Evidence of Magnetic Acceleration & Collimation in AGN Jets Image credit: W. Sparks (STScI) Masanori Nakamura (ASIAA) Collaborators: K. Asada (ASIAA), J. Biretta (STScI), A. Doi (JAXA), D. Garofalo (CSUN), M. Inoue (ASIAA), D. Meier (JPL), H. Nagai (NAOJ), C. Norman (JHU), W. Sparks (STScI) NAASC Jets2012@Charlottesville, VA, Mar. 2012 SUMMARY of THIS TALK ๏ A constraint of magnetic acceleration & collimation (MAC) zone in the M87 jet; how does the flow become relativistic? → MAC zone may not be defined by only MHD jet theory (positions of re- collimation shocks in self-similar solutions) ๏ Structural transitions of AGN jets scaled by M ; stationary features (re- ● collimation shocks) may play a role → An intrinsic correlation w/ the M -σ relation and a potential connection to ● VHE emission regions Paraboloidal structure: Re-collimation & accumulating Conical structure: a z r , 1 < a 2 azimuthal B-field z r (γθ 1) ∝ ≤ ∝ ∼ p z b p 0 ism − ism ∝ ∇ ∼ Magnetic Acceleration & Collimation (MAC) Zone TAW I SMBH B Stationary knot φ R BH ∼ 0.5 0.6 8 10.0 M /10 M − pc BH ⊙ MN & Norman M87 Observations • The “Rosetta Stone” for studying relativistic jets x 10 of BH diameter • Nearby: D 16 Mpc (1 mas 0.078 pc 125 r ) 0.1 light year s ∼ ∼ ∼ • FR I: Misaligned BL Lac ( θ 1 4 ; Wang & Zhou 2009) view ◦ ∼ • SMBH mass: ( 6 . 6 0 . 4 ) 1 0 9 M (Gebhardt et al. 2011) ± × ⊙ • VLBA res. : 20 r at 43 GHz s • Sub-mm VLBI res.: 3 r at 345 GHz (w/ GLT) s x 3 of BH diameter VLBA 43GHz (Hada et al. 2011) • Well studied at wavelengths from radio to X-ray • Proper motions (sub/super-luminal feature) • Polarization (20 - 60%; ordered B-fields) • Substructure (limb-brightened, knots, wiggles,...) • In situ particle acceleration at knots • HST-1 (Biretta et al. 1999): the site of flaring NASA, ESA, and J. Madrid (McMaster Univ.) CORE HST-1 Bright Dim Bright Dim M87 Observations • The “Rosetta Stone” for studying relativistic jets x 10 of BH diameter • Nearby: D 16 Mpc (1 mas 0.078 pc 125 r ) 0.1 light year s ∼ ∼ ∼ • FR I: Misaligned BL Lac ( θ 1 4 ; Wang & Zhou 2009) view ◦ ∼ • SMBH mass: ( 6 . 6 0 . 4 ) 1 0 9 M (Gebhardt et al. 2011) ± × ⊙ • VLBA res. : 20 r at 43 GHz s • Sub-mm VLBI res.: 3 r at 345 GHz (w/ GLT) s x 3 of BH diameter VLBA 43GHz (Hada et al. 2011) • Well studied at wavelengths from radio to X-ray • Proper motions (sub/super-luminal feature) • Polarization (20 - 60%; ordered B-fields) • Substructure (limb-brightened, knots, wiggles,...) • In situ particle acceleration at knots • HST-1 (Biretta et al. 1999): the site of flaring NASA, ESA, and J. Madrid (McMaster Univ.) CORE HST-1 Bright Dim Bright Dim A New Components After the TeV Flaring Abramowski et al. (2012) VLBA: Cheung et al. (2007) • A flaring from radio through optical to X-ray (factor 50) ∼ bands (Harris et al. 2006) at HST-1, indicating a site for TeV γ-ray emissions (Harris et al. 2009) • HST-1c: two roughly equally bright knots: superluminal and trailing sub-luminal components during 2005 - 2006 (Cheung et al. 2007) → Quad relativistic MHD shocks (foward/reverse fast/slow) by MN, Garofalo, & Meier (2010) VLBA + EVN : Giroletti et al. (2012) A New Components After the TeV Flaring Abramowski et al. (2012) VLBA: Cheung et al. (2007) • A flaring from radio through optical to X-ray (factor 50) ∼ bands (Harris et al. 2006) at HST-1, indicating a site for TeV γ-ray emissions (Harris et al. 2009) • HST-1c: two roughly equally bright knots: superluminal and trailing sub-luminal components during 2005 - 2006 (Cheung et al. 2007) → Quad relativistic MHD shocks (foward/reverse fast/slow) by MN, Garofalo, & Meier (2010) VLBA + EVN : Giroletti et al. (2012) Puzzle Remains Unsolved for 2 Decades Distance from the nucleus: z (arcsec) Junor et al. (1999) 10-3 10-2 10-1 1 101 log r (arcsec) -1 0 1 8 N2 L HST-1 D E F ABC Reid et al. (1989) Biretta & Junor (1995) Biretta et al. (1995) Biretta et al. (1999) 6 Kellermann et al. (2004) ) Cheung et al. (2007) c / V Kovalev et al. (2007) ( d e e 4 p s t n e r a p p A 2 0 10-2 10-1 1 101 102 103 Distance from the nucleus: z (pc) • Superluminal motions begin at HST-1, lying about 1” ( 80 pc) from the nucleus ∼ • Many VLBI observations show sub-luminal motions upstream of HST-1 • Visible pc-scale features may reside in slower layers near the surface (Biretta et al. 1999) or possibly standing shocks and/or instability patterns ( )? Kovalev et al. 2007 ➡ Q. No “systematic” acceleration towards HST-1 exists although collimation occurs asymptotically? Or proper motions do not correspond to the flow speed at all? Superluminal Motions Upstream of HST-1 3 years monitoring of the M87 jet using European VLBI Network (EVN) at 1.6GHz !""# " 0 !""$ " / ! . + - , + * ) ' ( ( ' & !""% " " !"" 1"" 2"" $"" &'((')*+,-+./0 Asada, MN, et al. A Missing Link Found Distance from the nucleus: z (arcsec) 10-3 10-2 10-1 1 101 log r (arcsec) -1 0 1 8 N2 L HST-1 D E F ABC Reid et al. (1989) Biretta & Junor (1995) Biretta et al. (1995) Biretta et al. (1999) 6 Kellermann et al. (2004) ) Cheung et al. (2007) c / V Kovalev et al. (2007) ( d e e 4 p s t n e r a p p A 2 0 10-2 10-1 1 101 102 103 Distance from the nucleus: z (pc) Junor et al. (1999) ✓ Yes, We found final pieces of the puzzle, but how they will match into the MHD jet? • The (bulk) acceleration (γ) and collimation (θ) are correlated in a parabolic streamline a ( z r , 1 < a 2 ) ( ): γθ 1 Zakamska et al. 2008; Komissarov et al. 2009 ∝ ≤ (a 1)/a • Acceleration/collimation occurs slowly (Tchekhovskoy et al. 2008; Komissarov 2009): γ z − ∝ a We need to determine the jet structure ( ) A Missing Link Found DDiissttaannccee ffrroomm tthhee nnuucclleeuuss:: zz ((aarrccsseecc)) 1100--33 1100--22 1100--11 11 110011 log r (arcsec) -1 0 1 88 NN22 LL HHSSTT--11 DD EE FF AABBCC RReeiidd eett aall.. ((11998899)) BBiirreettttaa && JJuunnoorr ((11999955)) BBiirreettttaa eett aall.. ((11999955)) BBiirreettttaa eett aall.. ((11999999)) 66 KKeelllleerrmmaannnn eett aall.. ((22000044)) )) CChheeuunngg eett aall.. ((22000077)) cc // VV KKoovvaalleevv eett aall.. ((22000077)) (( d d Asada, MN, et al. ee ee 44 pp ss tt nn ee rr aa pp pp AA 22 00 1100--22 1100--11 11 110011 110022 110033 DDiissttaannccee ffrroomm tthhee nnuucclleeuuss:: zz ((ppcc)) Junor et al. (1999) ✓ Yes, We found final pieces of the puzzle, but how they will match into the MHD jet? • The (bulk) acceleration (γ) and collimation (θ) are correlated in a parabolic streamline a ( z r , 1 < a 2 ) ( ): γθ 1 Zakamska et al. 2008; Komissarov et al. 2009 ∝ ≤ (a 1)/a • Acceleration/collimation occurs slowly (Tchekhovskoy et al. 2008; Komissarov 2009): γ z − ∝ a We need to determine the jet structure ( )
Description: