ebook img

Evidence for the pair-breaking process in 116,117Sn PDF

0.13 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Evidence for the pair-breaking process in 116,117Sn

Evidence forthe pair-breaking process in116,117Sn U.Agvaanluvsan1,2,A.C.Larsen3 ,M.Guttormsen3,R.Chankova4,5,G.E.Mitchell4,5,A.Schiller6,S.Siem3,andA.Voinov6 ∗ 1Stanford University, Palo Alto, California 94305 USA 2MonAme Scientific Research Center, Ulaanbaatar, Mongolia 3Department of Physics, University of Oslo, N-0316 Oslo, Norway 4Department of Physics, North Carolina State University, Raleigh, NC 27695, USA 5Triangle Universities Nuclear Laboratory, Durham, NC 27708, USA and 9 6Department of Physics, Ohio University, Athens, OH 45701, USA 0 (Dated:January6,2009) 0 Thenuclear leveldensitiesof116,117Snbelowtheneutron separationenergyhavebeendeterminedexperi- 2 mentallyfromthe(3He,ag )and(3He,3Heg)reactions,respectively. Theleveldensitiesshowacharacteristic ′ n exponentialincreaseandadifferenceinmagnitudeduetotheodd-eveneffectofthenuclearsystems. Inaddi- a tion,theleveldensitiesdisplaypronouncedstep-likestructuresthatareinterpretedassignaturesofsubsequent J breakingofnucleonpairs. 6 PACSnumbers:21.10.Ma,24.10.Pa,25.55.-e,27.60.+j ] x e - I. INTRODUCTION Section II, followedby a discussion of the analysis and nor- l malization procedure. The experimentalresults for the level c u Nuclear level densities are important for many aspects of densityaregiveninSectionIII,andthedeterminationofvar- n ious thermodynamic quantities are presented in Section IV. fundamental and applied nuclear physics, including calcula- [ ConclusionsaredrawninSectionV. tionsof nuclearreactioncrosssections. The leveldensityof 2 excited nuclei is an average quantity that is defined as the v number of levels per unit energy. The majority of data for 6 nuclearleveldensitiesareobtainedfromtwoenergyregions. II. EXPERIMENTALPROCEDUREANDDATAANALYSIS 0 Atlowexcitationenergy,theleveldensityisobtaineddirectly 4 from counting of low-lying levels [1]. As the excitation en- TheexperimentwascarriedoutattheOsloCyclotronLabo- 4 . ergyincreases,theleveldensitybecomeslargeandindividual ratory(OCL)usinga38-MeV3Hebeam.Theself-supporting 0 levels are often not resolved in experiments. Therefore, the 117Sn target had a thickness of 1.9 mg/cm2. The reaction 1 direct counting method becomes impossible. Nuclear reso- channels 117Sn(3He,ag )116Sn and 117Sn(3He,3Heg )117Sn 8 ′ 0 nancesatorabovethenucleonbindingenergyprovideanother werestudied. : sourceofleveldensitydata[2]. Betweenthesetwoexcitation The experiment ran for about 11 days with an average v energy regions, the level density is often interpolated using beam current of 1.5 nA. Particle-g coincidence events Xi phenomenologicalformulas [3, 4, 5]. Itisinthisenergyre- were detected usin≈g the CACTUS multidetector array. The r gionthepresentmeasurementsfocus. charged particles were measured with eight Si particle tele- a Recently,anextensionofthesequentialextractionmethod, scopesplacedat45 withrespecttothebeamdirection.Each ◦ now referred to as the Oslo method, was developed by the telescopeconsistsofafrontSiD Edetectorwiththickness140 Oslo Cyclotron Group. The Oslo method permits a simul- m mandabackSi(Li)E detectorwiththickness3000m m. An taneous determination of the level density and the radiative arrayof28collimatedNaIg -raydetectorswithasolid-angle strengthfunction[6, 7]. Forbothofthese quantities, the ex- coverageof 15%of4p wasused.Inaddition,oneGedetec- ≈ perimentalresultscoveranenergyregionwherethereislittle torwasusedinordertoestimatethespindistributionandde- information available and data are difficult to obtain. How- terminetheselectivityofthereaction. Thetypicalspinrange ever, the limitation of this methodis thatthe results mustbe isI 2 6h¯. normalizedtoexistingdata–fromthediscretelevelsandneu- F∼igur−e 1 shows the singles a -particle spectrum (upper tron resonancespacingsfor the level densityand to the total panel) and the a -g coincidence spectrum (lower panel) for radiativewidth for the radiativestrength function. Thus, the 116Sn. Thetwopeaksdenotedby0+ and2+ arethe transfer new and main achievement of the Oslo method is to estab- peaks to the ground state and the first excited state, respec- lish thefunctionalformoftheleveldensityandtheradiative tively. ThestrongtransferpeakatE =3.2MeViscomposed strengthfunctionintheabovespecifiedenergyregion. ofmanystatesfoundtobetheresultofpick-upofhigh-jneu- In this work we present results for the level density in tronsfromtheg7/2 andh11/2 orbitals[9,10]. Anotherstrong 116,117Sn fortheexcitationenergy0<E <S 1MeV.The transferpeakcenteredaroundE =8.0 MeVis newandmay n radiativestrength functionsof 116,117Sn have b−eenpublished indicatetheneutronpick-upfromtheg9/2orbital.Thecounts elsewhere[8]. Theexperimentalset-upisbrieflydescribedin in the coincidencespectrum decrease for excitation energies higherthanS duetolowerg -raymultiplicitywhentheneigh- n boringA 1isotopeispopulatedatlowexcitationenergy. Thepa−rticle–g -raycoincidencespectrawereunfoldedusing Electronicaddress:[email protected] the response functions for the CACTUS detector array [11]. ∗ 2 matrix. The entries of the first-generation matrix P are the probabilities P(E,Eg) that a g -ray of energy Eg is emitted a) Singles from an excitation energy E. This matrix is the basis for 60000 E = 3.2 MeV thesimultaneousextractionoftheradiativestrengthfunction V andthe leveldensity. Accordingto the Brink-Axelhypothe- e 50000 k sis [13, 14], a giantelectricdipoleresonancecanbebuilton 20 40000 E = 8.0 MeV everyexcitedstatewiththesamepropertiesastheonebuilton 1 thegroundstate,thatis,theradiativestrengthfunctionisinde- / ts 30000 pendentof excitationenergyand thusof temperature. Many n theoreticalmodelsdoincludeatemperaturedependenceofthe u o 20000 radiativestrengthfunction[15,16].However,thetemperature C dependenceisweakandthetemperaturechangeintheenergy 10000 2+ 0+ regionunderconsiderationhereisrathersmall. Therefore,the temperaturedependenceisneglectedintheOslomethod. The first-generation matrix is factorized into the radiative 50000 b) Coincidences transmissioncoefficient,whichisdependentonlyonEg, and ontheleveldensity,whichisa functionoftheexcitationen- V e 40000 ergyofthefinalstatesE Eg: k − 0 Sn 12 30000 P(E,Eg)(cid:181) T(Eg)r (E Eg). (1) / − s nt 20000 Thefunctionsr andT areobtainediterativelybyaglobalized u o fittingprocedure[6]. Thegoaloftheiterationistodetermine C thesetwofunctionsat N energyvalueseach;theproductof 10000 the two functionsis kn∼own at N2/2 data pointscontained ∼ in the first-generation matrix. The globalized fitting to the 0 34 36 38 40 42 44 46 48 50 52 datapointsdeterminesthefunctionalformforr andT. The a energy E (MeV) resultsmustbenormalizedbecausetheentriesofthematrixP a areinvariantunderthetransformation[6] FIG.1:a)Singlesa -particlespectrum,andb)a -g coincidencespec- trumfromthe117Sn(3He,a )116Snreaction. r˜(E Eg) = Aexp[a (E Eg)]r (E Eg), (2) − − − T˜(Eg) = Bexp(a Eg)T(Eg). (3) The first-generation matrix (the primary-g -ray matrix) con- Inthefinalstep,thetransformationparametersA,B,anda tainsonlythefirstg -raysemittedfromagivenexcitationen- whichcorrespondtothemostphysicalsolutionmustbedeter- ergybin;thismatrixisobtainedbyasubtractionprocedurede- mined. Details of the normalizationprocedureare described scribedinRef.[12]. Thisprocedureisjustifiediftheg decay inseveralpapersreportingtheresultsoftheOslomethod,see fromanyexcitationenergybinisindependentofthemethod forexample[17, 18]. In the following, we willfocuson the offormation–eitherdirectlybythenuclearreactionorindi- leveldensityandthermodynamicproperties. rectlybyg decayfromhigherlyingstatesfollowingtheinitial reaction. This assumption is clearly valid if the same states arepopulatedviathetwoprocesses,sinceg -decaybranching ratiosarepropertiesoflevels.Whendifferentstatesarepopu- III. LEVELDENSITIES lated,theassumptionmaynothold. However,muchevidence suggests [7] that statistical g decay is governed only by the ThecoefficientsAanda relevantforthenuclearlevelden- g -rayenergyandthedensityofstatesatthefinalenergy. sityaredeterminedfromnormalizingtheleveldensitytothe Inthedataanalysis,theparticle-g -raycoincidencematrixis low-lyingdiscrete levelsand the neutronresonancespacings preparedandtheparticleenergyistransformedintoexcitation just above the neutron separation energy S . For 117Sn, we n energyusingthereactionkinematics. Therowsofthecoinci- used s- and p-wave resonance level spacings (D , D ) taken 0 1 dencematrixcorrespondtotheexcitationenergyintheresid- from[2]tocalculatethetotalleveldensityatS (seeRef.[6] n ualnucleus,whilethecolumnscorrespondtotheg -rayenergy. formoredetailsonthecalculation). Since thereisnoexper- Alltheg -rayspectraforvariousinitialexcitationenergiesare imental informationaboutD or D for 116Sn, we estimated 0 1 unfoldedusingtheknownresponsefunctionsoftheCACTUS r (S ) for this nucleusbased on systematics for the other tin n array [11]. The first-generation g -ray spectra, which consist isotopes[2,4],andassuminganuncertaintyof50%.Thelevel ofprimaryg -raytransitions, arethenobtainedforeachexci- spacingsandthefinalvaluesforr (S )aregiveninTableI. n tationenergybin[12]. The experimental level density r is determined from the Thefirst-generationg -rayspectraforallexcitationenergies nuclear ground state up to S 1 MeV. Therefore, an in- n ∼ − form a matrix P, hereafter referred to as the first-generation terpolationisrequiredbetweenthepresentexperimentaldata 3 TABLEI:Parametersusedfortheback-shiftedFermigasleveldensityandthecalculationofr (Sn). Nucleus Epair C1 a D0 D1 s (Sn) Sn r (Sn) h (MeV) (MeV) (MeV 1) (eV) (eV) (MeV) (105MeV 1) − − 116Sn 2.25 1.44 13.13 4.96 9.563 4.12(206) 0.46 117Sn 0.99 −1.44 13.23 507−(60) 15−5(6) 4.44 6.944 0.86(25) 0.40 − andr evaluatedatS . Theback-shiftedFermigaslevelden- n sitywiththeglobalparameterizationofvonEgidyetal.[4], exp(2√aU) r (E)=h 12√2a1/4U5/4s , (4) -1)V 106 a) 116Sn isemployedfortheinterpolation1. Theintrinsicexcitationen- Me 105 ergyisgivenbyU =E−Epair−C1,whereC1=−6.6A−0.32 E) ( 104 MeV is the back-shift parameter and A is the mass number. ( The pairing energy Epair is based on pairing gap parameters ry 103 DcoprdanindgD tnoe[v2a0l]u.aTtehdefrloevmele-vdeenn-soitdydpmaraasmsedtiefrfeareanncdesth[1e9s]painc-- nsit 102 cutoffparameters are givenby a = 0.21A0.87 MeV−1 and de 10 s 2=0.0888A2/3aT,respectively.ThenucleartemperatureT el isdescribedbyT = U/aMeV.Theconstanth isaparame- v 1 e terappliedtoensurepthattheFermigasleveldensitycoincides L withtheneutronresonancedata.Allparametersemployedfor 10-1 0 2 4 6 8 10 theFermigasleveldensityarelistedinTableI. Figure2showsthenormalizedleveldensitiesof116Snand -1)V 106 b) 117Sn 117Sn. Thefullsquaresrepresenttheresultsfromthepresent Me 105 work. The data points between the arrows are used for nor- ( malizingtotheleveldensityobtainedfromcountingdiscrete E) 104 levels (solid line) and the level density calculated from the ( neutronresonance spacing (open square). The discrete level ry 103 t MscheVemieni1s16sSeennbteoyobnedcowmhpiclhetethuepletvoeelxdceintastiitoynoebntaeirngeyd≈fro3m.5 nsi 102 e discretelevelsstartstodrop. For117Snthediscretelevelden- d 10 sity iscompleteonlyupto 1.5MeV.The newdataofthis el ≈ v 1 workthusfillthegapbetweenthediscreteregionandthecal- e L culatedleveldensityatS . n 10-1 From Fig. 2, we observe that pronounced step-like struc- 0 2 4 6 8 10 turesarepresentintheleveldensitiesofboth116,117Sn. Inthe Excitation energy E (MeV) following section, nuclear thermodynamicpropertiesare ex- tractedusingthepresentleveldensityresults,andthesestruc- turesareinvestigatedindetail. FIG.2: Normalizedleveldensityofa)116Snandb)117Sn. Results from the present work are shown as full squares. The data points betweenthearrowsareusedforthefittingtoknowndata. Thelevel densityatlowerexcitationenergyobtainedfromcountingofknown IV. THERMODYNAMICPROPERTIES discretelevelsisshownasasolidline,whiletheleveldensitycalcu- latedfromneutronresonancespacingsisshownasanopensquare. TheentropyS(E)isameasureofthenumberofwaystoar- Theback-shiftedFermigasleveldensityusedfortheinterpolationis rangeaquantumsystematagivenexcitationenergyE.There- displayedasadashedline. fore,theentropyofanuclearsystemcangiveinformationon theunderlyingnuclearstructure. Themicrocanonicalentropy isgivenby where W (E) is the multiplicity of accessible states and kB is Boltzmann’s constant, which we will set to unity to give a S(E)=k lnW (E), (5) B dimensionlessentropy. The experimental level density r (E) is directly propor- tionaltothemultiplicityW (E),whichcanbeexpressedas 1Wechosetoapplytheoldparameterizationof[4]insteadofthemorerecent W (E)=r (E) [2 J(E) +1]. (6) onein[5]becausenew(g,n)data[21]showedthattheslopeoftheradiative · h i strengthfunctionin117Sn[8]becametoosteepusingthevaluesof[5]. Here, J(E) is the average spin at excitation energy E and h i 4 theexcitationenergyincreases,andabove2 3MeVweesti- matethesingleneutronquasiparticletocarr−yaboutD S 1.6 ≃ in units of Boltzmann’s constant. This agrees with previous 16 findingsfromtherare-earthregion[22]. a) 14 Both entropy curves display step-like structures superim- ) posedonthegeneralsmoothincreasingentropyasafunction B 12 k ofexcitationenergy.Atthesestructures,theentropyincreases E) ( 10 117Sn abruptlyin a smallenergyintervalbeforeit becomesa more S( 116Sn slowlyincreasingfunction. y 8 Thefirstlow-energybumpof116Snisconnectedtothefirst op 6 excited2+ stateatE =1.29MeVandthesecondexcited0+ tr state at E =1.76 MeV. Similarly, the first bump in the en- En 4 tropy of 117Sn is connected to the first excited states in this 2 nucleus. The next structuresare probablecandidates for the pair-breakingprocess. Microscopiccalculationsbasedonthe 0 senioritymodelindicatethatstep structuresin the levelden- sitycanbeexplainedbytheconsecutivebreakingofnucleon )B 4.5 b) Cooperpairs[23]. k ( 4 ThebumpspresentintheSnleveldensitiesaremuchmore S outstandingthanpreviouslymeasuredforothermassregions 3.5 De by the Oslo group. One explanationof the clear fingerprints nc 3 could be that since the Z = 50 shell is closed, the break- e ing of proton pairs are strongly hindered and thus do not r 2.5 e f smoothouttheentropysignaturesfortheneutronpairbreak- dif 2 ing. Therefore,itis verylikely thatthe structuresare due to y 1.5 pureneutron-pairbreakup. p o We have investigatedthe structures furtherby introducing r 1 nt themicrocanonicaltemperaturegivenby E 0.5 ¶ S −1 0 1 2 3 4 5 6 7 8 9 T =(cid:18)¶ E(cid:19) . (9) Excitation energy E (MeV) By taking the derivative, small changes in the slope of the entropy are enhanced. This is easily seen in Fig. 4, where FIG.3: a)Experimentalentropiesfor116,117Sn,andb)theentropy the microcanonical temperatures of 116,117Sn are displayed. difference. Byfittingastraightlinetotheentropydifferenceinthe energyregion2.4 6.7MeV,anaveragevalueofD S 1.6kB was The striking oscillations of the temperature is a thermody- obtained. − ≃ namicsignatureforsuchsmallsystemsasthenucleus.Onlya fewquasiparticlesparticipateintheexcitationofthenucleus. Sincethesystemisnotincontactwithaheatbathwithacon- thefactor[2 J(E) +1]thusgivesthedegeneracyofmagnetic stanttemperature,the system is far fromthe thermodynamic h i substates. As the averagespin is notwellknownat all exci- limit. tation energies, we choose to omit this factor and define the InFig.4, thebumpsbelow 2 MeVareconnectedto the multiplicityas low-lyingexcitedstates in 116,≈117Sn. However,the peak-like structurecenteredaroundE =2.8MeV in116Sn andaround W (E)=r (E)/r 0, (7) E =2.6MeVin117Sncouldbeasignatureofthefirstbreak- upofaneutronpair.AboveE=4.5and3.6MeVin116,117Sn, where the denominator is determined from the fact that the respectively,thetemperatureappearstobeconstantontheav- groundstateofeven-evennucleiisawell-orderedsystemwith zero entropy. The value of r =0.135 MeV 1 is obtained erage,indicatingamorecontinuousbreakingoffurtherpairs. 0 − such that S=lnW 0 for the ground state region of 116Sn. Thesamer isalso∼appliedfor117Sn. InFig.3theresulting Recently[24],thecriticalityoflow-temperaturetransitions 0 entropiesof116,117Snareshown. was investigated for rare-earth nuclei. We apply the same method here and investigate the probability P of the system Theentropycarriedbythevalenceneutroncanbeestimated atfixedtemperatureT tohaveexcitationenergyE,i.e., byassumingthattheentropyisanextensive(additive)quan- tity[22]. Withthisassumption,theexperimentalsingleneu- P(E,T)=W (E)exp( E/T)/Z(T), (10) tronentropyisgivenby − wherethecanonicalpartitionfunctionisgivenby D S=S(117Sn) S(116Sn). (8) − ¥ From Fig. 3, we observe that D S becomes more constant as Z(T)= W (E′)exp E′/T dE′. (11) Z0 − (cid:0) (cid:1) 5 pair. ThevaluesfoundareT =0.58(2)and0.71(2)MeVfor c 116,117Sn, respectively. Furthermore, we observe a potential barrier D F of about 0.25 MeV between the two minima E 2 c 1 V) 1.8 a) 116Sn atondgoEf2r.oTmhoenpeoptehnatsiael(bnaorrpiaeirrsinbdriockaetens)tthoeafnroeteheenre(orgnyenberoedkeedn e M 1.6 pair)attheconstant,criticaltemperatureTc. ) ( 1.4 In the process of breaking additional pairs, the structures E areexpectedtobelesspronounced.Indeed,inthelowestpan- T( 1.2 e els of Fig. 5, the free energyis ratherconstantfor excitation r 1 energies above E 5.0 and 4.2 MeV for 116,117Sn, respec- u ≈ at 0.8 tively. Instead of a double-minimumstructure, a continuous per 0.6 minimum of Fc appears for several MeV of excitation ener- gies. Thisdemonstratesclearly that the depairingprocessin m e 0.4 tincannotbeinterpretedasanabruptstructuralchangetypical T 0.2 ofa firstorderphasetransition. Forthisprocesswe evaluate thecriticaltemperaturebyaleastc 2fitofF totheexperimen- 0 taldata.Theexcitationenergies(E andE )andtemperatures 1.8 1 2 b) 117Sn forthephasetransitionsaresummarizedinTableII. ) 1.6 V e M 1.4 TABLEII:Phasetransitionvaluesdeducedfor116,117Sn. ( T 1.2 e 116Sn 117Sn r 1 atu 0.8 Breakingof E(M1−eVE)2 (MTecV) E(M1−eVE)2 (MTecV) r e onepair 2.4 4.2 0.58(2) 2.3 3.7 0.71(2) p 0.6 − − m twoormorepairs 5.0 8.0 0.69(8) 4.2 6.0 0.63(4) − − e 0.4 T 0.2 According to the linearized free-energy calculations, the 0 1 2 3 4 5 6 7 8 first neutron pair is broken for excitation energies between 2.4 4.2MeVin 116Sn. Comparingwith theupperpanelof Excitation energy E (MeV) − Fig. 4, we see that this coincides with the excitation-energy regionwhereapeakstructureisfound. Thisbumpisthought FIG.4:Microcanonicaltemperaturesofa)116Sn,andb)117Sn. to represent the first neutronpair break-upas discussed pre- viously in the text. The average temperature of the bump is 0.59(2) MeV, in excellent agreement with the deduced crit- Lee and Kosterlitz showed [25, 26] that the function ical temperature T = 0.58(2). Similarly, for 117Sn in the c A(E,T)= lnP(E,T),forafixedtemperatureT inthevicin- − lowerpanelof Fig.4, we findthata peak-likestructurewith ity of a critical temperature T of a structuraltransition, will c an average temperature of 0.74(2) MeV is present between exhibit a characteristic double-minimum structure at ener- E = 2.3 3.7 MeV. Compared to the critical temperature gies E1 and E2. For the critical temperature Tc, one finds T =0.71−(2)MeV,thevaluesagreesatisfactory. c A(E ,T)=A(E ,T ). ItcanbeeasilyshownthatAisclosely 1 c 2 c Forthecontinuousbreak-upprocesscharacterizedbyazero connected to the Helmholtz free energy, and that this condi- potential barrier (D F 0 MeV), we estimate for 116Sn an c tionisequivalentto ≈ average microcanonical temperature of 0.75(6) MeV in the excitation-energy region E = 5.0 8.0 MeV, in reasonable Fc(E1)=Fc(E2), (12) agreement with T =0.69(8) calc−ulated from the linearized c Helmholtz free energy. In the case of 117Sn, the average which can be evaluated directly from our experimentaldata. microcanonical temperature for excitation energies between ItshouldbeemphasizedthatF isalinearizedapproximation c 4.2 6.0MeVisfoundtobe0.64(3)MeV,whichagreesvery totheHelmholtzfreeenergyatthecriticaltemperatureT ac- c − wellwithT =0.63(4)MeV.Thisgivesfurtherconfidencein cordingto c ourinterpretationofthedataastwoindependentmethodsgive F(E)=E TS(E). (13) verysimilarresults. c c − Linearizedfree energiesF forcertaintemperaturesT are c c displayed in Fig. 5. In the upper panels, 116,117Sn data are V. CONCLUSIONS shownwheretheconditionF(E )=F(E )=F isfulfilled. c 1 c 2 0 Each nucleus shows a double-minimumstructure, which we Thenuclearleveldensitiesfor116,117Snareextractedfrom interpretasthecriticaltemperaturesforbreakingoneneutron particle-g coincidencemeasurements. New experimentalre- 6 1.5 a) 116Sn -1 b) 117Sn T = 0.58(2) MeV T = 0.71(2) MeV C C ) V 1 F = -0.44(3) MeV F = -2.45(2) MeV e 0 -1.5 0 M ( C0.5 F y -2 g 0 r e n E -0.5 -2.5 -1 -3 2 -0.8 c) 116Sn d) 117Sn 1.5 -1 T = 0.69(8) MeV T = 0.63(4) MeV 1 C C V) F0 = -1.3(6) MeV -1.2 F0 = -1.7(5) MeV e 0.5 M ( -1.4 C 0 F y -0.5 -1.6 g r e n -1 -1.8 E -1.5 -2 -2 -2.2 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 Excitation energy E (MeV) Excitation energy E (MeV) FIG.5:LinearizedHelmholtzfreeenergyFcatcriticaltemperatureTcfora)116Sn,andb)117Sndisplayingacharacteristicdouble-minimum structure. TheconstantlevelF0,whichisconnectingtheminima,isindicatedbyhorizontallines. AcontinuousminimumofFcisshownfor c)116Sn,andd)117Sn. sultsarereportedfortheleveldensityin116,117Snforexcita- Alliances program through DOE Research Grant No. DE- tionenergiesabove1.5MeVand3.5MeVuptoS 1MeV. FG52-06NA26194.U.A.andG.E.M.alsoacknowledgesup- n − The level densities for both nuclei display prominent step- port from U.S. Departmentof EnergyGrant No. DE-FG02- like structures. Thestructureshavebeenfurtherinvestigated 97-ER41042.FinancialsupportfromtheNorwegianResearch by means of thermodynamicconsiderations: microcanonical Council(NFR)isgratefullyacknowledged. entropyandtemperature,andthroughcalculationsofthelin- earizedHelmholtzfreeenergy. Bothmethodsgiveconsistent results, instrongfavorofthepair-breakingprocessasanex- planationofthestructures. Acknowledgments ThisresearchwassponsoredbytheNationalNuclearSecu- rityAdministrationundertheStewardshipScienceAcademic 7 [1] R. Firestone and V. S. Shirley, Vol. II, Table of Isotopes, 8th [13] D.M.Brink,Ph.D.thesis,OxfordUniversity,1955. edition(Wiley,NewYork,1996). [14] P.Axel,Phys.Rev.126,671(1962) [2] S.F.Mughabghab,AtlasofNeutronResonances,FifthEdition, [15] S.G.Kadmenski˘ı,V.P.Markushev,andV.I.Furman,Yad.Fiz. ElsevierScience(2006). 37,277(1983),[Sov.J.Nucl.Phys.37,165(1983)]. [3] A. Gilbert and A. G. W. Cameron, Can. J. Phys. 43, 1446 [16] G.Gervais,M.Thoennessen,andW.E.Ormand,Phys.Rev.C (1965). 58,R1377(1998). [4] T.vonEgidy,H.H.Schmidt,andA.N.Behkami,Nucl.Phys. [17] A.Schiller,M.Guttormsen,E.Melby,J.Rekstad,andS.Siem, A481,189(1988). Phys.Rev.C61,044324(2000). [5] T. von Egidy and D. Bucurescu, Phys. Rev.C 72, 044311 [18] U. Agvaanluvsan, A. Schiller, J. A. Becker, L. A. Bernstein, (2005);73,049901(E)(2006). P. E. Garrett, M. Guttormsen, G. E. Mitchell, J. Rekstad, [6] A.Schiller,L.Bergholt,M.Guttormsen,E.Melby,J.Rekstad, S.Siem,A.Voinov, andW.Younes, Phys.Rev.C70, 054611 and S. Siem, Nucl. Instrum. Methods Phys. Res. A 447, 498 (2004). (2000). [19] G.AudiandA.H.Wapstra,Nucl.Phys.A595,409(1995). [7] L. Henden, L. Bergholt, M. Guttormsen, J. Rekstad, and [20] J.Dobaczewski, P.Magierski, W.Nazarewicz, W.Satuła,and T.S.Tveter,Nucl.Phys.A589,249(1995). Z.Szyman´ski,Phys.Rev.C63,024308(2001). [8] U.Agvaanluvsan,A.C.Larsen,R.Chankova,M.Guttormsen, [21] H.Utsunomiya,privatecommunication. G.E.Mitchell,A.Schiller,S.Siem,andA.Voinov,LosAlamos [22] M. Guttormsen, M. Hjorth-Jensen, E. Melby, J. Rekstad, preprintserver: A.Schiller,andS.Siem,Phys.Rev.C63,044301(2001). http://xxx.lanl.gov/abs/0808.3648,submittedtoPhys. [23] A. Schiller, E. Algin, L. A. Bernstein, P. E. Garrett, M. Gut- Rev.Lett. tormsen, M. Hjort-Jensen, C. W. Johnson, G. E. Mitchell, [9] E. J. Schneid, A. Prakash, and B. L. Cohen, Phys. Rev. 156, J.Rekstad, S.Siem, A.Voinov, andW.Younes, Phys.Rev.C 1316(1967). 68,054326(2003). [10] K.Yagi,Y.Sagi,T.Ishimatsu,Y.Ishizaki,M.Matoba,Y.Naka- [24] M. Guttormsen, M. Hjorth-Jensen, J. Rekstad, S. Siem, jima,andC.Y.Huang,Nucl.Phys.A111,129(1968). A.Schiller,andD.Dean,Phys.Rev.C68,034311(2003). [11] M.Guttormsen, T.S.Tveter, L.Bergholt, F.Ingebretsen, and [25] Jooyoung Lee and J. M. Kosterlitz, Phys. Rev. Lett. 65, 137 J. Rekstad, Nucl. Instrum. Methods Phys. Res. A 374, 371 (1990). (1996). [26] Jooyoung Lee and J. M. Kosterlitz, Phys. Rev. B 43, 3265 [12] M. Guttormsen, T. Ramsøy, and J. Rekstad, Nucl. Instrum. (1991). MethodsPhys.Res.A255,518(1987).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.