Evolution of CoopEration in artifiCial ants THÈSE NO 3943 (2007) PRÉSENTÉE LE 9 NOVEMBRE 2007 À LA FACULTÉ DES SCIENCES ET TECHNIQUES DE L'INGÉNIEUR Laboratoire de Systèmes Intelligents SECTION DE MICROTECHNIQUE ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES PAR Markus WAIBEL Dipl.-Ing. in Technical Physics, Vienna University of Technology, Autriche et de nationalité autrichienne acceptée sur proposition du jury: Prof. H. Bleuler, président du jury Prof. D. Floreano, Prof. L. Keller, directeurs de thèse Dr M. Chapuisat, rapporteur Prof. O. Holland, rapporteur Dr F. Mondada, rapporteur Lausanne, EPFL 2007 Acknowledgements [...] discoveriesandimprovementsinvariably involvethecooperationofmanyminds. AlexanderGrahamBell(1847-1922) Many people have contributed to the work presented in this thesis. First I would like to thank my two supervisors, Prof. Dario Floreano and Prof. Laurent Keller, for making me part of this project and thus giving me the opportunity to dive into this amazing research field. I thank Laurent for his radiant motivation, endless patience and for sharing his clear mind, and Dario for his constant guid- ance, his trust and for being an inspiration. In addition, I would like to thank Dario for assembling the amazing group of people in the previous Autonomous Systems Laboratory andthe current Laboratory of IntelligentSystems. I would like to thank all my colleagues at the Laboratory of Intelligent Sys- tems for providing the great, stimulating atmosphere that has made these years soenjoyable. Inparticular,IwouldliketothankSaraMitriforhercalm,persistent thinkingandourendlessdiscussions,PeterDürrforhisnever-failing,contagious enthusiasmandhissharpwits,andDaneshTaraporeforthegreattimeweshared in the office and for making Alice work. I would also like to thank Laurent’s re- search group at the Department of Ecology and Evolution of the University of Lausanne, who have helped with their advice and criticism on countless occa- sions. Anumberof people haveenriched my academicexperience and have helped me feel at home in Lausanne. I am very grateful to the Pavillon-Jaune-team, who made me feel at home from day one: Daniel Roggen, Stéphane Magnenat, i ii ACKNOWLEDGEMENTS Francesco Mondada, Michael Bonani, Jean-Christophe Zufferey, Dominique Eti- enne, Jesper Blynel, Diego Federici and Claudio Mattiussi. My special gratitude goestoallmovie-nightparticipants,whoaretoonumeroustoname,forthemany unforgettable memories. InwritingthisthesisIhavebenefittedfrom commentsandhelpfuldiscussion provided by a large number of people. I am particularly indebted to Peter Dürr and Sara Mitri for their truly tireless efforts in offering advice. I would also like to thank Danesh Tarapore, John Wang, Morgan Pearcy, Martijn Bosch, Claudio Mattiussi, SimonHarding, DanielMarbach, GuyTheraulaz,RobHammon,Jean- Louis Deneubourg and the members of the thesis committee, Hannes Bleuler, Michel Chapuisat, Owen Holland and Francesco Mondada. In addition, I am indebted to Julien Chassot, Gilles Caprari, Stéphane Magnenat, Antoine Beyeler, Andres Perez-Uribe, Cyrille Dunant, Gintautas Narvydas and Danesh Tarapore for contributing to this project. I would like to thank Dominique Etienne and Anouk Hein - nothing would haveworked withoutyou. IwouldalsoliketoexpressmygratitudetotheEPFL, the University of Lausanne, and the Swiss National Science Foundation for their support and for fundingmyresearch. I also thank all my friends for sharing all aspects of life, my parents, Maria andKarlfortheirguidance,trustandpatience,andmybrotherRomanandsister Sophie for their support. Most importantly, I would like to thank Christine for all the things that can’t be putinto words. Lausanne, November2007 Abstract The evolution of cooperation is a fundamental and enduring puzzle in biology and thesocial sciences. Hundredsoftheoretical modelshave beenproposed, but empirical research has been hindered by the generation time of social organisms and by the difficulties of quantifying costs and benefits of cooperation. The sig- nificant increase in computational power in the last decade has made artificial evolution ofsimple social robots a promising alternative. This thesis is concerned with the artificial evolution of groups of cooperating robots. It argues that artificial evolution of robotic agents is a powerful tool to address open questions in evolutionary biology, and shows how insights gained from the study of artificial and biological multi-agent systems can be mutually beneficial for both biology and robotics. The work presented in this thesis con- tributes to biology by showing how artificial evolution can be used to quantify keyfactorsintheevolutionofcooperationinbiologicalsystemsandbyproviding an empirical test of a central part of biological theory. In addition, it reveals the importanceofthegeneticarchitecturefortheevolutionofefficientcooperationin groups of organisms. The work also contributes to robotics by identifying three different classes of multi-robot tasks depending on the amount of cooperation required between team members and by suggesting guidelines for the evolution of efficient robot teams. Furthermore it shows how simulations can be used to successfully evolve controllers for physical robot teams. Keywords: Artificial evolution; multi-agent systems; social insects; evolutionary robotics; team composition; task allocation; division of labor; fitness allocation; cooperation; altruism. iii iv ABSTRACT Zusammenfassung Die Evolution von kooperativem Verhalten ist ein grundlegendes Problem der Biologie und der Sozialwissenschaften. Die empirische Überprüfung der zahlre- ichen theoretische Modelle wird durch die Generationszeit sozialer Organismen und die Schwierigkeit Kosten und Nutzen sozialen Verhaltens zu quantifizieren erschwert. Der dramatische Anstieg der Rechnerleistung in den letzten zehn Jahren machtdie künstliche Evolution von einfachen sozialen Robotern zur viel- versprechenden Alternative. Diese Dissertation beschäftigt sich mit der künstlichen Evolution von Grup- pen kooperierender Roboter. Sie schlägt vor die künstliche Evolution von Ro- botern als mächtiges Werkzeug zur Bearbeitung offener Fragen der Evolutions- biologie zu verwenden und zeigt, dass Erkenntnisse aus der Erforschung natür- licher und künstlicher Multi-Agenten-Systeme gleichzeitig einen Nutzen für die Biologie und die Robotik bringen können. Die vorliegende Arbeit leistet einen Beitrag zur Biologie, indem sie zeigt wie künstliche Evolution benutzt werden kannumSchlüsselfaktorenderEvolutionsozialenVerhaltensinbiologischenSys- temenzuquantifizierenundlieferteinenempirischenTestfüreinezentraleTheo- rie derEvolutionsbiologie. Zusätzlich verdeutlicht sie den wesentlichen Einfluss der genetischen Architektur auf die Evolution effizienter kooperativer Gruppen von Organismen. DieArbeitleistetaucheinenBeitragzurRobotik,indemsiedreiverschiedene Klassen von Multi-Roboter-Problemen identifiziert und diese anhand des unter- schiedlichen Masses an Zusammenarbeit, daszur Lösung desProblems notwen- digist,unterscheidet. AusserdemschlägtsieRichtlinienzurEvolutioneffizienter v vi ZUSAMMENFASSUNG RoboterteamsvorundzeigtwieComputersimulationengenutztwerdenkönnen, um erfolgreiche Steueralgorithmen fürreale Roboterteams zuerhalten. Schlüsselwörter: Künstliche Evolution; Multi-Agenten-Systeme; Soziale Insek- ten; Robotik; Arbeitsverteilung; Arbeitsteilung; Kooperation; Altruismus. Contents Acknowledgements i Abstract iii Zusammenfassung v Contents vii 1 Introduction 1 1.1 Natural Selection andthe Evolution ofCooperation . . . . . . . . . 1 1.2 Factors Influencingthe Evolution ofCooperation . . . . . . . . . . . 2 1.2.1 Direct selection . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.2 Indirectselection . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.3 Group selection . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 Empirical Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4 ModelingCooperation . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.4.1 Evolutionary Robotics . . . . . . . . . . . . . . . . . . . . . . 9 1.5 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2 AQuantitative Testof Hamilton’sRule 13 2.1 State ofthe Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 Materials andMethods . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2.2 Costs andbenefits ofaltruism . . . . . . . . . . . . . . . . . . 17 2.2.3 Relatednessand artificial evolution . . . . . . . . . . . . . . 18 2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 vii viii CONTENTS 2.3.1 Groups with high relatedness . . . . . . . . . . . . . . . . . . 21 2.3.2 Groups with intermediate relatedness . . . . . . . . . . . . . 23 2.3.3 Groups with lowrelatedness . . . . . . . . . . . . . . . . . . 23 2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3 Division of Labor andColony Efficiencyin Social Insects 27 3.1 Division ofLabor andColony Efficiency in Social Insects . . . . . . 28 3.2 Materialsand Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.2.1 Colonytasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.2.2 Geneticarchitecture . . . . . . . . . . . . . . . . . . . . . . . 31 3.2.3 Environmental and internal perturbations . . . . . . . . . . 32 3.2.4 Coloniesandselection algorithm . . . . . . . . . . . . . . . . 33 3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.3.1 Coloniesofunrelated individuals . . . . . . . . . . . . . . . 34 3.3.2 Coloniesofhighly related individuals . . . . . . . . . . . . . 37 3.3.3 Colonieswith intermediate relatedness . . . . . . . . . . . . 39 3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4 Factors inthe Evolution of Multi-AgentSystems 47 4.1 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.2 Evolutionary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.3 Experimental Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.3.1 Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.3.2 Control andgenetic architecture . . . . . . . . . . . . . . . . 58 4.3.3 Collective tasks . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.3.4 Evolutionary experiments . . . . . . . . . . . . . . . . . . . . 59 4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.4.1 Task1 -Individualforaging . . . . . . . . . . . . . . . . . . . 60 4.4.2 Task2 -Cooperative foraging . . . . . . . . . . . . . . . . . . 60 4.4.3 Task3 -Altruistic cooperative foraging . . . . . . . . . . . . 60 4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.5.1 Task1 -Individualforaging . . . . . . . . . . . . . . . . . . . 63 4.5.2 Task2 -Cooperative foraging . . . . . . . . . . . . . . . . . . 65 4.5.3 Task3 -Altruistic cooperative foraging . . . . . . . . . . . . 69
Description: