Astronomy&Astrophysicsmanuscriptno.ms˙rev˙english (cid:13)c ESO2009 January21,2009 LettertotheEditor Evidence for an anticorrelation between the duration of the shallow decay phase of GRB X-ray afterglows and redshift G.Stratta1,D.Guetta2,V.D’Elia2,M.Perri1,S.Covino3,andL.Stella2 9 0 1 ASIScienceDataCenter,viaG.Galilei,00044Frascati,Italy⋆ 0 2 2 INAF-OsservatorioAstronomicodiRoma,viaFrascati33,00040MontePorzioCatone,Italy n 3 INAF-OsservatorioAstronomicodiBrera,viaBianchi46,23807,Merate(LC),Italy a J 2 Received....;accepted.... ] ABSTRACT E H Context.One of the most intriguing features discovered by Swift is a plateau phase in the X-ray flux decay of about 70% of the . afterglowsofgamma-raybursts(GRBs).Thephysicaloriginofthisfeatureisstillbeingdebated. h Aims.Weconstraintheproposedinterpretations,basedontheintrinsictemporalpropertiesoftheplateauphase. p Methods.Weselectedandanalyzed alltheSwift/XRTGRBafterglowsatknownredshift observedbetweenMarch2005andJune - 2008featuringashallowdecayphaseintheirX-raylightcurves. o Results.Foroursampleof21GRBswefindananticorrelationofthelogarithmofthedurationoftheshallowphasewithredshift, r t withaSpearmanrank-ordercorrelationcoefficientofr=−0.4andanullhypothesisprobabilityof5%.Whenwecorrectthedurations s forcosmologicaldilation,theanticorrelationstrenghtens,withr=−0.6andanullhypothesisprobabilityof0.4%.Consideringonly a thoseGRBsinoursamplethathaveawell-measuredburstpeakenergy(8outof21),wefindananticorrelationbetweentheenergy [ oftheburstandtheshallowphaseduration,withr=-0.80andanullhypothesisprobabilityof1.8%. 1 Conclusions.Iftheburstenergyanticorrelationwiththeshallowphasedurationisreal,thenthedependence oftheshallowphase v on redshift could be the result of a selection effect, since on average high-redshift bursts withlower energies and longer plateaus 7 wouldbemissed.Aburstenergyanticorrelationwiththeshallowphasedurationwouldbeexpectediftheendoftheplateauarises 5 fromacollimatedoutflow.Alternativescenariosarebrieflydiscussedinvolvingapossiblecosmologicalevolutionofthemechanism 2 responsiblefortheX-rayshallowdecay. 0 Keywords.gamma-raybursts–??–?? . 1 0 9 1. Introduction in the X-rays (Liang et al. 2007). This idicates either that the 0 X-rayandopticalafterglowhavedifferentoriginsorthatthemi- : v In the pre-Swift era the X-ray afterglows of gamma-ray bursts crophysicalparametersdeterminingtheinstantaneousenergyin i couldbeobservedonlyaftermanyhoursaftertheburst,whenthe X fluxtypicallyshowedasmoothpowerlaw-likedecay,t−α,with the electrons and magnetic field evolve in time (Panaitescu et al.2006).Someofthemodelsproposedtointerpretthephysical r anindexofaboutα ∼ 1.Hereafter,werefertothisasthestan- a origin of the shallow decay phase are summarized in Zhang et dard X-ray afterglow decay phase. The Swift mission (Gehrels al.(2007). etal.2004)hasrevolutionizedGRBstudiesinmanyrespectsby Severalstudieshaveaddressedtheintrinsicpropertiesofthe observingtheX-rayafterglowphasefromafewdozenseconds X-ray shallow phase, in particular by testing whether a depen- aftertheburst(e.g.Zhangetal.2007). denceexistsbetweentheintrinsicdurationoftheshallowphase TheshallowdecayphaseobservedintheX-rayfluxofabout andtheburstenergetics.Resultsobtainedso fararediscordant. ∼ 70% of the afterglows (e.g. Panaitescu 2007) is one of the Ananticorrelationbetweentheintrinsicdurationoftheshallow mostintriguingfeaturesdiscoveredbySwift.Thisphaseusually phase and the burst energetics has been found in some works becomesvisibleafewhundredsecondsaftertheburst,afterthe (e.g. Sato et al. 2007; Dado et al. 2008), while in some others steep decay in the prompt emission, and it lasts for ∼ 1 − 10 it wasnot(e.g.Lianget al. 2007;Nava etal. 2007).Sato et al. ks (Nousek et al. 2006; Zhang et al. 2006). No spectral evolu- (2007)arguethatthesediscrepanciesmaybeassociatedwiththe tionisobservedin eitherthe0.3-10keVrangeduringtheshal- largeuncertaintiesaffectingtheburstenergeticsestimatesand/or low phase or in the subsequent decay phase (e.g. Liang et al. inmodelingtheX-rayshallowphaseandestimatingthetempo- 2007; Butler and Kochevski 2007). This lack of X-ray spec- ralbreakbetweentheshallowandthestandardphases.Someof tral variations has suggested that the observed X-ray temporal thediscrepanciesmightalsobeascribedtothedifferentsizeand steepeningisnotassociatedwiththecrossingofacharacteristic qualityoftheGRBsamplesusedbydifferentauthors. synchrotronfrequency(e.g. the cooling frequency).Opticalaf- terglow lightcurvesoften show a different behavior from those A linear dependencebetween the logarithmof the duration of the shallow phase, and the logarithm of the burst istropic ⋆ INAFpersonnelresidentatASDC equivalentenergy would be expected if the temporalbreak be- 2 Pleasegiveashorterversionwith:\authorrunning and/or \titilerunning priorto \maketitle dominated by features such as spikes or flares that may affect GRB 060714 @ z=2.71 themeasurementofthedecayindex;iii)sinceouranalysiscon- centrateson the study of the intrinsic propertiesof the shallow 1 phase,weconsideredonlyGRBsatknowndistances.Inthisway 0.1 weselected21GRBs(outofatotalofabout60burstsatknown redshiftforwhichthestatisticsweregoodenoughtocarryouta detailedtemporalanalysis).Thesample, aswellthe redshiftof GRB 070306 @ z=1.4959 eachburst,isgiveninTable1.InFigure1thelightcurvesofthree 1 GRBsfromour‘goldensample’(seebelow),takenfromEvans 0.1 et al. (2007),are plotted after rescaling of the temporalaxis to theirrestframe.Theshapeofthe lightcurvesclearlyshowsthe wellknown‘canonical’behavior(e.g.Nouseketal.2005).Since GRB 060729 @ z=0.54 ourgoalistomeasurethedurationoftheshallowphase,wefit- tedtheobservedlightcurveswithpowerlawsas: 1 0.1 10 100 1000 Fν(t)∝ttt−−−ααα021 t1tt<<>ttt<12 t2 (1) restframe time since GRB trigger (s) Fig.1. X-ray afterglow lightcurves from Evans et al. (2007) In Eq. (1), t < t1 indicates the interval where the typical wherethetemporalaxishasbeenrescaledtotheburstrestframe initial steep decay from the prompt is observed, t1 < t < t2 for3GRBsofour‘goldensample’adifferentredshift(see§2). correspondstotheshallowdecayphase,andt >t2 tothesubse- quentstandarddecay.Inthiswork,weconsidert asameasure 2 ofthedurationoftheshallowdecay.ForGRB060614andGRB tweentheshallowphaseandthestandardphasewereinterpreted 060814,weexcludedtheinitialsteepdecayfromthefitbecause as‘jetbreak’time(tj)andtheGRBenergycorrectedforbeam- it could not be well-fitted by a power-law decay. We also ex- ing factor were constant(e.g. Frail et al. 2001).Indeed, the jet cluded fromthe fit those intervalsin which flares were present openinganglecanbeestimatedfromthetimetjatwhichtherel- for t < t1 in the lightcurvesof other GRBs (see last columnof ativisticbeaming(1/Γ(tj)whereΓ(tj)isthefireballLorentzfac- Tab.1). tor) becomes equal to the geometric beaming of the fireball of Table 1 shows the selected dataset where t represents the 2 half-openingangleθj,thatis,θj ∝(t3j/Eiso)1/8(Sarietal.1999), observedepochatwhichtheshallowphasesteepenstothestan- whereE istheequivalentisotropicenergy.Atthattime(t ),the dard decay (calculated from the burst onset as determined by iso j afterglowlightcurvedecaysteepens.Thebeamedcorrecteden- Swift/BAT), and α represents the temporal index of the shal- 1 ergyisE =E (1−cosθ )∼ E θ2.IfE isconstant,itfollows low decay region. Errors are given at the 1σ confidence level. γ iso j iso j γ thatE ∝t−1.ThecorrelationfoundbyGhirlandaetal.(2004) In some cases Eq. (1) provided a poor approximation of the iso j steepeningfromtheshallowphasetothestandardone.Wethus between the intrinsic peak energies and the beaming-corrected burst energies tells that the relation E ∝ t−1 is still (nearly) checkedwhetherotherestimatesofthetemporalbreakbetween iso j the shallow phase and the standard phase obtained assuming validforGRBswithsimilarintrinsicpeakenergy.Inthejetsce- morecomplexmodels(e.g.Willingaleetal.2007;Ghiselliniet nario, the lightcurve steepening is expected to be achromatic. al. 2008) provided different results and we find no significant Thisconditionis barelysatisfied if we considerboththe X-ray differenceswithintheuncertainties,exceptfortwocases1. andtheopticalenergydomains,since,asmentionedabove,sev- We first checked whether any commonintrinsic value t′ of eralX-rayshallowphasesarenottrackedintheopticalregime. 2 theepochatwhichtheX-rayshallowdecayends(t′ =t /(1+z)) However,byrestrictingtheenergyrangetotheX-rays,thecon- 2 2 exists for all GRBs. The observed epoch t covers 3 orders of dition is satisfied since the lack of any spectral variation is a 2 magnitudes(0.5-80ks).Theintrinsicepocht′ stillcoversawide characteristicfeatureoftheX-rayshallowphaseandthesubse- 2 rangeofvalues(0.2-50ks,Tab.1).Wefindnoevidenceofclus- quentstandarddecayphase. tering around any particular value. We then checked whether In the present paper we consider a sample of GRBs with a there is any redshift dependence on t . We found that an anti- well-monitoredX-raylightcurveandknownredshift,whichun- 2 correlationexistsbetweenthelogarithmoft andz,witharank ambigously showed a shallow decay phase. We find clear evi- 2 correlationfactorof -0.4.With 19degreesoffreedom,the null dence of a redshift dependence of the duration of the shallow hypothesisisrejectedata95%confidencelevel.Aftercorrecting decayphase. t forcosmologicaldilation,wefoundthattheanticorrelationis 2 strengthened,witharankcorrelationfactorof-0.6:thenullhy- 2. Thesampleanddataanalysis pothesis is now rejected at 99.6% (non-directionalprobability) confidencelevel(Fig.2).Thattheanticorrelationalreadypresent The X-ray afterglow lightcurves supplied by the UK Swift fort becomesmoresignificantaftercorrectionforcosmological Science Data Centre at the University of Leicester were used 2 dilationprovidesevidencethatthecorrelationisgenuineandnot (Evans et al. 2007). The sample was built by selecting in the biasedby the redshiftcorrection.To confirmthisresult,we se- SwiftarchiveallGRBsobservedintheperiodfromMarch2005 lecteda”goldensample”of10GRBsfromouroriginal21GRB toJune2008withthefollowingcharacteristics:i)a0.3-10keV samplebyconsideringonlythoseGRBswiththebestXRTcov- XRTlightcurvefeaturingshallowbehaviorwithtemporalindex erageinallthethreetypicalSwift/XRTX-raylightcurvecompo- α < 0.8 (i.e. shallower than the ‘standard’fireball modelpre- 1 dictions, e.g. Sari et al. 1998), over a temporalinterval greater 1 Willingaleetal.(2007)estimatedforGRB060607Aadurationof than 0.5 ks (so that the power-law decay index can be mea- T = 56+4 ks and Ghisellini et al. (2008) for GRB 050319 estimated a −3 sured accurately); ii) the shallow decay interval should not be T =7ks(thelatterisintherestframe). A Pleasegiveashorterversionwith:\authorrunning and/or \titilerunning priorto \maketitle 3 GRB t [ks] α z E [1052]erg E [keV] Comments 2 1 iso peak,i 050315 9.0±0.2 −0.2±0.1 1.949 − − steepphaseexcluded 050319 2.7±0.1 0.1±0.2 3.240 − − − 050401 5.0±0.3 0.63±0.02 2.90 35±7A 467±110(1) − 050505 6.4±0.4 0.1±0.1 4.27 19.5±3.1N 622±211(2) − 051109A 2.0±0.1 0.54±0.03 2.346 6.5±0.7A 539±200(1) − 060502A 30±2 0.43±0.09 1.51 − − − 060526 20±2 0.11±0.07 3.21 2.6±0.3A 105±21(1) flareexcluded 060607A 12.9±0.2 0.44±0.02 3.082 12.2±1.8N 535±164(2) flareexcluded 060614 47±2 0.05±0.03 0.125 0.21±0.09A 55±45(1) steepphaseexcluded 060714 3.6+1.2 0.24±0.05 2.71 − − flareexcluded −0.7 060729 77±1 0.12±0.02 0.54 − − flareexcluded 060814 9.9±0.2 0.25±0.06 0.84 7.0±0.7A 473±155(1) flareexcluded 061121 3.6±0.5 0.25±0.04 1.314 22.5±2.6A 1289±153(1) − 070306 27.2±0.8 0.11±0.02 1.4959 − − 070529 2+2 0.7±0.1 2.4996 − − − −1 070611 50+10 0.1±0.1 2.04 − − − −13 070802 5+2 0.1±0.2 2.45 − − − −1 080310 4.5±0.9 0.7±0.1 2.42 − − flareexcluded 080430 15+8 0.4±0.1 0.767 − − − −3 080605 0.55±0.03 0.68±0.04 1.6398 − − − 080607 1.5±0.2 0.1+0.9 3.036 − − flareexcluded −0.3 Table1. SelectedsampleofGRBswithknownredshiftthatpresentsashallowdecayphase. (1)FromAmatietal.2008;(2)FromNavaetal.2007. nents(e.g.Nouseketal.2005),whichareaninitialsteepdecay 1 and Figure 2), we find that t′ anticorrelateswith E , with a 2 iso followed by the shallow and then standard decay. Despite the rank correlation factor of –0.80 and null hypothesisrejected at decreaseinthesampleofGRBs,theanticorrelationbetweenthe 98.2%confidencelevel(Fig.2).Ifwerestrictourselvestocon- logarithmoft andzpersists,witharankcorrelationfactorof- sideringonlythoseGRBswithsimilarintrinsicpeakenergy,we 2 0.85.(Thenullhypothesisisrejectedat99.2%confidencelevel.) still find marginalevidence of the anticorrelation,although the Thegoldensampleis markedwithredopencirclesin Figure2 statisticsarepoor(Fig.2).Eventhoughafirmconclusioncould andinboldfaceinTable1. notbereached,thisresultisconsistentwiththeresultsobtained Thesefindingscannotbeinterpretedasduetoanenergyde- byDadoetal.(2008)andSatoetal.(2007),whileatoddswith pendenceofthedurationoftheshallowphaseasonemaycon- findingsbyLiangetal.(2007)andNavaetal.(2007). clude for example from Figure 1 where the shallow phase at Asmentionedin§1,theanticorrelationbetweent′ and E 2 iso energiesof 1-37 keV (for GRB 060714at z=2.711)in the rest suggeststhatt couldbeconsideredasthejetbreaktimeof(the 2 frame is shorter than the one at 0.5-15 keV (for GRB 060729 partof)thefireballthatgivesrisetotheX-rayafterglow(see§1). atz=0.54).Infact, itis wellknownthatthehardnessratio,de- Severalsuggestionshavebeenmadetoreconcilethejetinterpre- finedasthefluxratiointhe0.3–1.5keVand1.5–10keVenergy tationwithfeaturesobservedinsomeGRB,suchasachromatic bands,doesnotshowanyevidenceofvariationsalongtheshal- evolutionofthebreakorthetemporalbreakatlaterepochs.For lowphase(e.g.ButlerandKocevski2007;Liangetal.2007). example, the two-component jet model (e.g. Peng et al. 2005; The anticorrelation of the intrinsic duration of the X-ray Racusinetal.2007)explainsthelackofasimultaneousoptical shallow phase with redshift that we discussed above may be break as a deficit in the optical emission from the narrower of a consequence of an anticorrelation of t′ with burst energy. the two jets, responsible for the two X-ray temporalbreaks. In 2 Indeed, the GRBs that we observe at high-redshift are on av- another model, Ghisellini et al. (2007) propose to interpret the eragemoreenergeticthanthelow-redshiftonesduetoasimple observedX-rayplateauasthesumoftwocomponents:thelate selection effect. We cannot see faint GRBs at large distances. promptemission(internalshockbetweenlateemittedshells)and Therefore,shorter plateaus might be observedmore frequently theafterglow.ThetemporalbreakattheendoftheX-rayshallow at high redshiftbecause associated with more energetic GRBs. decayphaseistheproofthattheLorentzfactorofthelateshells Alternatively,theanticorrelationoft′ withzcanbeexplainedas (typically smaller than that of the external shell giving rise to 2 acosmologicalevolutionofthemechanismthatgivesrisetothe theafterglow)hasreachedthe1/θj value(see§1).Whetherthe shallowdecay.Webrieflydiscussbothpossibilitieshere. break is tracked in the optical band dependson the relative in- tensity of each component. The second break at later times is producedwhentheLorentzfactoroftheshellproducingtheaf- 2.1.Theburstenergydependenceoft′ terglowhasreachedthe1/θ value. 2 j To verify the dependence of the energy of the burst from t′ is 2 notaneasygoalsincetheGRBenergetics,usuallyestimatedby 2.2.Evidenceofcosmicevolution? E , is often affected by large uncertainties in the burst spec- iso tral parameters, the peak energy E of the EF spectrum in Giventheuncertaintiesaffectingtheburstenergeticevaluations peak E particular. For this reason, we considered only those GRBs of andthepoorstatisticsavailabletodefinitivelyconfirmtheanti- our sample for which precise measurementsof Epeak are avail- correlationbetweenEisoandt2′,wespeculateonanotherpossible able (e.g. Amati et al. 2008;Nava et al. 2007).For 8 GRBs of interpretation of the redshift anticorrelation with t′ where the 2 oursample(3ofwhicharepartofthe‘goldensample’,seeTab. shallow phase depends on an external component that evolves 4 Pleasegiveashorterversionwith:\authorrunning and/or \titilerunning priorto \maketitle 3. Conclusions In this work we analyzed 21 GRBs with known redshift that feature a shallow phase in the X-ray lightcurve. Our main re- sult is a clear anticorrelationof the intrinsic durationof the X- ray shallow phase with redshift. Considering only those GRBs in our sample that have well-measured burst peak energy, we findmarginalevidenceforburstenergyanticorrelationwiththe shallow phase duration.The latter anticorrelationwouldbe ex- pected if the observed temporal break (t ) arises from a col- 2 limated outflow. In this case, the t′ anticorrelation with z can 2 be interpreted as the evidence of a selection effect since high- redshift bursts with lower energies and shorter plateaus would be missed. However, a larger sample of bursts at known red- shiftwithwell-measuredburstspectralparametersisrequiredto definitivelyassesstheE anticorrelationwitht′.Inanalterna- iso 2 tive scenario, the shallow phase may arise from a mechanism that operates differently at high redshift, such as for example fromX-raydustscatteringoranevolutionoftheintrinsicGRB propertiesasforexampletheinnerengine(Guettaetal.inprepa- ration).Finallywenotethatbyvirtueofitsredshiftdependence (though with large scatter), the observed X-ray shallow phase duration (t ) may be regarded as an additional figure of merit 2 tosingleouthigh-redshiftGRBs directlyfromX-raysobserva- tions.Thismightprovideusefulinformationforburstfollow-up campaignsatopticalandNIRwavelengths. Acknowledgements. Wethank theanonymous referee forhis/her useful com- ments.Thisworkissupported inItalyfromASIScience DataCenterandby ASIgrantI/024/05/0andMIURgrant2005025417. References Fig.2. Top panel: redshift versus the intrinsic duration of the Amati,L.etal.2008,MNRASinpress,arXiv:0805.0377 shallowphase.Theobservedanticorrelationhasanullhypothe- Burrows,D.N.,etal.2005a,SpaceScienceRev.,120,165 sisrejectedat≥99.6%confidencelevel.Thefilledblackcircles Butler,N.R.andKocevski,D.2007,ApJ,668,400 aretheGRBswithmeasuredpeakenergyandthoseencircledin Dado,S.,Dar,A.andDeRu´jula,A.2008,ApJ,680,517 red representthe ‘goldensample’ (in bold face in Tab. 1). The DePasquale,M.etal.2008,MNRAS,377,1638 Evans,P.A.,etal.2007,A&A,469,379 restofthesampleisplottedwithopencircles.Bottompanel:the Frail,D.A.etal.2001,ApJ,562,55 isotropic equivalentenergyof the burstversus the intrinsic du- Gehrels,N.2004,AIPC,727,637 ration of the shallow phase. The observedanticorrelationhasa Ghisellini,G.etal.2007,ApJ,658,75 nullhypothesisrejectedat≥ 98.2%confidencelevel.Blackcir- Ghisellini,G.etal.2008,MNRASinpress,arXiv:0811.1038 Ghirlanda,G.etal.2004,ApJ,616,331 cles, red triangles, and blue square indicate GRBs with similar Nousek,J.A.etal.2006,ApJ,642,389 intrinsic peak energy (400 ≤ E ≤ 600 keV, E ≤ 200 peak,i peak,i Klose,S.1998,ApJ,507,300 keVandEpeak,i ≥1000keVrespectively,seeTable1. Klose,S.1999,MPEReport272,327 Liang,E.W.,Zhang,B.B.Zhang,B.2007,ApJ,670,565 Nava,L.etal.2007,MNRAS,377,1464 Panaitescu,A.etal.2006,MNRAS,369,2059 Panaitescu,A.etal.2007,MNRAS,379,331 Peng,F.etal.2005,ApJ,626,966 Racusin,J.L.etal.2008,Nature,455,183 withredshift.Thisisthecase,forexample,iftheshallowphase Sari,R.,Piran,T.andNarayan,R.ApJ,497,17 isproducedbytheinteractionoftheX-rayemissionwiththesur- Sato,R.etal.2007,submittedtoApJ,arXiv:0711.0903 roundinginterstellar dust(e.g.Klose 1998,1999;Shao andDai Shao,L.andDai,Z.G.2007,ApJ,660,1319 2007,2008).The expecteddecreasein the interstellar dustcon- Shao,L.,Dai,Z.G.,Mirabal,N.2008,ApJ,675,507 Shen,R.F.etal.2008,submittedtoMNRAS6,arXiv:0806.3541 tentwith redshiftmightbe the reasonforthe observedanticor- Willingale,R.etal.2007,ApJ,662,1093 relationbetweenthedurationoftheshallowphaseandredshift. Zhang,B.B.etal.2006,ApJ,642,354 Moreover,itisexpectedwithinthismodelthattheX-rayandop- Zhang,B.B.2007,CJAA,7,1 tical temporalbreaksare in generaluncorrelated,in agreement withanumberwell-sampledafterglowlightcurves(Liangetal. 2007).However,thisinterpretationfacesproblemsinexplaining thelackofthepredictedspectralvariationintheX-rayspectra, as already pointed out by Shen et al. (2008). A possible solu- tion might involve complex dust distribution along the line of sight.Otherscenariosarestillpossible,asforexampleiftheX- rayshallowphasedependsontheintrinsicGRBsproperties(e.g. innerengine)thatmayevolvewithincosmologicaltimescales.