UC Riverside UC Riverside Electronic Theses and Dissertations Title Evolution of Galaxies in the Cosmic Web Permalink https://escholarship.org/uc/item/679334zr Author Darvish Sarvestani, Behnam Publication Date 2015 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA RIVERSIDE Evolution of Galaxies in the Cosmic Web A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Physics by Behnam Darvish Sarvestani December 2015 Dissertation Committee: Dr. Bahram Mobasher, Chairperson Dr. Gabriela Canalizo Dr. Brian Siana The Dissertation of Behnam Darvish Sarvestani is approved: Committee Chairperson University of California, Riverside Acknowledgements I wish to acknowledge everyone who helped me out during my academic career. I would especially like to thank my parents, brothers, and sisters for their continuous support and encouragement. I would also like to thank all my teachers and mentors who contributed greatly to my education and understanding and, more importantly, to be a better human. Without them, I would not have been able to achieve many of my goals. My special thanks goes to my supervisor, Professor Bahram Mobasher, who was not only a superb mentor, but also a great friend. I learned from him how to be a great human being. I am thankfulto him for providing me with a relaxed environment and a tremendous degree of freedom so that I could peacefully do my research. I am very grateful to my friend Dr. David Sobral who significantly helped me during my studies and had an essential role in making this dissertation possible. I wish to thank Drs. Gabriela Canalizo and Brian Siana for their tremendous help and guidance. I thank them for agreeing to be members of my dissertation committee and for reading my thesis. I additionally wish to thank Dr. Brian Siana for all his hard work to make our astronomy department a more dynamic and convivial place. I would like to thank my great friends Hooshang Nayyeri, Shoubaneh Hemmati, Ehsan Norouzifar,MostafaKhezri,IreneShivaei,AliBeyramzadeh,mysplendidfriendsattheFZX house, including Michael Beaumier, Christopher Heidt, Patrick Odenthal, Oleg Martynov, and all my wonderful friends in Riverside with whom I have had joyful moments. I will always have pleasant memories of them, and I am very grateful for their friendship. A comprehensive list of people who helped me become the person that I am today is not feasible. However, I am really grateful to all of them (You know who you are!). This work is partly based on research that has been either published in the Astrophys- ical Journal (2014ApJ...796...51D and 2015ApJ...805..121D) or submitted to (manuscript number: ApJ99672). iii To my Parents, Thanks for your endless love and continuous support iv ABSTRACT OF THE DISSERTATION Evolution of Galaxies in the Cosmic Web by Behnam Darvish Sarvestani Doctor of Philosophy, Graduate Program in Physics University of California, Riverside, December 2015 Dr. Bahram Mobasher, Chairperson We study the effects of environment on the evolution of galaxies, with an emphasis on two different approaches towards the definition of environment: (1) environment defined based on the local surface density of galaxies and (2) environment defined based on the major components of the cosmic web; i.e., filaments, clusters and the field. In the first approach, surface density field is estimated using a variety of estimators and tested with simulations. Usingtheestimatedsurfacedensitiesassignedtogalaxies,weobserveastrongenvironmental dependence on the properties of galaxies (e.g., SFR, sSFR and the quiescent fraction) at z<1. We explore the fractional role of stellar mass and environment in quenching the star- ∼ formation. In the second approach, we use the Multi-scale Morphology Filter algorithm to disentangle the density field into its component. We apply this method to a sample of star- forming galaxies for a large-scale structure at z 0.84 in the HiZELS-COSMOS field. We ∼ show that the observed median SFR, stellar mass, sSFR, the mean SFR mass relation and − itsscatterforstar-forminggalaxiesdonotstronglydependonthecosmicweb. However,the fraction of Hα star-forming galaxies varies with environment and is enhanced in filaments. Furthermore, we study the physical properties of a spectroscopic sample of star-forming galaxies in a large filament in the COSMOS field at z 0.53, with spectroscopic data taken ∼ v with the Keck/DEIMOS spectrograph, and compare them with a control sample of field galaxies. We spectroscopically confirm the presence of a large galaxy filament ( 8 Mpc). ∼ We show that within the uncertainties, the ionization parameter, EW, EW versus sSFR relation, EW versus stellar mass relation, line-of-sight velocity dispersion, dynamical mass, and stellar-to-dynamical mass ratio are similar for filament and field star-forming galaxies. However, we show that on average, filament star-forming galaxies are more metal-enriched ( 0.1 0.15 dex) and the electron densities are significantly lower (a factor of 17) in ∼ − ∼ filament star-forming systems compared to those in the field. Our results highlight the potential role of galaxy filaments and intermediate-density environments on the evolution of galaxies, which has been poorly investigated. vi Contents 1 Introduction 1 2 Density Field Estimation and Cosmic Web of Galaxies 6 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Data and Sample Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3 Determination of the Large Scale Distribution of Galaxies . . . . . . . . . . 11 2.3.1 Redshift Slicing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3.2 Photo-z Probability Weights . . . . . . . . . . . . . . . . . . . . . . 14 2.4 Surface Density Estimation: The Methods . . . . . . . . . . . . . . . . . . . 15 2.4.1 Weighted Adaptive Kernel Estimator . . . . . . . . . . . . . . . . . . 15 2.4.2 Weighted k-Nearest Neighbors (k-NN) estimator . . . . . . . . . . . 23 2.4.3 Weighted Voronoi Tessellation Estimator . . . . . . . . . . . . . . . 24 2.4.4 Weighted Delaunay Triangulation Estimator . . . . . . . . . . . . . 25 2.5 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.5.1 Simulation 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.5.2 Simulation 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.6 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.7 Cosmic Web Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 2.8 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3 New Insights into the Evolution of Galaxies with Environment 56 vii 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.2 Data and Sample Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.3 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.3.1 SFR and sSFR Evolution with Environment and Galaxy Type . . . 63 3.3.2 Evolution of the Quiescent Fraction with Environment and Stellar Mass 70 3.3.3 Evolution of Rest-frame Color with Environment and Stellar Mass For Quiescent Galaxies. . . . . . . . . . . . . . . . . . . . . . . . . . 77 3.3.4 EffectoftheEnvironmentontheComovingNumberandMassdensity of Massive Galaxies . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 3.4 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 4 Cosmic Web and Star Formation Activity in Galaxies 93 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 4.2 The Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 4.2.1 The Star-forming Sample . . . . . . . . . . . . . . . . . . . . . . . . 97 4.2.2 The Control Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 4.2.3 Mass and SFR Estimation . . . . . . . . . . . . . . . . . . . . . . . . 99 4.2.4 Completeness and Contamination. . . . . . . . . . . . . . . . . . . . 102 4.3 Large Scale Structure Identification . . . . . . . . . . . . . . . . . . . . . . . 104 4.3.1 Local Surface Density . . . . . . . . . . . . . . . . . . . . . . . . . . 104 4.3.2 Filament, Cluster and Field Selection . . . . . . . . . . . . . . . . . 108 4.4 Results and Comparison with Other Studies . . . . . . . . . . . . . . . . . . 109 4.4.1 Fraction of Star-forming Galaxies in the Cosmic Web . . . . . . . . 109 4.4.2 The SFR and Stellar Mass in the Cosmic Web . . . . . . . . . . . . 114 4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 5 Spectroscopic Study of Star-forming Galaxies in Filaments and the Field131 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 viii 5.2 Motivation and the LSS Extraction . . . . . . . . . . . . . . . . . . . . . . . 138 5.3 Spectroscopic Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 5.3.1 Target Selection for Spectroscopy . . . . . . . . . . . . . . . . . . . . 139 5.3.2 Observational Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . 141 5.3.3 Data Reduction and Calibration . . . . . . . . . . . . . . . . . . . . 142 5.3.4 Spectroscopic completeness . . . . . . . . . . . . . . . . . . . . . . . 142 5.3.5 Filament Spectroscopic Confirmation . . . . . . . . . . . . . . . . . . 143 5.4 Selection of Star-forming, Emission-line Galaxies . . . . . . . . . . . . . . . 145 5.4.1 Stellar Mass Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 145 5.4.2 SFR Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 5.4.3 AGN Contamination . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 5.4.4 Stacking Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 5.5 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 5.5.1 Electron Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 5.5.2 Metallicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 5.5.3 Ionization Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 5.5.4 Line Equivalent Width . . . . . . . . . . . . . . . . . . . . . . . . . . 163 5.5.5 Velocity Dispersion and Dynamical Mass . . . . . . . . . . . . . . . 169 5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 5.7 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 6 Summary and Conclusions 181 References 188 Appendix 224 A1 Effect of Density Field Estimation based on Different Sample Selections . . 224 ix
Description: