ebook img

Evidence for enhanced persistent emission during sub-Eddington thermonuclear bursts PDF

1.4 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Evidence for enhanced persistent emission during sub-Eddington thermonuclear bursts

APJ(ACCEPTED) PreprinttypesetusingLATEXstyleemulateapjv.5/2/11 EVIDENCEFORENHANCEDPERSISTENTEMISSIONDURINGSUB-EDDINGTONTHERMONUCLEARBURSTS HAUKEWORPEL1,2,DUNCANK.GALLOWAY1,DANIELJ.PRICE1 (Dated:January12,2015) ApJ(accepted) ABSTRACT In a recent paper, we found evidence for an increase in the accretion rate during photospheric radius ex- 5 pansionbursts,quantifiedbyavariablenormalizationfactor fa onthepre-burstpersistentemission. Herewe 1 followthisresultuponamuchlargersampleof1759typeIX-rayburstsfrom56sources. Weshowthatthe 0 variablepersistentfluxmethodprovidesimprovementsinthequalityofspectralfitsfortypeIbursts,whetheror 2 nottheyreachtheEddingtonluminosity. ThenewapproachhasanestimatedBayesfactorof64improvement overthestandardmethod,andwerecommendtheprocedurebeadoptedasstandardforanalysingtypeIbursts. n Weshowevidencethattheremainingdiscrepanciestoaformallyconsistentspectralmodelareduetotheburst a J componentdeviatingsignificantlyfromablackbody,ratherthanvariationsinthespectralshapeofthepersis- tent emission component. In bursts that do notshow radiusexpansion, the persistentemission enhancement 9 doesnotexceed37%oftheEddingtonflux. WeusethisobservationtoconstraintheEddingtonfluxofsources forwhichF hasnotbeendirectlymeasured. ] Edd E H 1. INTRODUCTION bysubtractingtheinstrumentalbackgroundonly,butdidnot . h TypeIX-raybursts,discoveredinthe1970s(Grindlayetal. find that the spectral fits were improved by doing so. In a p 1976;Belianetal.1976),arisefromthermonuclearrunaways study of neutronstar radii derivedfrom cooling tail spectra, - Güveretal. (2012) noted the possibility of variations in the in accreted H/He material on the surface of a neutron star o persistentemissionspectrumandexcludedburstswhosepre- r (e.g., Woosley&Taam 1976; Strohmayer&Bildsten 2006). t Gasflowingfromalow-massstellarcompanionaccumulates burstpersistentfluxwasmorethan10%oftheEddingtonflux s of that source, so thatthe contributionfrom persistentemis- a on the surface of the neutron star (e.g., Woosley&Taam sion is always small. in’tZandetal. (2013) studied a PRE [ 1976; Joss 1977) . There it undergoes hydrostatic heat- burstfromSAXJ1808.4- 3658usingcombinedChandraand ing and compression, triggering unstable nuclear burning 1 RXTE data and found that an observed excess of photons at when the temperature and pressure are high enough (e.g., v both low and high energies can be well described by allow- Fujimotoetal. 1981; Strohmayer&Bildsten 2006). These 0 ing a 20-fold increase of the pre-burst persistent emission. eventsareobservedasasuddenincreaseintheneutronstar’s 7 Thisapproachwas appliedto 332PRE burstsobservedwith X-ray luminosity, to many times the persistent level (see re- 0 RXTE by Worpeletal. (2013; hereafterWGP13), where we views by Lewin&Joss 1981; Lewinetal. 1993). Typical 2 foundthatallowingthepersistentemissiontovaryinintensity bursts exhibit rise times of 1–10 s, durations of a few tens 0 duringa burst improvesthe spectral fits, and that the persis- . ofsecondstoafewminutes(e.g.,Gallowayetal.2008),and 1 emitatotalenergyof1039–1040erg. tent emission usually increases temporarily to several times 0 itspre-burstlevel. Type I bursts provide a probe into the conditions on the 5 Since the intensity of the persistent emission is expected surface of the neutron star and yield insights into its inter- 1 toincreasewithincreasingaccretionrate,WGP13interpreted nal structure (Lattimer&Prakash 2007). Performing such : thiseffectasatemporaryaccretionenhancement,possiblythe v measurementsrequiresan accuratedeterminationof the flux resultofthedisklosingangularmomentumviaradiationdrag. i throughouttheburst. Thisinturnnecessitatesagoodunder- X Other interpretationsare possible; in’tZandetal. (2013) ar- standing of the X-ray spectra since bolometric flux cannot gue for reprocessing of the burst spectrum in the accretion r be measured directly from photon count (Blissett&Cruise a disc. 1979),andwemustalsoknowhowtoseparatethefluxfrom The"variablepersistentflux" approachhassince beenap- the expandingatmosphere from that arising from other sites pliedsuccessfullybyotherstudies(e.g.,in’tZandetal.2013; in the neutron star system. One such contribution is the ac- Keeketal.2014;Peilleetal.2014),anditisbecomingclearer cretiondiscitself. ItemitsX-raysthroughthe conversionof thatburstsaffecttheaccretiondiscandcanbeusedtoprobe gravitational potential energy of the inspiralling gas. This accretionphysics. Inaninvestigationofalongdurationburst emission is present before the burst, and has traditionally from4U1636- 536,Keeketal. (2014) foundthatthe persis- beenassumedtoremainconstant(bothinspectralshapeand tent emission was enhanced by a factor of 2 and also in- inintensity)throughouttheburst(e.g.,vanParadijs&Lewin ≈ ferred a significant modification of the inner accretion disc. 1986;Lewinetal.1993;Kuulkersetal.2003;Gallowayetal. Adepletionoftheaccretiondisc throughradiationdragdur- 2008). ing a burst was predicted by Walker (1992), who found in Munoetal. (2000) and Strohmayer&Brown (2002) al- numerical simulations that the accretion rate after the burst lowed for the persistent emission to be suppressed entirely, candeclinetemporarilytohalfthepre-burstlevel.Peilleetal. (2014)performedastudyofquasi-periodicoscillationsfrom 1SchoolofPhysicsandAstronomy,MonashUniversity,Clayton,Vic- 4U1636- 536and4U 1608- 522,andfoundthattheseoscil- toria3800,Australia lations were suppressed for severaltens of secondsafter the 2Leibniz-InstitutfürAstrophysikPotsdam(AIP),AnderSternwarte16, burst.Theyattributethisphenomenontoadepletionofthein- 14482Potsdam,Germany 2 neraccretiondisc,thoughitsfastrecovery(5-10timesfaster BAR)4. than the viscous time) remains a mystery. Clearly a greater We classified type I bursts as either belongingto the pho- observationalandtheoreticalunderstandingofthe behaviour tosphericradius expansion(PRE) class of bursts, or not, ac- ofaccretionontotypeIburstersisrequired. cordingtothecriteriaforradiusexpansiondescribedin§2.3 Disentangling the burst component of the spectrum from of G08. In brief, these criteria define radius expansion as the persistent component is difficult, as the various compo- an increase of the surface area of the photosphere together nents are usually spectrally degenerate. Furthermore, we withadecreaseinitstemperature. Asmallnumberofbursts do not have spatial resolution and therefore cannot attribute fulfil some, but not all, of the criteria and are classified as different spectral components to different sites in the neu- "marginal"PREbursts. tron star system. This problem will be further compli- Ourdatareductionproceduresarethe same asthosein §2 cated if, as we expect, both the persistent and burst com- of WGP13, unless otherwise stated, and we refer the reader ponents can vary in spectral shape during a burst. In- to that work for further details. To estimate and removethe deed, it has long been known that the spectral shape of instrumental background we used the full-mission, “bright” the persistent emission, as well as its intensity, is a func- source(>40countss- 1)modelsreleased2006August6with tionofaccretionrate(Hasinger&vanderKlis1989;seealso the pcabackest tool. Table 1 lists interstellar absorption Lyuetal. 2014). There are, however, suggestions that be- columndensitiesforallburstsourcesandthereferencesfrom tweenburststheaccretionspectrumremainsconstantinshape which these were drawn; the table includes several sources on timescales longer than those of a burst, though its in- that were not investigated in WGP13 because they have no tensity may vary (e.g., Thompsonetal. 2005; Bagnolietal. PREburstsintheMINBARcatalog. 2013; Linaresetal. 2014). During a burst it is, of course, much more difficult to detect changes in the accretion spec- 2.1. Burstselection tral shape. A sudden loss of high energy (&30 keV) pho- WerestrictoursampleoftypeIburststoexcludeeventsthat tons has been detected from several sources, but this effect areunsuitableforanalysis. Wediscarded57burstsforwhich has been attributed to rapid coolingof the coronaand is not noStandard-2datawasavailable,preventingestimationofthe related to accretion rate (Maccarone&Coppi 2003; Jietal. instrumentalbackground. Someburstsourceslieincrowded 2013; Chenetal. 2013). Changesin the shape and intensity fieldscontainingotherLMXBswithinthe 1◦RXTEfieldof ofthepersistentemission duringa verylong(20,000s)burst ∼ view. Ifthe othersource(s)wereactiveat thetime ofobser- from 4U 1636- 536were reportedby Keeketal. (2014), but vation,thentheirpersistentemissionwouldbeconfusedwith variations on these timescales can happen in the absence of thatoftheburstsourceanditwouldbeimpossibletoseparate bursts,andtheburstsweconsiderinthispaperareverymuch the persistent emission of the burst source from that of the shorter. othersource(s).Suchburstsneedtobeexcludedfromconsid- PRE burstschangethestructureof theneutronstarphoto- eration. Ourprocedurefor removingsource-confusedbursts sphere,andthisislikelyto causethespectrumofthephoto- is the same as WGP13 §4.1. A total of 168 bursts were ex- sphereto deviatefromits usualnear-blackbodyshape. Such cludedasbeingsourceconfused.Ourcatalogalsocontains16 changesare unrelatedto the accretionspectrum. As pointed typeIburstsfromtheRapidBurstertakenduringoffsetpoint- outbyWGP13,thesewillconfoundspectralanalysesofper- ingstoavoidconfusionwiththenearby4U1728- 34.Wealso sistentemissionduringaburst.Suchcomplicationscanbere- excluded35burstswhoseradiusexpansionstatuswasunclas- movedbyconsideringnon-PREbursts,butcaremustbetaken sifiableduetodatagapsorverylowflux,and58burstsclas- toaccountforlowersensitivityduetotheirintrinsicallylower sified as "marginal"(i.e. satisfying onlysome of the criteria flux. of§2.3inG08). Inthispaperweinvestigatetherelationshipbetweenaccre- tionandtypeIbursts.WeapplythefittingmethodofWGP13 2.2. Characterizingthepersistentemission to every type I burst detected by RXTE. In addition, we in- As in the previous studies G08 and WGP13 we adopted vestigatethevariabilityofthe accretionspectraimmediately the integrated X-ray flux for a 16-second interval prior to beforeandafterbursts,todeterminewhetherourspectralfit- the start of each burst as the persistent emission. This spec- tingprocedurecanbeconfoundedbyrapidchangesintheac- trum includes a time-dependentcontribution estimated as in cretionspectrum. In§5wedevelopamethodforobtaininga WGP13. Subsequentmodelfitstoeachpersistent(andburst) lowerboundonthe Eddingtonfluxforsourcesthathavenot spectrum used the corresponding model spectrum estimated yetbeenobservedtoundergoPREbursts. forthatburstasbackground. For each burst we fit the persistent emission with a set 2. DATAANALYSIS of nine alternative models in turn. These are summarized We used observational data from the Rossi X-Ray Tim- in Table 2, and are the same six persistent models as in ing Explorer (RXTE), publicly available through the High- WGP13,withtheadditionofwabs*disko,wabs*diskm, Energy Astrophysics Science Archive Research Centre and wabs*(CompTT+gaussian). The first two of these (HEASARC)3. The observations date from shortly after the includeaccretionrateexplicitlyasavariableparameter,mak- satellite’s launch on December 30, 1995 to the end of the ingitpossibletoinvestigatetherelationshipbetweenthenor- RXTEmissiononJanuary3,2012.OursampleoftypeIbursts ˙ malizationfactor f andM.ThelatterwasusedbyPeilleetal. a isbasedontheburstcatalogueof(Gallowayetal.2008;here- (2014)andweincludeitforcompleteness. Wethenselected after G08), with the addition of 880 type I bursts detected thefitthatgavethebest(i.e. lowest)χ2 torepresenttheper- ν afterthepublicationofthatpaper.TheentireRXTEburstcat- sistent spectrum for that burst. As shown in Figure 1, this alogformspartoftheMulti-INstrumentBurstArchive(MIN- suite of models provide statistically adequate fits so we re- 3Seehttp://heasarc.gsfc.nasa.gov 4 seehttp://burst.sci.monash.edu/minbar 3 TABLE1 NH VALUESANDEDDINGTONFLUXES Source Non-PREBursts PREbursts SWFCa SBCb NH Reference FEdd 1022cm- 2 10- 9ergs- 1cm- 2 4U1746-37 22 3 0 2 0.3 1 5.8±1.4 MXB1659-298 11 12 0 0 0.2 2 17.0±4.0 AqlX-1 52 12 0 0 0.4 3 99.6±21.3 SAXJ1810.8-2609 4 1 1 0 0.3 4 111.2±2.5 IGRJ17480-2446 277 0 0 0 0.5 1 ··· c CygX-2 34 7 0 0 0.1 5 13.1±2.1 GS1826-24 67 0 0 0 0.4 6 ··· XTEJ1709-267 2 0 0 0 0.4 7 ··· 4U1820-30 0 16 34 7 0.2 1 57.1±7.7 SAX1808.4-3658 1 8 2 0 0.1 8 230.1±13.2 GX17+2 5 2 0 4 1.9 9 13.3±2.5 RapidBurster 19 0 0 0 1.7 10 ··· IGRJ17473-2721 2 0 0 0 3.8 11 113.5±12.1 CirX-1 13 0 0 0 0.7 12 ··· HETEJ1900.1-2455 0 7 0 0 0.2 13 123.9±10.6 4U2129+12 5 1 1 1 0.0 1 40.8±1.6 1M0836-425 17 0 0 0 2.2 14 ··· 4U1735-444 7 10 0 0 0.1 15 34.2±5.6 1A1744-361 3 0 0 0 4.5 16 ··· 4U1722-30 0 3 23 1 0.8 1 61.7±12.4 GX3+1 1 2 0 1 1.6 17 59.9±0.9 EXO1745-248 15 2 0 0 3.8 1 69.0±0.2 XTEJ1739-285 6 0 0 0 2.0 18 ··· 2S0918-549 1 2 3 0 0.3 19 119.2±12.4 SerX-1 11 6 0 0 0.4 5 29.4±7.1 GRS1741.9-2853 1 4 1 0 11.3 20 35.3±10.9 2E1742.9-2929 65 1 0 0 1.2 18 37.8±1.4 4U1728-34 30 64 0 0 2.6 21 95.0±8.4 XB1832-330 0 1 0 0 0.1 1 33.7±4.4 IGRJ17511-3057 7 0 0 0 0.6 22 ··· 4U1608-522 28 18 5 0 0.9 23 167.2±26.0 GRS1747-312 1 1 0 0 1.4 1 13.4±4.4 XTE1814-338 27 0 0 0 0.2 18 ··· XTEJ1723-376 2 0 0 0 7.9 18 ··· 4U1254-69 3 0 0 0 0.3 24 ··· 4U1702-429 43 5 3 0 1.9 18 87.7±4.5 SAXJ1750.8-2900 3 2 1 0 0.9 18 54.1±2.1 XTEJ1701-462 1 2 0 0 2.0 25 43.4±1.4 XTEJ1810-189 3 1 0 0 4.2 26 54.2±1.8 EXO0748-676 143 5 0 0 0.8 27 46.5±4.6 4U1916-053 1 12 0 0 0.3 28 30.6±3.6 XTE2123-058 3 0 0 0 0.1 29 ··· XTE1759-220 5 3 0 0 2.8 18 15.7±0.8 4U1636-536 269 76 2 0 0.2 5 72.6±9.1 IGR17191-2821 5 0 0 0 0.3 30 ··· SLX1744-300 10 0 3 0 4.5 31 13.9±3.1 SAXJ1748.9-2021 16 11 0 0 0.5 1 38.0±6.0 4U1323-62 35 0 0 0 2.4 32 ··· KS1731-260 21 4 3 0 1.3 33 48.6±5.6 XTEJ1710-281 37 3 0 0 0.4 34 7.1±1.5 IGRJ17498-2921 0 1 0 0 1.2 18 51.6±1.6 SAXJ1747.0-2853 6 10 2 0 8.8 35 52.5±7.1 SLX1735-269 1 0 0 3 0.1 36 49.4±3.9 4U1705-44 77 4 0 0 1.9 37 41.0±3.8 4U0513-40 11 4 3 0 0.0 1 14.5±3.5 SAXJ1806.5-2215 4 0 0 0 1.0 18 ··· REFERENCES. —1. Kuulkersetal.(2003);2. Oosterbroeketal.(2001b);3. Campana&Stella(2003);4. Nataluccietal.(2000);5. Asaietal.(2000); 6. in’tZandetal.(1999); 7. Jonkeretal.(2003); 8. Wangetal.(2001); 9. Farinellietal.(2007); 10. Frogeletal. (1995);11. Altamiranoetal.(2008);12. Iariaetal.(2005);13. Campana(2005);14. Bellonietal.(1993);15. Augusteijnetal.(1998);16. Gavriiletal.(2012);17. Oosterbroeketal.(2001a);18. J.in’tZand2014,privatecommunication;19. Juettetal.(2001);20. Sakanoetal. (2002); 21. D’Aíetal.(2006); 22. Papittoetal.(2010); 23. Keeketal.(2008); 24. Boirin&Parmar(2003); 25. Linetal.(2009); 26. Krimmetal.(2008);27.Homanetal.(2003);28.Churchetal.(1998);29.Hynesetal.(2001);30.Klein-Woltetal.(2007);31.Morietal. (2005);32. Churchetal.(2005);33. Cackettetal.(2006);34. Younesetal.(2009);35. Werneretal.(2004);36. Davidetal.(1997);37. Pirainoetal.(2007) aBeppoSAXWide-FieldCamera bSupplementalBurstCatalog(seetable3) cNoPREbursthasbeenobservedfromthissource 4 temperatureT andnormalizationK ,andb istheinstru- bb bb inst mentalbackground. Pisamodelforthepre-burstpersistent 180 emissionthatalso includesabsorption,thoughforsomeper- Theoretical 160 sistentmodelswedonotretainthesamenH–thisisameans ra Measured to adjust the low energy end of the accretion spectrum and ect140 should not be interpreted as saying anything physical about p s thehydrogencolumndensity. The accretionenhancementis nt 120 quantifiedwiththe f normalizationfactor.Wehavefitatotal e a st100 of160,017spectra. si r e p 80 of 3. RESULTS er 60 Profilesoffitparameters,usingbothmethods,forthreeex- mb ampleburstsareshowninFigure2. Wehaveselectedbursts u 40 from three different sources to illustrate the results. These N 20 plotsclearlyshowthat faisenhancedtoseveraltimesthepre- burstlevel, asfoundforradiusexpansionburstsby WGP13. 0 This result is typical for all the bursts in our analysis. The 0.0 0.5 1.0 1.5 2.0 2.5 3.0 χν2 fa forspectraprecedingtheburstappeartobeslightlylower thanunity,butthisisanartefactoffittingthesespectrawitha FIG.1.—Distributionofχ2ν forthespectralfitstothepersistentemission modelthatincludesaburstcomponentwhichinrealityisab- (histogram)comparedtoatheoreticaldistributionofχ2ν foracollection of sentbeforetheonsetofnuclearburning.Thiscausessomeof spectrawiththesamenumberofdegreesoffreedom(curve).AKolmogorov- thepersistentfluxto be misidentifiedasburstemission. Fit- Smirnovtestgavea97%probability(D=0.11)thatthetwocurvesarecon- ting the pre-burst spectra with just a normalization-variable sistent withhaving been drawnfromthe samedistribution, indicating that persistentmodelgivesresultsconsistentwithunity. oursuiteofmodelsforthepersistentemissionspectraisadequateforusein subsequentwork. InFigure3weshowthedistributionsofχ2ν forthevariable persistent normalization fits and the standard approach fits, gardthesepersistentmodelsacceptableintheanalysisofthe compared with a theoretical distribution of χ2 for a model ν burststhemselves. thatadequatelydescribesthedata. FitsfrombothPREbursts Thereisnodifferenceinthedistributionsofbest-fittingper- andnon-PREburstsareshown. We performedKolmogorov- sistentmodelsbetweenthePREandnon-PREbursts. Weas- signedeachmodeladistinctnumericallabelandperformeda Smirnovtestsonthemeasureddistributionsofχ2ν againstthe theoretical. D and p values are listed on Figure 3, with the Kolmogorov-Smirnovtestontheresultingdistributions,with variablefitslistedfirst. Theseresultsconfirmwhatisvisually D=0.03anda95%probabilitythatbothareconsistentwith evident in the Figure: the variable persistent normalization havingbeendrawnfromthesamedistribution. fits significantly improve the quality of the spectral fits for Agaspressuredominatedaccretiondisc(wabs*diskm)is bothradiusexpansionand nonradius-expansionbursts. The notthepreferredmodelforanypersistentemissionspectrum, spectralfitsforPREburstsaregenerallypoorerthannon-PRE indicatingthatthisisnotagooddescriptionofaccretiondiscs burstsforbothfittingmethodsand,althoughthevariableper- inLMXBsystems. Instead,weexpectthedisctoberadiation sistentnormalizationmethodimprovesthedistributionofχ2, dominated,andpossiblyshowinghardemission. ν thedeviationfromamodelthatisstatisticallyconsistentwith For6bursts,nopersistentemissionmodelcouldbefitwith thedataisstillpresent. Itisclearthatradiusexpansionintro- χ2ν <3.5. Theseburstswereexcludedfromfurtherconsider- ducesasignificantspectraleffectontopofthevariationsin- ation. ducedbyenhancedpersistentemission.Thesecondandthird panelsshowthatcoolingtailspectraofPRE burstsaremore 2.3. Fittingprocedure poorlyfitthanspectrafromnon-PREbursts. Thismayimply AsinWGP13wefirstfiteveryburstspectrumwiththestan- thatPREaffectsthediscand/orphotosphereinamannerthat dardapproach:ablackbodyspectrum,correctedforinterstel- persists for some time after the photosphere has returned to larabsorptionusingtheappropriatehydrogencolumndensity thesurfaceofthestar. for the burst source (see Table 1). We use the recordedpre- We assessed the relative improvementof the variable per- burstemission,includingtheinstrumentalbackground,asthe sistentfluxtreatmentoverthestandardanalysisbyestimating backgroundfor these initial fits. See G08 for furtherdetails the Bayes factor, as follows. We interpret the probabilities regardingthisfittingmethod.Thestandardfitsprovideacom- calculatedfromtheK-Sstatisticsasthegloballikelihoodfor parison model and spectral parameters, as well as sensible each model, i.e. p(DM,I) where D is the set of χ2 values i spectral parameters to seed the variable persistent emission correspondingtothem|odelfits,M representseachfittingap- i fits. proach (model), and I the priors. Even if this interpretation We then re-fit all the burst spectra, replacing the back- is not strictly correct, we expect that the K-S probability is groundwiththeinstrumentalbackground,andaddingavari- proportionaltotheactuallikelihood,sothattheratioofprob- ablepersistentemissioncomponentappropriateforthatburst abilitiesisagoodestimateoftheratiooflikelihoods.Follow- (§2.2). Thatis,wemodelledthetotalspectrumas ingGregory(2005),theothercontributiontotheBayesfactor S(E)=A(E) B(E;T ,K )+f P(E)+b(E) , (1) calculation is the penalty imposed by the additional degree × bb bb a× inst offreedomintroducedwiththevariablepersistentfluxfactor whereS(E)isthefittedspectrumasafunctionofenergyE,A f . Sincethestandardapproachisaspecialcase ofthevari- a is the absorptioncorrectiondueto interstellar hydrogen(see able persistent flux approach (with f fixed implicitly at 1), a n valueslisted inTable 1), B isa blackbodyspectrumwith wecomparetheeffectiveuncertaintyfortheformerapproach H 5 TABLE2 XSPECMODELSFORFITTINGTHEPERSISTENTEMISSION XSPECmodel Number Notes ofspectra wabs*diskoa 160 wabs*diskma 0 wabs*(bbodyrad+powerlaw) 425 nHfixedtoliteraturevalues wabs*(bbodyrad+powerlaw+gaussian) 271 nHfixed,Gaussianenergysetto6.4keV wabs*(compTTb) 39 nHallowedtovary wabs*(bbodyrad+powerlaw) 46 nHallowedtovary wabs*(gauss+bremss) 321 allparametersvariablec wabs*(bbodyrad+diskbbd) 183 allparametersvariablec wabs*(compTT+gaussian)e 314 nHfixed,Gaussianenergysetto6.4keV Totalusablespectra 1759 Rejectedduetosourceconfusion 168 Otheractivesourcesinfield Backgrounddatamissingorunusable 57 Nogoodpersistentmodelfit 6 Minimumχ2ν>3.5 Marginalradiusexpansion 58 Radiusexpansionstatusunclassified 35 aSeeStella&Rosner(1984) bSeeTitarchuk(1994) cAllparametersarevariableforthegenerationofpersistentemissionmodels. Theirvaluesaresubsequentlyfrozenforthe burstspectralfitsin§2.3 d SeeXSPEC manual(http://heasarc.gsfc.nasa.gov/xanadu/xspec/manual/manual.html)andrefer- encestherein eSeePeilleetal.(2014) (arising from the Gaussian statistics on the pre-burst persis- beginning of the burst and the point at which burst flux de- tent spectra) with the prior for the latter approach, which is clines below 10% of its peak value, and performed Kendall flat between f =- 100,100. The median total counts in all τ rank correlations on burst flux against f for each burst. a a the pre-burst spectra is approximately 9,000 counts, and so Wefoundpositivecorrelationsin1000outof1419non-PRE weadopt104counts,givingacharacteristicwidthoftheprior bursts,ofwhich919areatgreaterthan3σ significance. Per- inthestandardapproachofδf /f √104/104=0.01. The formingthesame testonthe coolingtailsofPRE bursts, we a a ≡ foundpositive correlationsin 299out of 316. Of these, 286 overallestimateoftheBayesfactoristhen wereatgreaterthan3σ significance. Thesenumbersdemon- p(DM ,I) δf 5.77 10- 3 0.01 strate that there is a more direct relationship between burst B | 1 a = × =64 (2) ≈ p(DM2,I)∆fa 4.51 10- 9× 200 fluxand fa fornon-PREburststhanforPREbursts. | × WGP13 found that, in PRE bursts, the variations in mea- Thus,eventakingintoaccounttheadditionaldegreeoffree- sured f cannot be attributed to counting statistics. We re- a dom introducedby allowing the normalisationof the persis- peated this test for all non-PRE bursts in our catalog. For tentfluxtovary,weconcludethatthevariablepersistentflux allspectraobtainedduringnon-PREburstswegenerated100 improvesonthestandardapproachwithaBayesfactorof64. simulatedspectrausingthestandardapproachspectralparam- Theadditionofathirdvariableparametertothemodelcan eters, and incorporatingcountingstatistics typicalof the de- haveanadverseeffectontheuncertaintiesin thefitparame- tector. We then fit these simulated spectra with the variable ters. InFigure4wecomparetheuncertaintiesinfitparame- persistentnormalizationmethod,obtainingastandarddevia- tersbetweenthetwoapproaches.Itisclearthatintroducing fa tionof fameasurementsarisingfromcountingstatisticsinthe hasaslightadverseeffectontheuncertaintyintheblackbody absenceofanyvariationofpersistentflux. We foundreal f a temperature. Theuncertaintiesinblackbodytemperatureare, measurementsgreaterthanunityto5σsignificancein214of onaverage,25%largerforthevariablepersistentfluxmethod. 62783.Intheabsenceofarealeffectwewouldexpectatmost Theuncertaintyintheblackbodynormalizationonaveragein- onesuchcasearisingbychance. Thisexperimentshowsthat creasesby49%,toabout18%ofthemeasuredvalue.Theun- enhancedpersistentemissionispresentinnon-PREburstsas certaintyin fa isonaverage27%ofthemeasuredvalue. The well. poorconstraintson faandblackbodynormalizationarelikely Since PRE bursts are by nature brighter than non-PRE duetothespectralsimilarityofthetwocomponents.Recently bursts, it is possible that the difference in χ2 between the ν Barrièreetal. (2014) showed a severe exampleof this prob- two classes is simply due to superior signal-to-noise in the leminusingthevariablepersistentfluxmethodinaNuSTAR brighterbursts. Toinvestigatethiswetookasubsetofspectra observationofGRS1741.9- 2853,inwhichthe f factorwas a from both PRE and non-PRE bursts, with bolometric fluxes notconstrainedatall. Astheypointout,theproblemoccurs between4.0 10- 8and5.0 10- 8ergs- 1cm- 2andblackbody when the pre-burst persistent emission is faint, and when it × × temperaturesbetween2.0and2.5keV,thesequantitiesbeing closelyresemblestheburstcomponentinspectralshape. measuredwiththestandardapproach.Therewere331spectra WGP13found,forPREbursts,onlyaweakcorrelationbe- fromPREburstsand655spectrafromnon-PREburstsinthis tween f andburstflux.Theyfoundthat,althoughmostofthe high f avalues occurred during radius expansion, there was segmentoftheparameterspace. Thesehadmeanχ2ν of1.17 a and1.35fornon-PREandPREburstsrespectively,andaK-S antoivneeltyhecloenssstgarneta.tWvaerihaabvielitryepineaftaedwthheinstahnealbyusrisstfflourxnowna-sPrRelE- test indicated a probability of 1.79×10- 6 that these χ2ν are drawnfromthesamedistribution. Thisshowsthatthepoorer bursts. We havetakenall spectraforeach burstbetweenthe 6 x)80 Standard fit x) Standard fit x)40 Standard fit Flu1s− Variable fa fit Flu1s−10 Variable fa fit Flu1s− Variable fa fit tric 2m −60 4U 1608-522 tric 2m − 8 EXO 0748-676 tric 2m −30 4U 1728-34 e 2002-09-12 07:50:51.5 e 2004-09-25 07:35:16 e 2006-09-08 03:38:13.5 mg c40 mg c 6 mg c20 or or or ole ole 4 ole B9 −20 B9 − B9 −10 0 0 2 0 1 1 1 ( ( ( 0 0 0 -10 0 10 20 30 40 50 60 70 80 -10 0 10 20 30 40 50 60 70 80 -10 0 10 20 30 40 50 60 70 80 time (s) time (s) time (s) 6 6 6 5 Median error bar 5 Median error bar 5 Median error bar 4 4 4 a a a f 3 f 3 f 3 2 2 2 1 1 1 0 0 0 -10 0 10 20 30 40 50 60 70 80 -10 0 10 20 30 40 50 60 70 80 -10 0 10 20 30 40 50 60 70 80 time (s) time (s) time (s) 3.5 Standard fit 3.5 Standard fit 3.5 Standard fit 3 Variable fa fit 3 Variable fa fit 3 Variable fa fit 2.5 2.5 2.5 2χν 2 2χν 2 2χν 2 1.5 1.5 1.5 1 1 1 0.5 0.5 0.5 -10 0 10 20 30 40 50 60 70 80 -10 0 10 20 30 40 50 60 70 80 -10 0 10 20 30 40 50 60 70 80 time (s) time (s) time (s) FIG.2.— Comparisonoffittingavariablepersistentemissionfactor, fa,tothestandardapproachfitsfornon-PREburstsfromthreedifferentneutronstars. Wehaveselectedatypicalhydrogenaccretor(4U1608- 52),adippingsource(EXO0748- 676),andaHe-accretorandlikelyultracompactbinary(4U1728- 34). Thevariablefitapproachyieldsconsistentlylowerunabsorbedburstcomponentfluxes(toppanels). Thecontributiontothefluxfromthevariablepersistent emissionincreasestoseveraltimesthepre-burstlevel(middlepanels)duringtheriseoftheburst. Allowingthepersistentemissiontovaryimprovestheχ2ν (lowerpanels). spectralfits generally observedin PRE bursts are notdue to shape of the persistent emission. Dipping systems, such as bettersignal-to-noiseinthebrightbursts. EXO0748- 676andX1658- 298,showsomewhatmorevari- ability(Sidolietal.2005;Oosterbroeketal.2001b)on 1m 4. ISTHEPERSISTENTEMISSIONSPECTRALSHAPECONSTANT? timescales,andthespectrumbecomesharderduringdi∼ps, as Our approach of treating the persistent emission as a indicated by hardness ratios. However, the dips are due to contribution of fixed shape depends upon the assumption obscurationinthesehigh-inclinationsystems. Outsideofdip- that its shape does not change, at least not on timescales pingintervals,thehardnessratiosareeffectivelyconstant.Itis of the order of the burst duration, or to a degree suffi- thereforelikelythatnochangeintheshapeorintensityofthe cient to affect our spectral fits. WGP13 did not investi- persistent emission is to be expectedin the absence of burst gate this matter directly, but their finding that f generally luminosityonminutetohourtimescales. a returns to its pre-burst level, with good χ2, suggests that On shorter timescales, the pre-burstlightcurve is remark- ν this assumption is not unreasonable. Similarly, Keeketal. ablyflatprecedingburstsfor4U1636- 536(Nathetal.2002), (2014) and Peilleetal. (2014) also report that the persistent the Rapid Burster (Bagnolietal. 2013), and 4U 1608- 52 emission returns to its original level soon after the burst. (Peilleetal. 2014), and is also flat over a large range of ac- Thompsonetal.(2005)andBagnolietal.(2013)havefound cretionratesinIGRJ17480- 2446(Mottaetal.2011). These that the persistent emissions of 4U 1826- 24 and the Rapid works suggest that short-term intensity variations are not Burster respectively are remarkably stable over kilosecond prevalentinthepersistentemissionprecedingbursts. Togain timescales between bursts. Linaresetal. (2014) found vari- furtherconfidencethatthe persistent emission shape and in- ability over 10 minute periods in the intensity of the per- tensityarenotsignificantlyvariableonshortertimescalesthan sistentemiss∼ionofIGRJ18245- 2452,withnochangeinthe minutes or hours, in the absence of a burst, we took every 7 Radius expansion bursts (Eddington limited) Radius expansion bursts (Cooling tail) 180 140 a a r Theoretical (variable fa) r Theoretical (variable fa) t160 t ec Variable fa ec120 Variable fa p140 Standard fit p Standard fit s s100 t 120 Variable persistent flux t Variable persistent flux burs100 pD == 10..5236×10−3 burs 80 pD == 70..9357×10−7 f 80 Constant persistent flux f 60 Constant persistent flux er o 60 pD == 20..651×10−12 er o 40 pD == 30..9438×10−11 b b m 40 m u 20 u 20 N N 0 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 χ2 χ2 ν ν Non-radius expansion bursts 1600 a r Theoretical (variable fa) ect1400 Variable fa p1200 Standard fit s t Variable persistent flux s1000 D = 0.23 ur p = 5.77×10−3 b 800 f Constant persistent flux o D = 0.43 er 600 p = 4.51×10−9 b 400 m u 200 N 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 χ2 ν FIG.3.— Histogramsoftheχ2ν forthevariablepersistentnormalizationandstandardapproachspectralfits(redandblackhistogramsrespectively),andthe theoreticalχ2ν distributionsforamodelthatadequatelydescribesthedata(redandblackcurvesrespectively). ThefirstpanelshowsspectrafromEddington- limitedPREbursts,thesecondpanelshowscoolingtailspectrafromPREbursts,andthethirdpanelshowsspectrafromnon-PREbursts. Itisobviousthatthe variablepersistentnormalizationapproachgivesbetterfitsoverallthanthestandardapproach. Itcanalsobeseenthatablackbodyburstspectrumisfarfrom acceptableinPREbursts,eveninthecoolingtailwhentheatmospherehasreturnedtothesurfaceofthestar. Thevariablepersistentnormalizationapproach correctsformuchofthiseffect. Non-PREspectraarebetterdescribedbyablackbodyandconstantpersistentmodel,buteventhesearesignificantlyimproved with the variable persistent normalization approach. Results of Kolmogorov-Smirnov tests are also shown; we list the K-S statistic D and null hypothesis probabilitypforthevariablepersistentnormalizationandstandardfitsrespectively. 700 3500 4000 Standard Standard 3000 Variable fa 3500 Variable fa 600 mber of spectra221055000000 mber of spectra2231050500000000 mber of spectra435000000 Nu1000 Nu1000 Nu200 500 500 100 00.00 0.02 0.04 0.06 0.08 0.10 00.0 0.1 0.2 0.3 0.4 0.5 00.0 0.1 0.2 0.3 0.4 0.5 ∆kT/kT ∆K /K ∆f /f bb bb a a FIG.4.—Histogramsoftherelativeuncertaintiesinthespectralparametersusingbothapproaches. Theadditionofthe faparametercausesthetemperature andnormalizationoftheblackbodycomponenttobelesstightlyconstrainedthaninthestandardapproach.Thepersistentfluxfactor faitselfisoftenverypoorly constrained. 8 9000 500 χ2 8000 Theoretical ν a ctr7000 χν2 a400 e tr p6000 c e of s5000 f sp300 o er4000 er b b200 m3000 m u2000 Nu N 100 1000 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 χ2 00 1 2 3 4 5 ν χ2 ν 14000 700 pre-Burst f f a a a12000 r 600 t c e10000 a p tr500 c s e f 8000 p o s400 f ber 6000 er o300 m b 4000 m Nu Nu200 2000 100 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 f a 0 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 f a FIG.5.—Measureddistributionof fa (redhistogram),andmeasuredand theoreticalχ2ν (thickandthinbluecurves)forpre-burstemissionintheab- FIG.6.—Measureddistributionof fa (redhistogram),andmeasuredand senceofanynuclearburning.The favaluesareverystronglypeakedaround theoreticalχ2ν (thickandthinbluecurves)forStandard-2datacoveringthe 1,andthemeasuredχ2ν arelow,indicatingthatthepre-burstemissiondoes observationsofeighteenselectedbursts. The favaluesaretightlyclustered notchangeintensityorspectralshapetoanydetectabledegree. aroundunity,andtheχ2ν aremarginallyhigherthanthetheoreticaldistribu- tionassumingawell-fittingmodel.Thissuggeststhatthepersistentemission doesnotchangeshapeorintensitytoanydetectabledegreeontimescalesof 0.25spre-burstspectrumfromeveryburstandfititwithjust anhourbeforeandafteratypeIburst. f timesthepersistentmodelforthatburst,i.e.,nothermonu- a clearburstemission.Thedistributionsof f andχ2 areshown fewminutestoanhourbeforeandaftertheburst.Wealsoex- a ν inFigure5. Thisdatatypicallycoversafewtensofseconds cludedaneclipseofEXO0748- 676beginningat2004-09-25 prior to every burst. It is plain to see that f is distributed 07:20:29,15minutesbeforetheburst, whennofluxwasob- a tightly around unity, indicating that the persistent emission servedfromtheneutronstar(seealsoHomanetal.2003),and generally does not vary greatly in intensity on timescales of spectra occurringafter a data gap towards the end of an ob- 1sorless. Theχ2 distributionalsoimpliesthattheshapeof servationof4U1636- 536thatbeganat2001-09-0504:56:51. ν thepersistentemissionisnotchangingappreciably,although Weanalyzedthedistributionof fa andχ2ν. Theseareplotted ofcoursetheshortexposuretimesandassociatedlowphoton in Figure 6, showing that almost all of fa values measured countsmakedetectingsuchchangesdifficult. thiswayareclusteredtightlyaround fa=0.95- 1.0. Thereis Totestformoresubtlespectralshapechanges,weincreased asmallerpeakataround fa 0.85,dominatedbytwobursts, ≈ the exposure time to obtain better signal-to-noise. For the butvisualinspectionoftheir facurvesshowtheir favaluesto threeburstsstudiedinFigure2,andthefifteenburstsinvesti- stayapproximatelyconstantthroughouttheobservation. gatedbyPeilleetal.(2014)(seetheirTable1),weinspected Thesteadinessofboth faandχ2ν overtimesuggeststhatthe the RXTE Standard-2 data covering the entire observation. persistentemissiondoesnotchangegreatlyineithershapeor These are spectra binned into 16s intervals. We fit each of intensityontimescalesuptoanhourbeforeandafteratype thesespectrawiththepersistentmodelforthatburst,withall Iburst. parametersfrozen,and f normalizationallowedtovary. We Finally, we investigated the extent to which we can de- a consideredonlyspectrarecordedwithinanhourbeforeoraf- tectchangesintheaccretionspectralshapeif theyreallyare ter the burst but excluding those during the burst, to avoid present, assuming that a change in the intensity of the per- contamination by the burst emission. That is, we excluded sistent emission reflects a change in the accretionrate. This spectra recorded between the beginning of the burst (burst is particularly necessary near the burst peak, since this is flux has reached 1/4 of the peak burst flux) and the end of where the persistent emission spectral shape is most uncer- thePCAdataoftheG08catalog.Thisdatatypicallycoversa tain;wehavealreadyfoundthatitreturnstoitsoriginalshape 9 deep in the cooling tail. We selected a non-PRE burst from properties: theprolificbursterGS1826-24exhibitsveryreg- 4U 1636- 536 that uses the disko model (Stella&Rosner ularburststhatareincloseagreementwithnumericalmodels 1984), recorded 2005 Apr 4, 10:48:43. For this burst PCUs of X-ray bursts (e.g., Hegeretal. 2007; Galloway&Lampe 0and2onRXTE wereactive. ThismodelcontainsM˙/M˙ 2012). The11HzpulsarIGR17480- 2446isthemostslowly Edd explicitlyasavariableparameterandincorporatesphysically- rotating source that shows burst oscillations (Cavecchietal. motivated changes in the spectral shape. This model is as- 2011), makingthat sourcean importanttest of burstoscilla- sumed to be in equilibrium for this burst and does not take tionmodels. NeithersourcehasasinglereportedPREburst. intoaccountchangesinitsstructureinducedbyaburst;there The Rapid Burster (MXB 1730-335)is our major source of areasyetnotheoreticalspectraofadiskmodifiedinthisway, knowledge about type II bursts, and has one reported PRE andwe expectthattheassociatedspectralshapewilldeviate burst(Salaetal.2012). Thisevent,however,wasdetectedby froma blackbodyto a similar degree, thoughnotperhapsin theSwiftX-rayinstrumentandthemeasurementwasnotsen- thesamemanner. sitive enough to constrain the Eddington flux to better than Thebestfitaccretionratewas 0.205M˙/M˙ andthepeak about50%(seetheirFig. 2). Edd f was 3.3. The normalization of this persistent model was AninterestingobservationisthatalltheresultsofWGP13 a 2cosi/d2=1.648,whereiistheinclinationandd isthedis- fallbelowtheline faγ=1,whereγ isthepre-burstaccretion tance in units of 10 kpc. At an assumed distance of 6 kpc flux as a fraction of the Eddingtonflux, consistentwith pre- (Gallowayetal. 2006), this gives an inclination of 72◦, in dictionsofBurger&Katz(1983)andMiller&Lamb(1996); agreementwithPandeletal.(2008)andCasaresetal.(2006), bothworkssuggestthattheEddingtonaccretionrateisanat- ˙ who also infer a high inclination (greater than 64◦, and uralupperlimitto M. Thisobservationraisesthepossibility 36◦- 74◦respectively)forthissystem.Thenormalizationwas ofobtainingalowerboundontheEddingtonfluxforagiven kept frozen in the subsequent analysis. We generated 2,000 source, that is, FEdd > faFpers, where FPers is the bolometric simulated spectra, folded througha PCA response appropri- fluxofthepre-burstpersistentemission. atetotheobservedburst,ofthewabs*diskomodelwithM˙ InFigure8weshowpeak faagainstγforeverytypeIburst takingrandomvaluesbetween0.067M˙ and0.667M˙ .We detectedbyRXTE.For0.01<γ<0.4thenon-PREburstsap- Edd Edd thenfitted those simulatedspectra with fa times the original peartobeboundedaboveby faγ .(faγ)max,where(faγ)max persistentmodel. The measured f and χ2 are givenin Fig- appearstobesomewhatlessthan0.5.Thiswouldgivealower a ν limiton the Eddingtonflux roughlytwice as constrainingas ure7,lefttwopanels.Intheabsenceofburstemissionwecan wclietahrliyncdreetaescitnagcMh˙aansgweeinllsapseacntrainlcsrheaapseeviniaththeeinintecnresaitsyeoinftχh2νe γtheremquoisretscoknnsoewrvinagtivFeEdeds;toimuratmeeftahFopderfso<rdFeEtedrdm. iDnientgertmheinEindg- dingtonfluxesforPREburstersisgivenintheAppendix. persistent emission. We then repeated the process, this time Wenowdescribeamethodbywhichweestimatetheupper includingablackbodywithtemperature2.0keVandnormal- boundof f γ thatisreproducibleandmoreobjectivethanes- izationrepresentingaspherewithradius10kmatadistance a timatingby eye. We treatthe measuredx =(f γ) valuesas of6kpc(i.e.,thesurfaceof4U1636- 536). Thiswefitwith i a i normal distributions centered around their measured values, theusualvariablepersistentfluxapproach(righttwopanels). withstandarddeviationsσ equaltotheuncertaintyinthe f , Itisevidentthat,althoughwecanstilldetectenhancedpersis- i a timesγ. Thisnormaldistributionisgivenby tentemissionthroughanincreased f ,wehavelosttheability a todetectachangeinitsspectralshape.Thisexperimentgives 1 (x- x)2 usconfidencethatourapproachofsimplyvaryingthenormal- G(x,σi,xi)= exp - i . (3) izationofthepersistentemissionwillintroducenodetectable √2πσi (cid:20) 2σi (cid:21) systematiceffects. Thefractionofthisdistributionlyingabovex =(f γ) max a max This analysis is not sensitive to changes in the persistent is ∞ spectrumoutsidethe2.5-20keVenergyrangeweconsiderin A(σ,x) = G(x,σ,x)dx thispaper. in’tZandetal.(2013)combineddatafromChan- i i i i Z dra, which is sensitive at energies below 2keV, with RXTE 1xmax x - x (4) data for a radius expansion burst from SAX J1808.43658. = 1+erf i max , 2(cid:20) (cid:18) √2σ (cid:19)(cid:21) They obtainedsimilar f values as WGP13 did studying the i a same burst with only RXTE data, suggesting thatchangesin andsothetotaloveralldatapointsis thepersistentspectrumbelow2.5keVarenegligible. Athigh energies,thereisevidencethatthehardX-ray(>30keV)flux 1 n x - x A = 1+erf i max , (5) decreasesduringa burst, in apparentconflictwith our result T 2 (cid:20) √2σ (cid:21) (Chenetal.2013;Jietal.2013,2014a,b). However,thisphe- Xi=1 i nomenon is attributed to the rapid cooling of the accretion wherenisthenumberofdatapoints. disc corona, which contributesthe majority of the very hard Thequestionishowtofindx . Firstwemakeaguessζas max X-rays. Anincreasein2.5-20keVfluxattributedtoaccretion tothevalueofx andcalculateanA fromthisandthedata max T ratechangedoesnotconflictwith a simultaneousquenching pointsx. Thenwetakeasetofndatapointsxˆ withrandom i i ofhighenergyphotonsthroughthecoolingofthecorona. valuesbetween0 andζ. We assigntoeachxˆ anuncertainty i ofσ,thatis,arandompointisgivenameasureduncertainty. i 5. EDDINGTONFLUXESFROMNON-PREBURSTS Thisassumestherealdata pointsareevenlydistributedwith For neutron stars for which no radius expansion bursts uncertainties independent of their values, but the procedure have been observed, the only lower bound on their Edding- canbemodifiedtosuitotherassumptions. Fromthisrandom ton fluxes are the peak fluxes of their brightest bursts. A setxˆ wecalculateanexpectedtotalarea(A (rand))thatcan i T better knowledge of their Eddington fluxes would be of ob- becomparedtotherealone(A (observed)). If,forinstance, T servationalutility,asmanyofthesesourcesshowinteresting A (rand)<A (observed)thenourguessforζ wastoohigh T T 10 5 5 a) c) 4 4 No burst flux With burst flux 3 3 a a f f 2 2 1 1 0 0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 M˙ M˙ 5 5 b) d) 4 4 3 3 2χν 2χν 2 2 1 1 0 0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 M˙ M˙ ˙ FIG.7.— ResultsoffitstosimulateddiskospectrawithMallowedtovary,bothwith(panelsa.andb.)andwithout(panelsc.andd.)aburstcomponent.In bothcasesanincreasein faisdetected. Whenthereisnoburstcomponent,andonlyachangeintheintensityofthepersistentemissionisbeingtestedfor,the increasingχ2ν withincreasingM˙ indicatesthatchangesinthespectralshapearedetectable. Inthepresenceofburstemission,itisnolongerpossibletodiscern thespectralshapechangesinthepersistentemission. Wecanthereforesimplyvarythenormalizationofthepersistentemissionwithoutintroducingsystematic effects. and we try again with a lower ζ. Once the ζs converge, we 18.1 5.5 10- 9 and 42.0 10.5 10- 9 erg s- 1 cm- 2 re- take this value to be x . Making many realizations of the spect±ively.×IGR 17480- 24±46 is ×located in the globular max randomset, we cangetanexpectedx . However,toavoid cluster Terzan 5, with a known distance of about 5.5 kpc max the analysis assigning too much weight to outliers, we take (e.g.,Papittoetal. 2011), and a hydrogen accreting neutron many bootstrap subsamples of the original data set and take star with 1.4M would have an Eddingtonflux of 57 10- 9 ⊙ theoverallxmax tobetheaverageofthosefromthebootstrap ergs- 1 cm- 2. Cir X- 1is believedto be 7.8-10.5kpcd×istant samples;italsogivesusuncertaintiesonxmax. (Jonker&Nelemans2004).Ourresultsuggestsitisprobably Applyingthisprocedure,wegetxmax=0.84 0.34forthe at the nearer end of that range, since the more distant value ± PRE bursts and xmax =0.37 0.089 for the non-PRE bursts. wouldgiveanEddingtonfluxof16 10- 9ergs- 1 cm- 2 fora ± We notethatthe faγ relationisaphenomenologicaloneand canonicalneutronstar,slightlyhighe×rthanourestimate. We does not depend on any physical interpretation, though it is also get a marginally more constraining Eddington flux for consistent with the requirement that the accretion luminos- 1M0836- 425of23.1 6.5 10- 9ergs- 1 cm- 2. ity not exceed Eddington. To test whether our new method ± × givesa morestringentlower boundthan the peakburstflux, 6. CONCLUSION wecomparedthetwomethodsforeverysourceforwhichten Wehaveextendedthevariablepersistentfluxmethoddevel- or more non-PRE bursts have been observed, but excluding therapidaccretorsCygX- 2andGX+17- 2. Wealsoexclude opedbyWorpeletal.(2013)andin’tZandetal.(2013)toall SLX1744- 300,asthatsourceisdifficulttodistinguishfrom type I bursts observed by RXTE. Our method gives superior the nearby (∆θ 3′) SLX 1744- 299 (Skinneretal. 1990). spectral fits to type I burst spectra, whether these are radius ≈ expansionburstsornot. Ourdetailedconclusionsareasfol- WefirstapplythemethodtosourcesforwhichtheEddington lows: flux is known, to make sure the new method never overesti- i) The variable persistent normalization approach devel- matestheEddingtonflux.In2of16sources,thenewmethod opedinWGP13appliesaswelltonon-PREburstsasitdoes gaveagreaterlowerboundthanthebrightestnon-PREburst, to radius expansion bursts. The quality of spectral fits gen- andinnocasedidthenewmethodoverestimatetheEdding- erally improves, and the intensity of the persistent emission tonfluxbeyondobservationaluncertainties.Theseresultsare usuallyincreasesduringaburst,typicallybyafactorof3-4. showninFigure9. ii)Theadditionofathirdvariableparameterincreasesthe Applying the new method (with x = (f F ) since γ i a Pers i uncertainties in the fit parameters. In particular there is a is unknown) to sources with unknown Eddington flux, we degeneracybetween f andblackbodyburstcomponentnor- get a better bound than the non-PRE bursts for the sources a Cir X- 1 and IGR 17480- 2446, with F greater than malization,likelyduetotheindistinctnessofthetwospectral Edd components.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.