Evidence forthe pair-breaking process in116,117Sn U.Agvaanluvsan1,2,A.C.Larsen3 ,M.Guttormsen3,R.Chankova4,5,G.E.Mitchell4,5,A.Schiller6,S.Siem3,andA.Voinov6 ∗ 1Stanford University, Palo Alto, California 94305 USA 2MonAme Scientific Research Center, Ulaanbaatar, Mongolia 3Department of Physics, University of Oslo, N-0316 Oslo, Norway 4Department of Physics, North Carolina State University, Raleigh, NC 27695, USA 5Triangle Universities Nuclear Laboratory, Durham, NC 27708, USA and 9 6Department of Physics, Ohio University, Athens, OH 45701, USA 0 (Dated:January6,2009) 0 Thenuclear leveldensitiesof116,117Snbelowtheneutron separationenergyhavebeendeterminedexperi- 2 mentallyfromthe(3He,ag )and(3He,3Heg)reactions,respectively. Theleveldensitiesshowacharacteristic ′ n exponentialincreaseandadifferenceinmagnitudeduetotheodd-eveneffectofthenuclearsystems. Inaddi- a tion,theleveldensitiesdisplaypronouncedstep-likestructuresthatareinterpretedassignaturesofsubsequent J breakingofnucleonpairs. 6 PACSnumbers:21.10.Ma,24.10.Pa,25.55.-e,27.60.+j ] x e - I. INTRODUCTION Section II, followedby a discussion of the analysis and nor- l malization procedure. The experimentalresults for the level c u Nuclear level densities are important for many aspects of densityaregiveninSectionIII,andthedeterminationofvar- n ious thermodynamic quantities are presented in Section IV. fundamental and applied nuclear physics, including calcula- [ ConclusionsaredrawninSectionV. tionsof nuclearreactioncrosssections. The leveldensityof 2 excited nuclei is an average quantity that is defined as the v number of levels per unit energy. The majority of data for 6 nuclearleveldensitiesareobtainedfromtwoenergyregions. II. EXPERIMENTALPROCEDUREANDDATAANALYSIS 0 Atlowexcitationenergy,theleveldensityisobtaineddirectly 4 from counting of low-lying levels [1]. As the excitation en- TheexperimentwascarriedoutattheOsloCyclotronLabo- 4 . ergyincreases,theleveldensitybecomeslargeandindividual ratory(OCL)usinga38-MeV3Hebeam.Theself-supporting 0 levels are often not resolved in experiments. Therefore, the 117Sn target had a thickness of 1.9 mg/cm2. The reaction 1 direct counting method becomes impossible. Nuclear reso- channels 117Sn(3He,ag )116Sn and 117Sn(3He,3Heg )117Sn 8 ′ 0 nancesatorabovethenucleonbindingenergyprovideanother werestudied. : sourceofleveldensitydata[2]. Betweenthesetwoexcitation The experiment ran for about 11 days with an average v energy regions, the level density is often interpolated using beam current of 1.5 nA. Particle-g coincidence events Xi phenomenologicalformulas [3, 4, 5]. Itisinthisenergyre- were detected usin≈g the CACTUS multidetector array. The r gionthepresentmeasurementsfocus. charged particles were measured with eight Si particle tele- a Recently,anextensionofthesequentialextractionmethod, scopesplacedat45 withrespecttothebeamdirection.Each ◦ now referred to as the Oslo method, was developed by the telescopeconsistsofafrontSiD Edetectorwiththickness140 Oslo Cyclotron Group. The Oslo method permits a simul- m mandabackSi(Li)E detectorwiththickness3000m m. An taneous determination of the level density and the radiative arrayof28collimatedNaIg -raydetectorswithasolid-angle strengthfunction[6, 7]. Forbothofthese quantities, the ex- coverageof 15%of4p wasused.Inaddition,oneGedetec- ≈ perimentalresultscoveranenergyregionwherethereislittle torwasusedinordertoestimatethespindistributionandde- information available and data are difficult to obtain. How- terminetheselectivityofthereaction. Thetypicalspinrange ever, the limitation of this methodis thatthe results mustbe isI 2 6h¯. normalizedtoexistingdata–fromthediscretelevelsandneu- F∼igur−e 1 shows the singles a -particle spectrum (upper tron resonancespacingsfor the level densityand to the total panel) and the a -g coincidence spectrum (lower panel) for radiativewidth for the radiativestrength function. Thus, the 116Sn. Thetwopeaksdenotedby0+ and2+ arethe transfer new and main achievement of the Oslo method is to estab- peaks to the ground state and the first excited state, respec- lish thefunctionalformoftheleveldensityandtheradiative tively. ThestrongtransferpeakatE =3.2MeViscomposed strengthfunctionintheabovespecifiedenergyregion. ofmanystatesfoundtobetheresultofpick-upofhigh-jneu- In this work we present results for the level density in tronsfromtheg7/2 andh11/2 orbitals[9,10]. Anotherstrong 116,117Sn fortheexcitationenergy0<E <S 1MeV.The transferpeakcenteredaroundE =8.0 MeVis newandmay n radiativestrength functionsof 116,117Sn have b−eenpublished indicatetheneutronpick-upfromtheg9/2orbital.Thecounts elsewhere[8]. Theexperimentalset-upisbrieflydescribedin in the coincidencespectrum decrease for excitation energies higherthanS duetolowerg -raymultiplicitywhentheneigh- n boringA 1isotopeispopulatedatlowexcitationenergy. Thepa−rticle–g -raycoincidencespectrawereunfoldedusing Electronicaddress:[email protected] the response functions for the CACTUS detector array [11]. ∗ 2 matrix. The entries of the first-generation matrix P are the probabilities P(E,Eg) that a g -ray of energy Eg is emitted a) Singles from an excitation energy E. This matrix is the basis for 60000 E = 3.2 MeV thesimultaneousextractionoftheradiativestrengthfunction V andthe leveldensity. Accordingto the Brink-Axelhypothe- e 50000 k sis [13, 14], a giantelectricdipoleresonancecanbebuilton 20 40000 E = 8.0 MeV everyexcitedstatewiththesamepropertiesastheonebuilton 1 thegroundstate,thatis,theradiativestrengthfunctionisinde- / ts 30000 pendentof excitationenergyand thusof temperature. Many n theoreticalmodelsdoincludeatemperaturedependenceofthe u o 20000 radiativestrengthfunction[15,16].However,thetemperature C dependenceisweakandthetemperaturechangeintheenergy 10000 2+ 0+ regionunderconsiderationhereisrathersmall. Therefore,the temperaturedependenceisneglectedintheOslomethod. The first-generation matrix is factorized into the radiative 50000 b) Coincidences transmissioncoefficient,whichisdependentonlyonEg, and ontheleveldensity,whichisa functionoftheexcitationen- V e 40000 ergyofthefinalstatesE Eg: k − 0 Sn 12 30000 P(E,Eg)(cid:181) T(Eg)r (E Eg). (1) / − s nt 20000 Thefunctionsr andT areobtainediterativelybyaglobalized u o fittingprocedure[6]. Thegoaloftheiterationistodetermine C thesetwofunctionsat N energyvalueseach;theproductof 10000 the two functionsis kn∼own at N2/2 data pointscontained ∼ in the first-generation matrix. The globalized fitting to the 0 34 36 38 40 42 44 46 48 50 52 datapointsdeterminesthefunctionalformforr andT. The a energy E (MeV) resultsmustbenormalizedbecausetheentriesofthematrixP a areinvariantunderthetransformation[6] FIG.1:a)Singlesa -particlespectrum,andb)a -g coincidencespec- trumfromthe117Sn(3He,a )116Snreaction. r˜(E Eg) = Aexp[a (E Eg)]r (E Eg), (2) − − − T˜(Eg) = Bexp(a Eg)T(Eg). (3) The first-generation matrix (the primary-g -ray matrix) con- Inthefinalstep,thetransformationparametersA,B,anda tainsonlythefirstg -raysemittedfromagivenexcitationen- whichcorrespondtothemostphysicalsolutionmustbedeter- ergybin;thismatrixisobtainedbyasubtractionprocedurede- mined. Details of the normalizationprocedureare described scribedinRef.[12]. Thisprocedureisjustifiediftheg decay inseveralpapersreportingtheresultsoftheOslomethod,see fromanyexcitationenergybinisindependentofthemethod forexample[17, 18]. In the following, we willfocuson the offormation–eitherdirectlybythenuclearreactionorindi- leveldensityandthermodynamicproperties. rectlybyg decayfromhigherlyingstatesfollowingtheinitial reaction. This assumption is clearly valid if the same states arepopulatedviathetwoprocesses,sinceg -decaybranching ratiosarepropertiesoflevels.Whendifferentstatesarepopu- III. LEVELDENSITIES lated,theassumptionmaynothold. However,muchevidence suggests [7] that statistical g decay is governed only by the ThecoefficientsAanda relevantforthenuclearlevelden- g -rayenergyandthedensityofstatesatthefinalenergy. sityaredeterminedfromnormalizingtheleveldensitytothe Inthedataanalysis,theparticle-g -raycoincidencematrixis low-lyingdiscrete levelsand the neutronresonancespacings preparedandtheparticleenergyistransformedintoexcitation just above the neutron separation energy S . For 117Sn, we n energyusingthereactionkinematics. Therowsofthecoinci- used s- and p-wave resonance level spacings (D , D ) taken 0 1 dencematrixcorrespondtotheexcitationenergyintheresid- from[2]tocalculatethetotalleveldensityatS (seeRef.[6] n ualnucleus,whilethecolumnscorrespondtotheg -rayenergy. formoredetailsonthecalculation). Since thereisnoexper- Alltheg -rayspectraforvariousinitialexcitationenergiesare imental informationaboutD or D for 116Sn, we estimated 0 1 unfoldedusingtheknownresponsefunctionsoftheCACTUS r (S ) for this nucleusbased on systematics for the other tin n array [11]. The first-generation g -ray spectra, which consist isotopes[2,4],andassuminganuncertaintyof50%.Thelevel ofprimaryg -raytransitions, arethenobtainedforeachexci- spacingsandthefinalvaluesforr (S )aregiveninTableI. n tationenergybin[12]. The experimental level density r is determined from the Thefirst-generationg -rayspectraforallexcitationenergies nuclear ground state up to S 1 MeV. Therefore, an in- n ∼ − form a matrix P, hereafter referred to as the first-generation terpolationisrequiredbetweenthepresentexperimentaldata 3 TABLEI:Parametersusedfortheback-shiftedFermigasleveldensityandthecalculationofr (Sn). Nucleus Epair C1 a D0 D1 s (Sn) Sn r (Sn) h (MeV) (MeV) (MeV 1) (eV) (eV) (MeV) (105MeV 1) − − 116Sn 2.25 1.44 13.13 4.96 9.563 4.12(206) 0.46 117Sn 0.99 −1.44 13.23 507−(60) 15−5(6) 4.44 6.944 0.86(25) 0.40 − andr evaluatedatS . Theback-shiftedFermigaslevelden- n sitywiththeglobalparameterizationofvonEgidyetal.[4], exp(2√aU) r (E)=h 12√2a1/4U5/4s , (4) -1)V 106 a) 116Sn isemployedfortheinterpolation1. Theintrinsicexcitationen- Me 105 ergyisgivenbyU =E−Epair−C1,whereC1=−6.6A−0.32 E) ( 104 MeV is the back-shift parameter and A is the mass number. ( The pairing energy Epair is based on pairing gap parameters ry 103 DcoprdanindgD tnoe[v2a0l]u.aTtehdefrloevmele-vdeenn-soitdydpmaraasmsedtiefrfeareanncdesth[1e9s]painc-- nsit 102 cutoffparameters are givenby a = 0.21A0.87 MeV−1 and de 10 s 2=0.0888A2/3aT,respectively.ThenucleartemperatureT el isdescribedbyT = U/aMeV.Theconstanth isaparame- v 1 e terappliedtoensurepthattheFermigasleveldensitycoincides L withtheneutronresonancedata.Allparametersemployedfor 10-1 0 2 4 6 8 10 theFermigasleveldensityarelistedinTableI. Figure2showsthenormalizedleveldensitiesof116Snand -1)V 106 b) 117Sn 117Sn. Thefullsquaresrepresenttheresultsfromthepresent Me 105 work. The data points between the arrows are used for nor- ( malizingtotheleveldensityobtainedfromcountingdiscrete E) 104 levels (solid line) and the level density calculated from the ( neutronresonance spacing (open square). The discrete level ry 103 t MscheVemieni1s16sSeennbteoyobnedcowmhpiclhetethuepletvoeelxdceintastiitoynoebntaeirngeyd≈fro3m.5 nsi 102 e discretelevelsstartstodrop. For117Snthediscretelevelden- d 10 sity iscompleteonlyupto 1.5MeV.The newdataofthis el ≈ v 1 workthusfillthegapbetweenthediscreteregionandthecal- e L culatedleveldensityatS . n 10-1 From Fig. 2, we observe that pronounced step-like struc- 0 2 4 6 8 10 turesarepresentintheleveldensitiesofboth116,117Sn. Inthe Excitation energy E (MeV) following section, nuclear thermodynamicpropertiesare ex- tractedusingthepresentleveldensityresults,andthesestruc- turesareinvestigatedindetail. FIG.2: Normalizedleveldensityofa)116Snandb)117Sn. Results from the present work are shown as full squares. The data points betweenthearrowsareusedforthefittingtoknowndata. Thelevel densityatlowerexcitationenergyobtainedfromcountingofknown IV. THERMODYNAMICPROPERTIES discretelevelsisshownasasolidline,whiletheleveldensitycalcu- latedfromneutronresonancespacingsisshownasanopensquare. TheentropyS(E)isameasureofthenumberofwaystoar- Theback-shiftedFermigasleveldensityusedfortheinterpolationis rangeaquantumsystematagivenexcitationenergyE.There- displayedasadashedline. fore,theentropyofanuclearsystemcangiveinformationon theunderlyingnuclearstructure. Themicrocanonicalentropy isgivenby where W (E) is the multiplicity of accessible states and kB is Boltzmann’s constant, which we will set to unity to give a S(E)=k lnW (E), (5) B dimensionlessentropy. The experimental level density r (E) is directly propor- tionaltothemultiplicityW (E),whichcanbeexpressedas 1Wechosetoapplytheoldparameterizationof[4]insteadofthemorerecent W (E)=r (E) [2 J(E) +1]. (6) onein[5]becausenew(g,n)data[21]showedthattheslopeoftheradiative · h i strengthfunctionin117Sn[8]becametoosteepusingthevaluesof[5]. Here, J(E) is the average spin at excitation energy E and h i 4 theexcitationenergyincreases,andabove2 3MeVweesti- matethesingleneutronquasiparticletocarr−yaboutD S 1.6 ≃ in units of Boltzmann’s constant. This agrees with previous 16 findingsfromtherare-earthregion[22]. a) 14 Both entropy curves display step-like structures superim- ) posedonthegeneralsmoothincreasingentropyasafunction B 12 k ofexcitationenergy.Atthesestructures,theentropyincreases E) ( 10 117Sn abruptlyin a smallenergyintervalbeforeit becomesa more S( 116Sn slowlyincreasingfunction. y 8 Thefirstlow-energybumpof116Snisconnectedtothefirst op 6 excited2+ stateatE =1.29MeVandthesecondexcited0+ tr state at E =1.76 MeV. Similarly, the first bump in the en- En 4 tropy of 117Sn is connected to the first excited states in this 2 nucleus. The next structuresare probablecandidates for the pair-breakingprocess. Microscopiccalculationsbasedonthe 0 senioritymodelindicatethatstep structuresin the levelden- sitycanbeexplainedbytheconsecutivebreakingofnucleon )B 4.5 b) Cooperpairs[23]. k ( 4 ThebumpspresentintheSnleveldensitiesaremuchmore S outstandingthanpreviouslymeasuredforothermassregions 3.5 De by the Oslo group. One explanationof the clear fingerprints nc 3 could be that since the Z = 50 shell is closed, the break- e ing of proton pairs are strongly hindered and thus do not r 2.5 e f smoothouttheentropysignaturesfortheneutronpairbreak- dif 2 ing. Therefore,itis verylikely thatthe structuresare due to y 1.5 pureneutron-pairbreakup. p o We have investigatedthe structures furtherby introducing r 1 nt themicrocanonicaltemperaturegivenby E 0.5 ¶ S −1 0 1 2 3 4 5 6 7 8 9 T =(cid:18)¶ E(cid:19) . (9) Excitation energy E (MeV) By taking the derivative, small changes in the slope of the entropy are enhanced. This is easily seen in Fig. 4, where FIG.3: a)Experimentalentropiesfor116,117Sn,andb)theentropy the microcanonical temperatures of 116,117Sn are displayed. difference. Byfittingastraightlinetotheentropydifferenceinthe energyregion2.4 6.7MeV,anaveragevalueofD S 1.6kB was The striking oscillations of the temperature is a thermody- obtained. − ≃ namicsignatureforsuchsmallsystemsasthenucleus.Onlya fewquasiparticlesparticipateintheexcitationofthenucleus. Sincethesystemisnotincontactwithaheatbathwithacon- thefactor[2 J(E) +1]thusgivesthedegeneracyofmagnetic stanttemperature,the system is far fromthe thermodynamic h i substates. As the averagespin is notwellknownat all exci- limit. tation energies, we choose to omit this factor and define the InFig.4, thebumpsbelow 2 MeVareconnectedto the multiplicityas low-lyingexcitedstates in 116,≈117Sn. However,the peak-like structurecenteredaroundE =2.8MeV in116Sn andaround W (E)=r (E)/r 0, (7) E =2.6MeVin117Sncouldbeasignatureofthefirstbreak- upofaneutronpair.AboveE=4.5and3.6MeVin116,117Sn, where the denominator is determined from the fact that the respectively,thetemperatureappearstobeconstantontheav- groundstateofeven-evennucleiisawell-orderedsystemwith zero entropy. The value of r =0.135 MeV 1 is obtained erage,indicatingamorecontinuousbreakingoffurtherpairs. 0 − such that S=lnW 0 for the ground state region of 116Sn. Thesamer isalso∼appliedfor117Sn. InFig.3theresulting Recently[24],thecriticalityoflow-temperaturetransitions 0 entropiesof116,117Snareshown. was investigated for rare-earth nuclei. We apply the same method here and investigate the probability P of the system Theentropycarriedbythevalenceneutroncanbeestimated atfixedtemperatureT tohaveexcitationenergyE,i.e., byassumingthattheentropyisanextensive(additive)quan- tity[22]. Withthisassumption,theexperimentalsingleneu- P(E,T)=W (E)exp( E/T)/Z(T), (10) tronentropyisgivenby − wherethecanonicalpartitionfunctionisgivenby D S=S(117Sn) S(116Sn). (8) − ¥ From Fig. 3, we observe that D S becomes more constant as Z(T)= W (E′)exp E′/T dE′. (11) Z0 − (cid:0) (cid:1) 5 pair. ThevaluesfoundareT =0.58(2)and0.71(2)MeVfor c 116,117Sn, respectively. Furthermore, we observe a potential barrier D F of about 0.25 MeV between the two minima E 2 c 1 V) 1.8 a) 116Sn atondgoEf2r.oTmhoenpeoptehnatsiael(bnaorrpiaeirrsinbdriockaetens)tthoeafnroeteheenre(orgnyenberoedkeedn e M 1.6 pair)attheconstant,criticaltemperatureTc. ) ( 1.4 In the process of breaking additional pairs, the structures E areexpectedtobelesspronounced.Indeed,inthelowestpan- T( 1.2 e els of Fig. 5, the free energyis ratherconstantfor excitation r 1 energies above E 5.0 and 4.2 MeV for 116,117Sn, respec- u ≈ at 0.8 tively. Instead of a double-minimumstructure, a continuous per 0.6 minimum of Fc appears for several MeV of excitation ener- gies. Thisdemonstratesclearly that the depairingprocessin m e 0.4 tincannotbeinterpretedasanabruptstructuralchangetypical T 0.2 ofa firstorderphasetransition. Forthisprocesswe evaluate thecriticaltemperaturebyaleastc 2fitofF totheexperimen- 0 taldata.Theexcitationenergies(E andE )andtemperatures 1.8 1 2 b) 117Sn forthephasetransitionsaresummarizedinTableII. ) 1.6 V e M 1.4 TABLEII:Phasetransitionvaluesdeducedfor116,117Sn. ( T 1.2 e 116Sn 117Sn r 1 atu 0.8 Breakingof E(M1−eVE)2 (MTecV) E(M1−eVE)2 (MTecV) r e onepair 2.4 4.2 0.58(2) 2.3 3.7 0.71(2) p 0.6 − − m twoormorepairs 5.0 8.0 0.69(8) 4.2 6.0 0.63(4) − − e 0.4 T 0.2 According to the linearized free-energy calculations, the 0 1 2 3 4 5 6 7 8 first neutron pair is broken for excitation energies between 2.4 4.2MeVin 116Sn. Comparingwith theupperpanelof Excitation energy E (MeV) − Fig. 4, we see that this coincides with the excitation-energy regionwhereapeakstructureisfound. Thisbumpisthought FIG.4:Microcanonicaltemperaturesofa)116Sn,andb)117Sn. to represent the first neutronpair break-upas discussed pre- viously in the text. The average temperature of the bump is 0.59(2) MeV, in excellent agreement with the deduced crit- Lee and Kosterlitz showed [25, 26] that the function ical temperature T = 0.58(2). Similarly, for 117Sn in the c A(E,T)= lnP(E,T),forafixedtemperatureT inthevicin- − lowerpanelof Fig.4, we findthata peak-likestructurewith ity of a critical temperature T of a structuraltransition, will c an average temperature of 0.74(2) MeV is present between exhibit a characteristic double-minimum structure at ener- E = 2.3 3.7 MeV. Compared to the critical temperature gies E1 and E2. For the critical temperature Tc, one finds T =0.71−(2)MeV,thevaluesagreesatisfactory. c A(E ,T)=A(E ,T ). ItcanbeeasilyshownthatAisclosely 1 c 2 c Forthecontinuousbreak-upprocesscharacterizedbyazero connected to the Helmholtz free energy, and that this condi- potential barrier (D F 0 MeV), we estimate for 116Sn an c tionisequivalentto ≈ average microcanonical temperature of 0.75(6) MeV in the excitation-energy region E = 5.0 8.0 MeV, in reasonable Fc(E1)=Fc(E2), (12) agreement with T =0.69(8) calc−ulated from the linearized c Helmholtz free energy. In the case of 117Sn, the average which can be evaluated directly from our experimentaldata. microcanonical temperature for excitation energies between ItshouldbeemphasizedthatF isalinearizedapproximation c 4.2 6.0MeVisfoundtobe0.64(3)MeV,whichagreesvery totheHelmholtzfreeenergyatthecriticaltemperatureT ac- c − wellwithT =0.63(4)MeV.Thisgivesfurtherconfidencein cordingto c ourinterpretationofthedataastwoindependentmethodsgive F(E)=E TS(E). (13) verysimilarresults. c c − Linearizedfree energiesF forcertaintemperaturesT are c c displayed in Fig. 5. In the upper panels, 116,117Sn data are V. CONCLUSIONS shownwheretheconditionF(E )=F(E )=F isfulfilled. c 1 c 2 0 Each nucleus shows a double-minimumstructure, which we Thenuclearleveldensitiesfor116,117Snareextractedfrom interpretasthecriticaltemperaturesforbreakingoneneutron particle-g coincidencemeasurements. New experimentalre- 6 1.5 a) 116Sn -1 b) 117Sn T = 0.58(2) MeV T = 0.71(2) MeV C C ) V 1 F = -0.44(3) MeV F = -2.45(2) MeV e 0 -1.5 0 M ( C0.5 F y -2 g 0 r e n E -0.5 -2.5 -1 -3 2 -0.8 c) 116Sn d) 117Sn 1.5 -1 T = 0.69(8) MeV T = 0.63(4) MeV 1 C C V) F0 = -1.3(6) MeV -1.2 F0 = -1.7(5) MeV e 0.5 M ( -1.4 C 0 F y -0.5 -1.6 g r e n -1 -1.8 E -1.5 -2 -2 -2.2 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 Excitation energy E (MeV) Excitation energy E (MeV) FIG.5:LinearizedHelmholtzfreeenergyFcatcriticaltemperatureTcfora)116Sn,andb)117Sndisplayingacharacteristicdouble-minimum structure. TheconstantlevelF0,whichisconnectingtheminima,isindicatedbyhorizontallines. AcontinuousminimumofFcisshownfor c)116Sn,andd)117Sn. sultsarereportedfortheleveldensityin116,117Snforexcita- Alliances program through DOE Research Grant No. DE- tionenergiesabove1.5MeVand3.5MeVuptoS 1MeV. FG52-06NA26194.U.A.andG.E.M.alsoacknowledgesup- n − The level densities for both nuclei display prominent step- port from U.S. Departmentof EnergyGrant No. DE-FG02- like structures. Thestructureshavebeenfurtherinvestigated 97-ER41042.FinancialsupportfromtheNorwegianResearch by means of thermodynamicconsiderations: microcanonical Council(NFR)isgratefullyacknowledged. entropyandtemperature,andthroughcalculationsofthelin- earizedHelmholtzfreeenergy. Bothmethodsgiveconsistent results, instrongfavorofthepair-breakingprocessasanex- planationofthestructures. Acknowledgments ThisresearchwassponsoredbytheNationalNuclearSecu- rityAdministrationundertheStewardshipScienceAcademic 7 [1] R. Firestone and V. S. Shirley, Vol. II, Table of Isotopes, 8th [13] D.M.Brink,Ph.D.thesis,OxfordUniversity,1955. edition(Wiley,NewYork,1996). [14] P.Axel,Phys.Rev.126,671(1962) [2] S.F.Mughabghab,AtlasofNeutronResonances,FifthEdition, [15] S.G.Kadmenski˘ı,V.P.Markushev,andV.I.Furman,Yad.Fiz. ElsevierScience(2006). 37,277(1983),[Sov.J.Nucl.Phys.37,165(1983)]. [3] A. Gilbert and A. G. W. Cameron, Can. J. Phys. 43, 1446 [16] G.Gervais,M.Thoennessen,andW.E.Ormand,Phys.Rev.C (1965). 58,R1377(1998). [4] T.vonEgidy,H.H.Schmidt,andA.N.Behkami,Nucl.Phys. [17] A.Schiller,M.Guttormsen,E.Melby,J.Rekstad,andS.Siem, A481,189(1988). Phys.Rev.C61,044324(2000). [5] T. von Egidy and D. Bucurescu, Phys. Rev.C 72, 044311 [18] U. Agvaanluvsan, A. Schiller, J. A. Becker, L. A. Bernstein, (2005);73,049901(E)(2006). P. E. Garrett, M. Guttormsen, G. E. Mitchell, J. Rekstad, [6] A.Schiller,L.Bergholt,M.Guttormsen,E.Melby,J.Rekstad, S.Siem,A.Voinov, andW.Younes, Phys.Rev.C70, 054611 and S. Siem, Nucl. Instrum. Methods Phys. Res. A 447, 498 (2004). (2000). [19] G.AudiandA.H.Wapstra,Nucl.Phys.A595,409(1995). [7] L. Henden, L. Bergholt, M. Guttormsen, J. Rekstad, and [20] J.Dobaczewski, P.Magierski, W.Nazarewicz, W.Satuła,and T.S.Tveter,Nucl.Phys.A589,249(1995). Z.Szyman´ski,Phys.Rev.C63,024308(2001). [8] U.Agvaanluvsan,A.C.Larsen,R.Chankova,M.Guttormsen, [21] H.Utsunomiya,privatecommunication. G.E.Mitchell,A.Schiller,S.Siem,andA.Voinov,LosAlamos [22] M. Guttormsen, M. Hjorth-Jensen, E. Melby, J. Rekstad, preprintserver: A.Schiller,andS.Siem,Phys.Rev.C63,044301(2001). http://xxx.lanl.gov/abs/0808.3648,submittedtoPhys. [23] A. Schiller, E. Algin, L. A. Bernstein, P. E. Garrett, M. Gut- Rev.Lett. tormsen, M. Hjort-Jensen, C. W. Johnson, G. E. Mitchell, [9] E. J. Schneid, A. Prakash, and B. L. Cohen, Phys. Rev. 156, J.Rekstad, S.Siem, A.Voinov, andW.Younes, Phys.Rev.C 1316(1967). 68,054326(2003). [10] K.Yagi,Y.Sagi,T.Ishimatsu,Y.Ishizaki,M.Matoba,Y.Naka- [24] M. Guttormsen, M. Hjorth-Jensen, J. Rekstad, S. Siem, jima,andC.Y.Huang,Nucl.Phys.A111,129(1968). A.Schiller,andD.Dean,Phys.Rev.C68,034311(2003). [11] M.Guttormsen, T.S.Tveter, L.Bergholt, F.Ingebretsen, and [25] Jooyoung Lee and J. M. Kosterlitz, Phys. Rev. Lett. 65, 137 J. Rekstad, Nucl. Instrum. Methods Phys. Res. A 374, 371 (1990). (1996). [26] Jooyoung Lee and J. M. Kosterlitz, Phys. Rev. B 43, 3265 [12] M. Guttormsen, T. Ramsøy, and J. Rekstad, Nucl. Instrum. (1991). MethodsPhys.Res.A255,518(1987).