-wavecase 67 4.3.3 Solutionswithaphasetransition:Theone-wavecase 68 4.3.4 Thetotalityofsolutions 69 4.4 Nucleationandkinetics 71 4.5 Comparisonwithexperiment 74 4.6 Othertypesofkineticrelations 77 4.7 Relatedwork 77 PartIII ThermomechanicalTheory 5 Multiple-WellFreeEnergyPotentials . . . . . . . . . . . . . . 85 5.1 Introduction 85 5.2 Helmholtzfreeenergypotential 86 5.3 Potentialenergyfunctionandtheeffectofstress 88 5.4 Example1:ThevanderWaalsFluid 90 5.5 Example2:Two-phasemartensiticmaterial withcubicandtetragonalphases 95 6 TheContinuumTheoryofDrivingForce. . . . . . . . . . .105 6.1 Introduction 105 6.2 Balancelaws,fieldequationsandjumpconditions 106 6.2.1 Balancesofmomentumandenergyin integralform 106 6.2.2 Localizationofthebalancelaws 106 6.3 Thesecondlawofthermodynamicsand thedrivingforce 108 6.3.1 Entropyproductionrate 108 6.3.2 Drivingforceandthesecondlaw 110 6.3.3 Drivingforceinthecaseofmechanical equilibrium 111 7 ThermoelasticMaterials . . . . . . . . . . . . . . . . . . . . . 113 7.1 Introduction 113 7.2 Thethermoelasticconstitutivelaw 113 7.2.1 Relationsamongstress,deformationgradient, temperatureandspecificentropy 113 P1:JZP 0521661471pre CUNY389/Abeyaratne 0521661471 January25,2006 11:20 CONTENTS ix 7.2.2 Theheatconductionlaw 116 7.2.3 Thepartialdifferentialequationsofnonlinear thermoelasticity 116 7.2.4 Thermomechanicalequilibrium 117 7.3 Stabilityofathermoelasticmaterial 118 7.4 Aone-dimensionalspecialcase:uniaxialstrain 120 8 KineticsandNucleation. . . . . . . . . . . . . . . . . . . . . .124 8.1 Introduction 124 8.2 Nonequilibriumprocesses,thermodynamicfluxes andforces,kineticrelation 124 8.3 Phenomenologicalexamplesofkinetic relations 127 8.4 Micromechanicallybasedexamples ofkineticrelations 128 8.4.1 Viscosity-straingradientmodel 130 8.4.2 Thermalactivationmodel 131 8.4.3 Propagationthrougharowof imperfections 133 8.4.4 Kineticsfromatomisticconsiderations 134 8.4.5 Frenkel-Kontorowamodel 136 8.5 Nucleation 139 PartIV One-DimensionalThermoelasticTheory andProblems 9 ModelsforTwo-PhaseThermoelasticMaterials inOneDimension . . . . . . . . . . . . . . . . . . . . . . . . . 149 9.1 Preliminaries 149 9.2 MaterialsofMie-Gru¨neisentype 151 9.3 Two-phaseMie-Gru¨neisenmaterials 153 9.3.1 Thetrilinearmaterial 153 9.3.2 Stabilityofphasesofthetrilinearmaterial 156 9.3.3 Othertwo-phasematerialsofMie-Gru¨neisen type 159 10 QuasistaticHysteresisinTwo-PhaseThermoelastic TensileBars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 10.1 Preliminaries 163 10.2 Thermomechanicalequilibriumstates foratwo-phasematerial 164 10.3 Quasistaticprocesses 166 10.4 Trilinearthermoelasticmaterial 167 10.5 Stresscyclesatconstanttemperature 169 10.6 Temperaturecyclesatconstantstress 173

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.