ebook img

Evidence for Expanding Superbubbles in a Galaxy at z=0.7443 PDF

12 Pages·0.36 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Evidence for Expanding Superbubbles in a Galaxy at z=0.7443

DRAFTVERSIONFEBRUARY1,2008 PreprinttypesetusingLATEXstyleemulateapj EVIDENCEFOREXPANDINGSUPERBUBBLESINAGALAXYATz=0.74431 NICHOLASA.BOND,CHRISTOPHERW.CHURCHILL,JANEC.CHARLTON2 DepartmentofAstronomyandAstrophysics ThePennsylvaniaStateUniversity UniversityPark,PA16802 bond,cwc,[email protected] AND STEVENS.VOGT UCO/LickObservatories BoardofStudiesinAstronomyandAstrophysics 1 UniversityofCalifornia,SantaCruz,CA96054 0 [email protected] 0 DraftversionFebruary1,2008 2 ABSTRACT n a Theinterveningz =0.7443MgIIabsorptionsysteminthespectrumofMC1331+170showsanunusualseries J oflinepairs,eachwith∆v ∼30kms−1. Theselinescouldbeexplainedastheshellsofexpandingsuperbubbles 4 residing in the outer regions of an edge–on spiral galaxy visible in the optical image of the MC 1331+ 170 field. Thecolorandbrightnessofthisgalaxymakeitthemostlikelycandidatez = 0.7443absorber,thoughtwo 1 othergalaxiesinthequasarfieldcouldalsobecontributingtotheMgIIabsorptionprofile. Kinematicmodelsof v absorptionfrom compactgroupsand galaxypairs produceprofileslargely inconsistentwith the observedMgII 9 spectrum.Superbubbleswouldnaturallygeneratemoreregularstructuressuchasthoseobserved.Photoionization 4 models of the superbubbleshell are consistentwith the observedprofile for many realistic physicalconditions. 0 1 In a pure superbubble model, the large velocity spread of the MgII absorption system is inconsistent with the expectedspread of a quiescent, rotatingdisk. This requiresunusualkinematicswithin the host galaxy,perhaps 0 1 duetoarecentinteraction. 0 Subjectheadings:quasars:absorptionlines—interstellarmedium—superbubbles / h p 1. INTRODUCTION HI map of face–on galaxies or as HI emission–line filaments - inedge–ongalaxies.Singlestructuresofthistypeareobserved o Strong MgII absorbers show complex kinematic structure withsizessimilartoGalacticbubblesandmassesbetween107 str crootnastiinstgendtiswkit(hLaanmzeitxtatu&reBofowraednia1l9i9n2fa;llCfhraormltotnhe&haClhouarnchdilal and108M⊙. Smallershells(evensingle–starstellarwindbub- bles) are also thought to exist, but cannot be detected in ex- a 1998; Churchill& Vogt2001). A largevarietyof phenomena : ternal galaxies. Superbubbles larger than 1 kpc in radius are v cancontributetotheprofiles,suchasHI regions,HII regions, thoughttobeformedbyeitheramergingofseparateshellsor i high–velocityhaloclouds,andsuperbubbles. StrongMgIIab- X sorbersalmostalwayshaveL > 0.08L∗ galaxieswithin35 by a process of self–propagatingstar formation (e.g. Bomans B B et al. 1996). The number of bubbles in a given galaxy varies r kpc (Steidel, Dickinson, & Persson 1994; Steidel 1995). One a dramaticallyfromalmostnonetoseveralhundred,perhapsde- particular absorption system, at z = 0.7443, in the spectrum pendingonthegalaxy’shistoryofinteractions. of MC 1331+ 170 shows multiple pairs of lines, each with ∆v ∼ 30kms−1. Therearefourstrongopticalsourceswithin Stellar wind bubbles for a single early–type star were first 5′′ ofthequasar,oneofwhichisanedge–onspiral. Theseare modeledbyWeaveretal.(1977). MacLow&McCray(1988) extended this concept to clusters of O and B stars, proposing theonlydetectedopticalsourceswhichcouldhaveimpactpa- Galactic superbubbles as the explanation for the HI filaments rameterslessthan35kpc. observedbyHeiles(1979).Accordingtothesemodels,asuper- OB associations are capable of producing large shells of bubble begins as an oversized stellar wind bubble in the ISM swept up ISM using the energy input of stellar winds and around an OB association. The swept up material from this multiplesupernovae. Suchstructures,knownassuperbubbles, cavityquicklycollapsesintoacold,denseshellwithadensity have beenobservedin nearbygalaxies(Kamphuis1993; Sun- greaterthanfourtimesthatof theambientISM.Theshellbe- geon et al. 1999) as well as in our own galaxy (Heiles 1979; ginsexpandingwiththeonsetofthefirstsupernovaeintheOB McClure-Griffithsetal.2000).MgIIandFeIIabsorptionwould association,whichcontributetheirenergyandmetalstothesu- arise within the cold superbubble shell, appearing as pairs of perbubble.Duringthis,theadiabaticphase,thesupernovaecan linesfromtheoppositelyexpandingsidesoftheshellintersect- beapproximatedasacontinuousenergysourceandthebubble ingthelineofsight. radiusincreasesast3/5. Theinteriorissparse,highlyionized, Inourgalaxy,superbubblesaredetectedin HI asfilaments, and isobaric during this phase. The continuing energy input with inferred radii ranging from 100 pc to 2 kpc (e.g. Heiles 1979). Extragalacticsuperbubblesaremanifestasholesinthe maintainsthe expansionata rate of t1/2, in excessof the rate 1BasedinpartonobservationsobtainedattheW.M.KeckObservatory,whichisoperatedasascientificpartnershipamongCaltech,theUniversityofCalifornia, andNASA.TheObservatorywasmadepossiblebythegenerousfinancialsupportoftheW.M.KeckFoundation. 2CenterforGravitationalPhysicsandGeometry 1 2 EXPANDINGSUPERBUBBLESINQ1331+170 expected for a pure snowplow solution (Mac Low & McCray ofDLAs(100−200K)occurwhentheylieinspiralgalaxies 1988). (e.g.Kanekaretal.2000). Evenifwearelookingthroughthe Inthispaper,weexplorethehypothesisthatthelinesplittings diskofaspiralgalaxy(aswesuspect),the21–cmdatadonotre- inthez = 0.7443absorberarisefromexpandingsuperbubbles strictthenatureoftheabsorber. However,theMgIIabsorption inthevicinityofanobservededge–onspiralgalaxy(Churchill arisingfromknownDLAshasthecharacteristicofbeingtotally et al. 1995). In § 2, we present the HIRES/Keck absorption saturated across the entire profile (Churchillet al. 2000b)and profiles of detected low ionization transitions and an archival typically exhibits a total velocity spread of 50−100 kms−1. HST/WFPC2 image of the quasar field. In § 3, we constrain Thesefeaturesarenotpresentinthissystem,suggestingthatit theredshiftsandluminositiesofthefourgalaxiesinthequasar isnotaDLA. field using the galaxies’ colors and magnitudes. We consider the possibility that galaxy pairs and compact groups give rise 2.2. HST/PC2Image to the observed MgII absorption in § 4. In § 5, we provide a Images of the MC 1331 + 170 field obtained through the description of the photoionization models used in testing the F702W (R) and F814W (I) filters were retrieved from the superbubblehypothesis.Wediscussourresultsandsummarize archive(Program5351,LeBrunetal.1997).Pipeline–reduced in§6. images for each filter were averaged and cleaned using the IRAFtaskGCOMBINE.ThetaskCOSMICRAYSwasusedto 2. DATAANDANALYSIS removehotpixels.Toincreasethesignal–to–noiseratioforpre- 2.1. HIRES/KeckSpectra sentation purposes, the R and I band images were combined. For our analysis, we use the photometry as presented in Sec- The spectrum of the z = 2.084, V = 16.7 quasar tion2,Table8ofLeBrunetal.1997. Tworealizationsofthis MC1331+170wasobtainedwiththeW.M.KeckTelescope’s HST/WFPC2 image, with the quasar centered in the PC, are HIRES/Keckspectrograph(Vogtetal.1994)onthenightof19 presentedinFigure2.Theleft–handpanelhasalargerdynamic March1993.Theslitwidthwas0.861′′(yieldingR=45,000). rangeandshowsthreeresolvedobjectswithin5′′ofthequasar, A2×2pixelbinning(inboththecross–dispersionanddisper- labeledinorderofangulardistancefromthequasar. Anaddi- siondirections)wasusedduringreadout.Theresultingresolu- tionalsourceat≃0.8′′isapparentuponpoint–spreadfunction tionisR = 34,000(v = 8.8kms−1 perresolutionelement). (PSF) subtraction of the quasar (Figure 16, of Le Brun et al. The wavelengthcoverageis 4263to 6733A˚, with gapsabove 1997).Intheright–handpanel,G5isemphasized. 5100A˚,becausetheCCDdidnotcapturethefreespectralrange oftheechelleordersabovethiswavelength. Thespectrumwas 3. THEMC1331+170FIELD reduced in the usual manner using IRAF3 v2.10. All wave- 3.1. Procedure lengthsarevacuumandheliocentriccorrected. TherearefourMgIIsystemsinthespectrumofMC1331+ ThephotometryofLebrunetal.(1997)givesalimitingmag- 170 at z = 0.7443, z = 1.3280, z = 1.776, and z = nitude of 26 in R, which implies that unresolved sources at 1.786. Due to its unusual structure, our focus is on the z = z = 0.7443 brighter than ∼ 0.04 L∗ should be seen in the B 0.7443 system. The detected transitions (FeII λ2587, λ2600, image. Because strong MgII absorbers nearly always have MgII λλ2796,2803, MgI λ2853) for the z = 0.7443 system LB > 0.08 L∗B counterparts within 35 kpc (Steidel, Dickin- areshowninFigure1. Theprofilefits(solidcurves)wereob- son, & Persson 1994; Steidel 1995), we expect to detect the tainedusingVoigtprofiledecomposition. Thisyieldsthenum- galaxygivingrisetothez =0.7443absorption. berofcomponents,theirline–of–sightvelocities,columnden- Therearefourgalaxieswhichcouldbewithin35kpcofthe sities, andDopplerbparameters. WeusedMINFIT,aχ2 min- quasarintheHST/WFPC2image(Figure2,G2–G5,numbered imizationcodeof ourowndesign(Churchill1997). Theticks asinLeBrunetal.1997). Inspectionofthesourcesshowsan abovethenormalizedcontinuainFigure1givecomponentve- edge–onspiral morphologyfor G5 and an elliptical shape for locitycentroids. Table1liststheresultingparametersfromthe G3 (also see Le Brun et al. 1997). G4 shows some structure Voigtprofilefitting. (possiblyirregular)andthelocationofG2infrontofthequasar The equivalent width of the z = 0.7443 system is makesmorphologydifficulttodetermine. W (2796) = 1.81 A˚. An HST/STIS spectrum that covers the Unfortunately,redshiftsforG2–G5havenotbeenobtained. r CIVλλ1548,1550doubletisavailableinthearchive(Program Wemust,therefore,determinehowlikelyitisthateachcandi- 7271). Unfortunately, the signal to noise is ∼ 1 at the posi- date galaxyis associated with the absorberat eachof the red- tionoftheCIVabsorption,yieldingnousefulequivalentwidth shifts. Thiswillallowustoassesswhichgalaxy/galaxiescould limit. The other systems are also strong4. Damped Lyα ab- give rise to the z = 0.7443 absorption. We do this by com- sorption (DLA), N(HI) ≥ 2×1020 cm−2 is observedin the paring the apparent magnitudes and colors of each galaxy to z =1.776system(Chaffeeetal.1988). redshifted model spectral energy distributions (SED) for dif- RaoandTurnshek(2000)foundthat50%ofMgIIabsorbers ferentmorphologicaltypes. However,weappreciatethatthere with W (2796) > 0.5 A˚ and W (2600) > 0.5 A˚ are DLAs may not be a one–to–one correspondence between absorbers r r (also see Boisse´ et al. 1998). This criterion is satisfied by the andgalaxies. Twoormoreoftheobservedgalaxiescouldgive z =0.7443system,buttheLyαofthissystemisbelowtheLy- risetoabsorptionandlieatthesameredshift(Bowen,Blades, manlimitbreakofthez =1.776DLAandcannotbemeasured. &Pettini1995). Additionally,DLAabsorptioncanarisefrom Neutralhydrogen21–cmmeasurementsofthez =0.7443sys- relativelylowluminosityand/orlowsurfacebrightnessgalaxies tem (Lane 2000) give N(HI) < 1.5×1018hTsi cm−2, where which are not seen in the image (e.g., Rao & Turnshek 2000; hT iisthespintemperature. Theminimumspintemperatures Bouche`etal.2000;alsoseeBowen,Tripp,&Jenkins2000). s 3IRAFisdistributedbytheNationalOpticalAstronomyObservatories,whichareoperatedbyAURA,Inc.,undercontracttotheNSF. 4TheMgIIatz=1.3284isblendedwiththeFeIIfromthehigherredshiftsystems(Steidel&Sargent1992)andapreciseequivalentwidthmeasurementisnot possible,butweestimateWr(2796)=0.8A˚. BONDETAL. 3 In order to obtain the L values expected for each galaxy ThemoststrikinggalaxyintheMC1331+170fieldisG5,an B at each redshift, we first obtained B and R magnitudes from edge–onspiral. Thisisourfavoredcandidateforaz = 0.7443 model SEDs for a set of standard morphologies (Bruzual & absorber,withaluminosityofL ∼ 1L∗. Thelowluminosi- B B Charlot 1993; Kinney et al. 1996). Models for E, S0, Sab, tiesofG3andG4makethemmarginalcasesforproducingsuch Sbc, and Scd galaxies (µ = 0.95,0.30,0.20,0.10,0.01, re- strongMgIIabsorption.Additionally,theluminosityofG5be- spectively5) were modelled with a 16 Gyr stellar population comes larger for the higher absorber redshifts (∼ 2−3 L∗); B with exponentially decreasing star formation. A redder ellip- thus,it∼10timeslesslikelytobeatthehigherredshifts. The tical galaxy(E2) was modeledusinga composite spectrumof colorofG5,however,doesnotconstrainitsredshiftandallows observed ellipticals from Kinney et al. 1996. For an irregu- ittobeastar–forminggalaxyatanyofthehigherredshifts. If lar galaxy(Im), the observedSED ofNGC 4449was adopted thisis so, G3 or G4 wouldbe responsiblefor the z = 0.7443 (Bruzual&Charlot1993).Twostarburstmodelswerealsocon- system, but their small luminosities at this redshift make this sidered, both with a constant star formation rate, assuming a unlikely. SalpeterIMF.Theagesofthestarburstgalaxies(Starburst1and Inconclusion,G5isthe galaxymostlikelytobe producing Starburst2,Bruzual&Charlaut1993)are106and107years. z =0.7443absorption,butG3andG4couldalsobecontribut- TheK–correctionswereperformedbyredshiftingthemodel ing to the absorption at that redshift. If so, they would have SEDs to the absorber redshifts and convolving them with the small luminosities that make them border–line candidates for F702W and F814W filter response curves. A zero–pointnor- strongMgIIabsorption. malization was performed using the measured R band appar- ent magnitudeslisted in Table 2 (also see Table 8 in Le Brun 4. KINEMATICMODELSIMULATIONSOFGROUPSANDPAIRS et al. 1997). Finally, the MB values were calculated using Though G5 is the best candidate for the z = 0.7443 ab- H0 = 50 kms−1Mpc−1 and q0 = 0.05. Figure 3 shows sorber,G3andG4alsohavecolorsandluminositiesconsistent R−I colorvs.redshiftforthestandardmorphologicaltypes. with this redshift. Furthermore,the bluecolorsof G4 and G5 The dotted lines on the figure correspond to the redshifts of seemtoindicaterecentstarformation,whichcouldeasilyhave theMgIIabsorptionssystemsintheMC1331+170spectrum beentriggeredbyaninteractionbetweentwoormoregalaxies. andthedashedlinestothecolorsofthefourgalaxies,G2–G5. Assuch,two compellingpossibilitiesarethatthe lineofsight Intersections of the lines represent permitted locations on the passesthroughseveralmembersofa compactgroupofgalax- diagram of the galaxies in the field and allow us to constrain ies or througha galaxy pair, giving rise to the observedMgII theirtypeateachpossibleredshift. absorptionprofile. Charlton and Churchill (1998)foundthat the kinematicsof 3.2. Results strong MgII absorbers can be described by assuming that the absorbingcloudsarelocatedbothinthedisksandhalosofnor- Table 2 summarizesthe permitted morphologicaltypes and malgalaxies. Inordertosynthesizeanabsorptionlineprofile, their calculated L (in units of L∗, using M∗ = −20.9) at B B B we run a line of sight through a model galaxy with a given each absorber redshift (excepting z = 1.786 because of its orientation, impact parameter, and size (where the size of the proximitytoz =1.776). galaxy is defined by its luminosity). We used the luminosity TheerrorsonthecolorofG2andmagnitudemightbequite andimpactparameterfromTable2astheinputforeachgalaxy large due to the PSF subtraction of the quasar. The color of model.TheorientationofgalaxyG5wassettobeedge–onbut, G2 makes it unlikely to be at z = 0.7443, and it must be an whentheothergalaxieswereused,theirorientationswerecho- elliptical if it is at z = 1.3284 or z ∼ 1.8. If only its color sen randomly. Each galaxymodelwas chosenfrom75D/25H is considered, it could be an E or S0 at z ∼ 1.8, but the de- Hybrid2inCharlton&Churchill(1998),with75%diskclouds rivedM valuesgiveL ∼ 15L∗ foranEandL ∼ 5L∗ B B B B B and25%haloclouds,bynumber. Inordertosimulateabsorp- foranS0. Suchluminousgalaxiesareexceedinglyrareandwe tionfromeithercompactgroupsorgalaxypairs,theindividual concludethatG2isprobablyatz =1.3284. syntheticabsorptionprofileswere shiftedin velocitybasedon ThemorphologyandcolorofG3seemtoindicatethatitisan observedcompactgrouporgalaxypairkinematics. Wegener- early–typegalaxy,butitsredshiftisdifficulttoconstrain. Ifat ated1000realizationsofsyntheticspectraforeach. z = 0.7443,G3wouldhaveL ∼ 0.1L∗ andcouldbeanE, B B S0,orearly–typespiral. Duetothelowluminosity,itisuncer- 4.1. CompactGroups tainwhetherG3wouldbegivingrisetostrongMgIIabsorption at this redshift. G3 could be an S0 at either z = 1.3284with The median velocity dispersion of compact groups, L ∼ 1L∗ orz ∼ 1.8withL ∼ 4.3L∗. Ifitisthelatter, 200kms−1 (Hicksonetal. 1992),resultsinprofilesthathave B B B B thegalaxywouldbeunusuallyluminous. Therefore,itismost velocity spreads larger than in the z = 0.7443 system. A likelyanEorS0atz =0.7443orz =1.3284. smallervelocitydispersionwasrequiredsothatourmodelsdid G4 isveryblueandwouldhaveto beactivelystar–forming notproducesyntheticprofileswithtotalvelocityspreadsincon- to be atz = 0.7443. Just as with G3, however,it may notbe sistent with the data. Therefore, we chose the galaxy relative luminousenough(L ∼0.1L∗)atthisredshifttobeexpected velocitiesfromHGC22,thecompactgroupwiththeminimum B B to giverise to strongMgII absorption. Theirregularstructure velocity spread (100 kms−1, Hickson et al. 1992). Thus, we observed in the image may indicate an Im galaxy. The color havealreadyrestrictedourselvestoalimitedregionofparame- and luminosity (L ∼ 0.1 L∗) are also consistent with such terspace;thisisnota“typical”compactgroup. B B a morphology at either z = 1.3284 or z ∼ 1.8. The color– Twenty–five randomly selected synthetic spectra from our redshiftcurvesconvergetowardR−I ∼0athighredshiftfor three–galaxy compact group models (using G3, G4, and G5) thespiraltypes,allowinganScdorSbcidentificationforG4at areshownintheupperpanelofFigure5. Clearly,thevelocity z ∼1.8. spreadsofthecloudsinthesimulatedspectratendtobegreater 5µisthefractionofthemassinthestarsafteroneGyr(Bruzual1983) 4 EXPANDINGSUPERBUBBLESINQ1331+170 thanthatinthez = 0.7443system,evenwiththebiastowards dominatesatageslessthan∼ 107 years. Mostofthe models, a small dispersion in galactic velocities. Also, the saturation however,aredominatedbytheHaardt–Madauspectrum. levelsinthesimulatedspectratendtobehigher,implyingthat WeassumetheISMtohaveaconstantinitialatomicdensity ourparticularlineofsightpassesthroughlessmaterialthanin ofn0 cm−3. AnOB associationresidinginthismediumgen- an average model compact group. Finally, the regular struc- erates a total luminosity of L38 (in 1038 ergs cm−3) through tureofpairsinabsorption,separatedby∼ 30kms−1,isnota a series of supernovaexplosions. If each supernova produces characteristic feature of lines of sight throughmodel compact ∼ 1051 ergs and the OB association lasts 50 million years, groups. the time–averaged luminosity is related to the number of su- 4.2. GalaxyPairs spwerenpotvuapesbhyelNliSsNn≃(e5x8p0reLss3e8d. Tinhuenaittosmoficcdme−n3si)tyanidnstihdeemofettahle- e Inordertoreducethetotalvelocityspreadandsaturation,we licity is Z, in solar units. The energy input from supernovae alsoconsideredmodelsofgalaxypairs,assumingthateitherG3 drives the bubble radially outward into the ISM. The similar- or G4 is at z = 0.7443 along with G5. Again, G5 was taken itysolution(MacLow&McCray1988)givestheradiusofthe tohaveanedge–onorientation,andtheothergalaxywastaken bubble, to be randomlyoriented. The velocitydifferencebetween the galaxypairistunedto∼50kms−1. Infact,thisisarelatively R=0.27 (n0/L38)−0.2 t70.6 kpc, (1) typicalvalueforfieldgalaxypairs. Twenty–fiverandomlyselectedgalaxypairsyntheticspectra wheret7 is theage inunitsof107 years. Theshellexpansion aredisplayedinthebottompanelofFigure5. Comparedtothe speedthenfollowsas compactgroupsyntheticprofiles,alargerpercentageofthepair pwriothfiltehsehoabvseervveeldocMitygIsIprperaodfislea.nHdoswateuvraetri,otnhelerveegluslacronabsissoterpn-t R˙ =16 (n0/L38)−0.2 t7−0.4 kms−1, (2) tion line pairswe observein the spectrumofMC 1331+170 areonlyrarelyproduced,eveninthissimplegalaxypairmodel. whichisconstrainedbytheobservedvelocitysplitting,∆v,of theabsorptionlinesaccordingto 4.3. KinematicModelResults The z = 0.7443 absorber toward MC 1331+170 was se- R˙ =0.5∆v 1−z2/R2 −1/2, (3) lectedforthisstudybecauseofitsuniquelyregularproperties. (cid:0) (cid:1) Assuch,thisisabiasedstudy.Nonetheless,wehaveseenthat, in 1000Monte–Carlosimulationsof galaxypairsand in 1000 where z is the impact parameter (to the center of the bubble) simulations of compact groups, we can only rarely produce a of the line of sight. This equationis not very sensitive to im- profile with such low levels of saturation and regular velocity pact parameter unless z/R ∼ 1. From the observed profile, splittings. However,itisdifficulttoquantifytheshapesofthe ∆v ∼30kms−1;thus,wesetR˙ =15kms−1. profilesinsuchawaythatwecanmakedirectstatisticalcom- If we choose L38 and t7, we can calculate R and Ntot for parisons. We remindthereaderthatweusedacompactgroup input to the Cloudy model, where N is the total hydrogen tot with an unusuallysmall velocitydispersion. Therefore,based column density. The radius is found by combining equations on this and on a visual inspection, we conclude that the ob- (1)and(2),giving servedprofileisunlikelytoarisefromeitheracompactgroup orgalaxypairenvironment. R=0.017R˙ t7 kpc. (4) 5. SUPERBUBBLESIMULATIONS Thespectrumofthez = 0.7443absorptionsystemappears Fromequation(1),n0isgivenby to be kinematicallyconsistent with a line of sight intersecting theoppositelyexpandingsidesofthe“cold”shellsofmultiple 5 superbubbles (Churchill et al. 1995). In order to test this hy- n0 =L38 (cid:16)16t7−0.4/R˙(cid:17) cm−3. (5) pothesis,wecalculatedwhatthecolumndensitiesofMgIIand FeIIshouldbeinthecontextofsuchamodel. Finally,N is tot 5.1. TheModel The global properties of our model superbubbles are gov- Ntot =1021Rn0 cm−2. (6) ernedbythesimilaritysolutionsofMacLow&McCray(1988) (alsoseeWeaveretal.1977).Modelsofthecoldshellofthesu- Theluminosity,L38 (0.01,0.1,1,10),waschosenforOBas- perbubbleswere performedusing Cloudy, version94.00 (Fer- sociations containing between 5 and 5,000 stars (e.g. McKee land 1996), taking into account chemical and ionization con- &Williams1997;Bresolinetal.1998).Theage,t7(0.5,1,2,4), ditions. The photoionizationsource consists of the ultraviolet was chosen to represent different points in the evolution of a background from quasars (Haardt & Madau 1996) and the O bubble expanding for 50 million years (Mac Low & McCray and B stars drivingthe expansionofthe superbubble. The in- 1988). The Cloudy models of the shell required that we also tensity of the Haardt–Madau background is set to a constant input logn (−2.5 to 2, with intervals of 0.25). Cloudy was e hydrogen–ionizingphotonnumberdensityof10−5.2 cm−3 (as thenrunforeverycombinationofthechosenparameters(L38, appropriate for z ∼ 1). The stellar contribution depends on t7, ne, and Z). The metallicity range (logZ ∼< 0) was based the luminosity of the parent OB association and the radius of uponobservationalconstraints(see§5.2).Eachsimulationwas the superbubble. Based upon our models, we find that for lu- haltedwhenthehydrogencolumndensity(N )calculatedin tot minosities greater than ∼ 1038 ergs s−1, the stellar spectrum Equation6wasreached. BONDETAL. 5 5.2. SimulationResults on the shell density, n , but we can constrain it for particular e For each L38 and Z, Cloudy grids were generated. In Fig- combinations of L38 and Z. As can be seen in Figure 4, in- ure4,weshowaplotofoutputgridsfromCloudyphotoioniza- creasing L38 raises the grid and brings higher shell densities tionmodelsforthelogZ = −1andlogZ = −0.5cases. The intotheallowedparameterspace. Forexample,theL38 =0.1, logZ = −1 grid has only −1.5 > logn > 1 cm−3 lying thicknessoftheplaneparallelsupernovashellisplottedversus e withintheallowedparameterspace. its MgII columndensity. Eachpanelrepresentsa differentlu- minosityoftheparentOBassociation(givenbyL38).Thesolid linesrepresenttheagesofthemodelsuperbubbles,correspond- 6. CONCLUSIONANDDISCUSSION ing (from left to right) to t7 = 4, 2, 1, and 0.5. The dashed The line pairs in the z = 0.7443 MgII absorption system linesrepresentthehydrogennumberdensityoftheshell,which in the spectrum of MC 1331+170are stronglysuggestiveof rangesfrom(toptobottom)logn = −3tologn = 2cm−3 e e shellsofexpandingsuperbubbles.Theidentityofthehostofthe in logarithmicintervalsof 0.25. We picked the regionsof pa- z = 0.7443absorptionsystemisnotimmediatelyobvious,but rameterspacewhichareintheobservedMgII columndensity is likely to be the spiral galaxy(G5) seen in the HST/WFPC2 range(seeTable1)andareconsistentwithobservedsuperbub- image (Figure 2). G3 and G4 are also candidates for being bles (Heiles 1979). These regions are enclosed by the dotted at z = 0.7443 and may form a compact group or pair with boxes. G5. However, kinematic models of galaxypairs and compact Themodelsproducevaluesforne/n0overalargerange,the groupsseemtoyieldvelocityspreadslargerthantheobserved maximum being ∼ 1000. We only plot modelsfor which the ∼ 200kms−1 andrarelyreproducethe symmetryseen in the shellismoredensethantheISM(ne > n0,wheren0 isfound MC 1331+170 system. This evidence seems to suggest that fromEquation5).Thiswillprobablybethecaseunlessthereis the absorptionarises in a single galaxy,either fromsuperbub- an extremeISM density gradient(Mac Low, McCray, & Nor- bles or random cloud distributions. Photoionization models, man1989)orwearepassingthroughacloudymedium(Silich consideringtheconditionsoftheparentOBassociationandthe etal.1996).Realsuperbubbleshaveshelldensitiesgreaterthan surroundingmedium,supportthesuperbubblehypothesiswith- fourtimestheISM densities, perhapsgreaterthanten timesif outrequiringfine–tuningofthespecificconditionsfromwhich theshellsareoverstable(Ryu&Vishniac1988). thesuperbubblesarise. Itmayseemcounter–intuitivethatMgII columndensityde- The models of superbubbles do, in fact, produce the ob- creasesastimeincreases,butthesuccessivet7gridlinesdonot served MgII column densities and velocity splittings of the represent an evolutionary sequence. The decrease is a conse- z = 0.7443 system, but there are still some discrepencies. quence of holding shell speed constant for all models. In or- The ∼ 250 kms−1 spread of our profile is the most prob- dertoproducethesamespeedatalatertime,theISMdensity lematic feature in the context of disk superbubbles. A typi- muchbe lower (providingless resistance). Thus, the different cal L∗ galaxy has a rotation velocity (V0) of ∼ 220 kms−1. t7linesrepresentvaryinginitialconditions(seeEquation2). If If one assumes that the superbubblesfollow the disk rotation, you have a smaller ISM density, then you will have a smaller the maximum spread (V ) over which they could occur is amountofmaterialsweptupintotheshell,resultinginasmaller max MgIIcolumndensity. Vmax =V0(1−D/Rg),whereDistheimpactparameterand R isthemaximumgalacticradiusatwhichsuperbubblescan Increasing the luminosity of the clusters corresponds to a g occur. The parameter R is likely to be approximately equal shift of the grid toward higher MgII column densities and g totheopticalradiusofthegalaxy. InM101,superbubblesare thicker shells. Increasingmetallicity causes a shiftin the grid seenoutto30kpc(Kamphuis1993).IfweassumethatR can towardslowerMgIIcolumndensities. Wehavesetconstraints beaslargeas∼40kpc,wegetonlyV ∼100kms−1g. For on the value of L38, so we can now constrain Z to fit ob- G5atz =0.7443,theimpactparametemraisx20h−1−1kpc. servational parameter space (the dotted box). The three left– There are severalpossible explanationsfor the large spread handpanelsofFigure4showlogZ = −1,whichisconsistent with the observed MgII column densities for L38 = 0.01 or in the z = 0.7443 MgII absorber: 1) A merger is inducing globular cluster formation in the halo (Ashman & Zepf 1992; L38 = 0.1. Agridwithanincreasedmetallicitywouldrequire Zepf& Ashman1993)andthe clustersare creatingsuperbub- a lower L38 (as apparent in the three right–hand panels). If bles. 2) Superbubbles are forming within tidal debris from a logZ >0,themodelsrequirealuminositythatistoolowforan recentinteraction(Kniermannetal.2000;Gallagher2001). A OBassociation(L38 <0.01).ThelargestOBassociationscon- lineofsightthroughtidaldebriscancreatevelocityspreadsas tain∼7000supernovaprogenitors(McKee&Williams1997), largeas1000kms−1 (Gallagher2001). 3)Someofthesuper- correspondingtoL38 ∼ 10(notshowninFigure4). Evenun- bubblesareoutliersinvelocityspace,possiblylocatedwithina der these extreme conditions, we cannot place a useful lower companiondwarfgalaxy(MacLow&Ferrara1999). 4)Some limitonthemetallicityintheshell. of the absorption lines are not from superbubblesand lie out- We can not obtain general lower and upper limits on t7 side of thedisk. Thisabsorptioncouldarise in halocloudsor (though t7 < 5 is a physical limit in our models, see § 5.1). indwarfgalaxies. The ages are limited, however, for particular combinations of Womble, Junkkarinen, and Burbidge (1991) point out that L38 andZ. For example,the L38 = 0.1, logZ = −1gridin largevelocityspreadsinedge–ongalaxiesarebetterexplained Figure4hasonly1<t7 <4lyingwithintheallowedparame- bychimneys,worms,orsuperbubblesblowingoutintothehalo. terspace(dottedbox).Presumably,themultiplebubblesgiving These are processesknownto occurat the end ofa superbub- risetoourspectrumcouldarisefromthesameburstofstarfor- ble’slifetimewhentheshellacceleratesthroughadensitygra- mation and have similar ages and metallicities. For this to be dientintothehalo. TheshellthenfragmentsduetoRayleigh– true, a logarithmicspreadof 1.5isrequiredin L38 in orderto Taylorinstabilitiesandthebubblebeginsexpellingmaterialout reproducetheentirerangeofMgIIcolumndensities. of the disk. This process is quite messy, however, and is not Aswitht7,wecannotobtaingenerallowerandupperlimits likelytogiverisetosuchevenlysplitlines. 6 EXPANDINGSUPERBUBBLESINQ1331+170 Our spectrum shows no more than six superbubbles within with respect to most of the ISM material. This separation in the line of sight, each ∼ 10 pc thick (Mac Low, McCray, & velocityspacemayariseifthebubblesarelocalizedinacertain Norman 1989); thus, there must be a substantial path length partofthediskorexistinastar–formingtidaltailnearby. The throughthe ISM in between the superbubbles. Why don’twe linesat∼ −100kms−1 inFigure1showlesssymmetrythan see dominating absorption from the ISM between the super- theothersandcouldbearisingfromISMcloudsinthedisk. bubbles? The simplest explanationis that the filling factor of the superbubbles is so large that the path length through the ISMmakesanegligiblecontributiontotheabsorption. Obser- We acknowledge support from the NSF/REU program and vations of HI holes in nearby galaxies (Kamphuis 1993) give NASA/LTSA through grant NAG5-6399. We would like to maximum covering factors of ∼ 0.3; however, they are only thank Mordecai-Mark Mac Low for his insightful comments. sensitive down to R ∼ 0.5 kpc. Another possible explana- WethankJanetGeoffroyfortheuseofherspectralintegration tionisthatOBassociationsresideinregionsofenhancedden- codewhichweusedtocalculategalaxycolors. Wealsobene- sityandthesuperbubblessweepthedensestmaterialintotheir fitfromusefulconversationswithMattBershadyNielBrandt, shellbeforereachingthesparse, interveningmaterial. Finally, Robin Ciardullo, Jenn Donley, Rajib Ganguly, Dick McCray, theparentOBassociationsthemselvesareatunusualvelocities JaneRigby,KenSembach,andSteinnSigurdsson. REFERENCES Ashman,K.M.&Zepf,S.E.1992,ApJ,384,50 Kanekar,N.,Chengalur,J.N.,Subrahmanyan,R.,&Petitjean,P.2000,A&A, Boisse´,P.,LeBrun,V.,Bergeron,J.,&Deharveng,J.-M.1998,A&A,333,841 inpress(astro-ph/0012079) Bomans,D.J.,deBoer,K.S.,Koornneef,J.,&Grebel,E.K.1995,A&A,313, Kniermann, K. A., Hunsberger, S. D., Gallagher, S. C., et. al., 2000, ApJ, 101 submitted Bouche´,N.,Lowenthal,J.D.,Charlton,J.C.,Bershady,M.A.,Churchill,C. Kinney,A.L.,Calzetti,D.,Bohlin,R.C.,McQuade,K.,Storchi–Bergmann,T., W.,&Steidel,C.C.2000,ApJ,submitted &Schmitt,H.R.1996,ApJ,467,38 Bowen,D.V.,Blades,J.C.,&Pettini,M.1995,ApJ,448,634 Lane,W.M.2000,Ph.D.Thesis,RijksuniversiteitGroningen Bowen, D. V., Tripp, T. M., & Jenkins, E. B. 2000, AJ, submitted (astro- Lanzetta,K.M.&Bowen,D.V.1992,ApJ,391,48 ph/0011134) LeBrun,V.,Bergeron,J.,Boisse´,P.,&Deharveng,J.M.1997,A&A,321,733 Bresonlin, F.,Kennicutt, R. C.,Ferrarese, L.,Gibson, B.K.,Graham, J.A., MacLow,M.-M.,&McCray,R.1988,ApJ,324,776 Macri,L.M.,Phelps,R.L.,Rawson,D.M.,Sakai,S.,Silbermann,N.A., MacLow,M.-M.,McCray,R.,&Norman,M.L.1989,ApJ,337,141 Stetson,P.B.,&Turner,A.M.1998,AJ,116,119 MacLow,M.-M.&Ferrara,A.1999,ApJ,513,142 Bruzual,A.G.,&Charlot,S.1993,ApJ,405,538 McClure-Griffiths,N.M.,Dickey,J.M.,Gaensler,B.M.,Green,A.J.,Haynes, Charlton,J.C.,&Churchill,C.W.1998,ApJ,499,181 R.F.,&Wieringa,M.H.2000,AJ,119,2828 Chaffee,F.H.,Black,J.H.,&Foltz,C.B.1988,ApJ,335,584 McKee,C.F.&Williams,J.P.1997,ApJ,476,144 Churchill,C.W.,Vogt,S.S.,Steidel,C.C.,1995,Frommetal-lineabsorption Rao,S.M.&Turnshek,D.A.2000,ApJS,inpress profiles to halo kinematics. In: Meylan G. (ed.) QSO absorption lines, Ryu,D.,&Vishniac,E.T.1988,ApJ,331,350 Springer,Berlin,p.153 Silich,S.A.,Franco,J.,Palousˇ,J.,&Tenorio-Tagle,G.1996,ApJ,468,722 Churchill,C.W.1997,Ph.D.Thesis,UniversityofCalifornia,SantaCruz Steidel,C.C.&Sargent,W.L.W.1992,ApJS,80,1 Churchill,C.W.,Mellon,R.R.,Charlton,J.C.,Jannuzi,B.T.,Kirhakos,S., Steidel,C.C.,Dickinson,M.&Persson,E.1994,ApJ,437,L75 Steidel,C.C.,&Schneider,D.P.2000a,ApJS,130,91 Steidel, C. C. 1995, in QSO Absorption Lines, ed. G. Meylan (Garching: Churchill,C.W.,Mellon,R.R.,Charlton,J.C.,Jannuzi,B.T.,Kirhakos,S., Springer–Verlag),139 Steidel,C.C.,&Schneider,D.P.2000b,ApJ,543,577 Sungeon,K.,Dopita,M.A.,Staveley-Smith, L.,&Bessell, M.S.1999,AJ, Churchill,C.W.&Vogt,S.S.2001,ApJ,submitted 118,2797 Ferland,G.1996,Hazy,UniversityofKentucky,InternalReport Vogt,S.S.,etal.1994,inProc.SPIEConf.2198,InstrumentationinAstronomy Gallagher, S. C., Charlton, C. C., Hunsberger, S. D., & Zaritsky, D. 2001, VII,editedbyD.L.CrawfordandE.R.Craine(SPIE,Bellingham,WA),p. submitted 362 Haardt,F.&Madau,P.1996,ApJ,461,20 Weaver,R.,McCray,R.,Castor,J.,Shapiro,P.,&Moore,R.1977,ApJ,218, Heiles,C.1979,ApJ,229,533 377 Hickson,P.,deOliveira,C.M.,Huchra,J.P.,&Palumbo,G.G.C.1992,ApJ, Whitmore,B.,Zhang,Q.,Leitherer,C.,Fall,S.M.,Schweizer,F.,&Miller,B. 399,353 1999,AJ,118,1551 Kamphuis,J.1993,Ph.D.Thesis,UniversityofGroningen Womble,D.S.,Junkkarinen,V.T.,&Burbidge,E.M.1991,ApJ,388,55 Zepf,S.E.&Ashman,K.M.1993,MNRAS,264,611 BONDETAL. 7 TABLE 1 CLOUD PROPERTIES FORQ1331+170 Cloud MgII FeII MgI hvi logN b logN b logN b [kms−1] [cm−2] [kms−1] [cm−2] [kms−1] [cm−2] [kms−1] −140.7 11.81±0.08 5.01±1.68 <11.89 ··· <10.80 ··· −117.9 13.15±0.01 9.09±0.16 12.82±0.03 8.33±0.93 <10.78 ··· −90.2 13.05±0.01 4.70±0.12 12.61±0.04 4.81±0.85 11.02±1.15 ∼9.5 −71.4 12.63±0.01 7.13±0.37 12.07±0.19 2.19±1.57 <10.80 ··· −47.9 12.62±0.08 6.29±0.59 11.62±0.06 0.31±0.08 <10.84 ··· −32.8 13.22±0.02 13.22±0.68 12.87±0.04 13.54±1.79 11.21±0.22 4.03±2.87 −6.9 13.26±0.02 4.03±0.20 13.25±0.04 3.57±0.26 11.81±0.04 5.50±0.80 2.1 13.03±0.04 10.33±0.58 12.54±0.09 3.87±1.09 <10.75 ··· 37.6 12.01±0.06 5.88±1.19 <11.82 ··· <10.80 ··· 63.0 12.21±0.04 8.65±1.10 12.52±0.22 39.46±22.98 <10.80 ··· 103.4 13.08±0.02 13.33±0.56 12.83±0.06 12.21±1.71 11.21±0.28 12.81±8.38 121.4 13.08±0.02 7.77±0.23 12.45±0.08 6.15±1.24 11.09±0.30 ∼2.6 148.3 13.47±0.01 9.07±0.12 13.31±0.01 9.75±0.38 11.43±0.07 7.59±1.58 TABLE 2 Q1331+170FIELDANALYSIS SCENARIOS Galaxy D R I 0.7443 1.3284 1.776 D Type Luminosity D Type Luminosity D Type Luminosity [′′] [kpc] [L∗] [kpc] [L∗] [kpc] [L∗] 2 0.75 24.9 23.8 3.61 ··· ··· 4.36 E 3.57 4.63 E 14.5 S0 5.14 3 1.58 25.1 24.4 7.61 S0 0.08 9.18 S0 1.09 9.76 S0 4.28 E 0.08 4 2.86 24.2 24.2 13.77 SB 0.08 16.62 SB 0.163 17.67 SB 0.208 Im 0.12 Im 0.498 Im 0.822 5 3.86 21.40 21.47 18.58 SB 1.16 22.43 SB 2.12 23.84 SB 2.71 8 EXPANDINGSUPERBUBBLESINQ1331+170 | | | | || || | | | | | 1 0 | | | | || || | | | | | 1 0 | | | | || || | | | | | 1 0 | | | | || || | | | | | 1 0 | | | | || || | | | | | 1 0 -200 -100 0 100 200 FIG. 1.— The HIRES/Keck spectrum of the z=0.7443 system toward Q1331+170showing transitions detected at > 5σ aligned in rest frame velocity space. The solid lines representa model from a simultaneousVoigt profile fit to the spectra, with the ticks markingindividualcomponents. BONDETAL. 9 FIG.2.— Twoimages,eachwithadifferentdynamicrange,oftheMC1331+170fieldcombiningtheR(F702W)andI (F814W) filters. Galaxies are numbered G3 through G5, in order of distance from the quasar (at center). G2 is not labeled because of its proximitytothequasarandcanonlyberesolvedviaPSFsubtraction.Theleft–handpanelemphasizesG3andG4andtheright–hand panelemphasizesG5(forpresentationpurposesonly). 10 EXPANDINGSUPERBUBBLESINQ1331+170 1 .5 0 0 .2 .4 .6 .8 1 1.2 1.4 1.6 1.8 2 FIG. 3.— A color-redshift diagram plotted of model spectral energy distributions representing a variety of morphologicaltypes (Bruzual & Charlot 1993; Kinney et al. 1996). The dotted vertical lines denote the redshifts of the absorption systems in the spectrumofQ1331+170andthedashedhorizontallinesdenotethecolorsofthesourcesintheopticalfield.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.