ebook img

Evidence for an anticorrelation between the duration of the shallow decay phase of GRB X-ray afterglows and redshift PDF

0.2 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Evidence for an anticorrelation between the duration of the shallow decay phase of GRB X-ray afterglows and redshift

Astronomy&Astrophysicsmanuscriptno.ms˙rev˙english (cid:13)c ESO2009 January21,2009 LettertotheEditor Evidence for an anticorrelation between the duration of the shallow decay phase of GRB X-ray afterglows and redshift G.Stratta1,D.Guetta2,V.D’Elia2,M.Perri1,S.Covino3,andL.Stella2 9 0 1 ASIScienceDataCenter,viaG.Galilei,00044Frascati,Italy⋆ 0 2 2 INAF-OsservatorioAstronomicodiRoma,viaFrascati33,00040MontePorzioCatone,Italy n 3 INAF-OsservatorioAstronomicodiBrera,viaBianchi46,23807,Merate(LC),Italy a J 2 Received....;accepted.... ] ABSTRACT E H Context.One of the most intriguing features discovered by Swift is a plateau phase in the X-ray flux decay of about 70% of the . afterglowsofgamma-raybursts(GRBs).Thephysicaloriginofthisfeatureisstillbeingdebated. h Aims.Weconstraintheproposedinterpretations,basedontheintrinsictemporalpropertiesoftheplateauphase. p Methods.Weselectedandanalyzed alltheSwift/XRTGRBafterglowsatknownredshift observedbetweenMarch2005andJune - 2008featuringashallowdecayphaseintheirX-raylightcurves. o Results.Foroursampleof21GRBswefindananticorrelationofthelogarithmofthedurationoftheshallowphasewithredshift, r t withaSpearmanrank-ordercorrelationcoefficientofr=−0.4andanullhypothesisprobabilityof5%.Whenwecorrectthedurations s forcosmologicaldilation,theanticorrelationstrenghtens,withr=−0.6andanullhypothesisprobabilityof0.4%.Consideringonly a thoseGRBsinoursamplethathaveawell-measuredburstpeakenergy(8outof21),wefindananticorrelationbetweentheenergy [ oftheburstandtheshallowphaseduration,withr=-0.80andanullhypothesisprobabilityof1.8%. 1 Conclusions.Iftheburstenergyanticorrelationwiththeshallowphasedurationisreal,thenthedependence oftheshallowphase v on redshift could be the result of a selection effect, since on average high-redshift bursts withlower energies and longer plateaus 7 wouldbemissed.Aburstenergyanticorrelationwiththeshallowphasedurationwouldbeexpectediftheendoftheplateauarises 5 fromacollimatedoutflow.Alternativescenariosarebrieflydiscussedinvolvingapossiblecosmologicalevolutionofthemechanism 2 responsiblefortheX-rayshallowdecay. 0 Keywords.gamma-raybursts–??–?? . 1 0 9 1. Introduction in the X-rays (Liang et al. 2007). This idicates either that the 0 X-rayandopticalafterglowhavedifferentoriginsorthatthemi- : v In the pre-Swift era the X-ray afterglows of gamma-ray bursts crophysicalparametersdeterminingtheinstantaneousenergyin i couldbeobservedonlyaftermanyhoursaftertheburst,whenthe X fluxtypicallyshowedasmoothpowerlaw-likedecay,t−α,with the electrons and magnetic field evolve in time (Panaitescu et al.2006).Someofthemodelsproposedtointerpretthephysical r anindexofaboutα ∼ 1.Hereafter,werefertothisasthestan- a origin of the shallow decay phase are summarized in Zhang et dard X-ray afterglow decay phase. The Swift mission (Gehrels al.(2007). etal.2004)hasrevolutionizedGRBstudiesinmanyrespectsby Severalstudieshaveaddressedtheintrinsicpropertiesofthe observingtheX-rayafterglowphasefromafewdozenseconds X-ray shallow phase, in particular by testing whether a depen- aftertheburst(e.g.Zhangetal.2007). denceexistsbetweentheintrinsicdurationoftheshallowphase TheshallowdecayphaseobservedintheX-rayfluxofabout andtheburstenergetics.Resultsobtainedso fararediscordant. ∼ 70% of the afterglows (e.g. Panaitescu 2007) is one of the Ananticorrelationbetweentheintrinsicdurationoftheshallow mostintriguingfeaturesdiscoveredbySwift.Thisphaseusually phase and the burst energetics has been found in some works becomesvisibleafewhundredsecondsaftertheburst,afterthe (e.g. Sato et al. 2007; Dado et al. 2008), while in some others steep decay in the prompt emission, and it lasts for ∼ 1 − 10 it wasnot(e.g.Lianget al. 2007;Nava etal. 2007).Sato et al. ks (Nousek et al. 2006; Zhang et al. 2006). No spectral evolu- (2007)arguethatthesediscrepanciesmaybeassociatedwiththe tionisobservedin eitherthe0.3-10keVrangeduringtheshal- largeuncertaintiesaffectingtheburstenergeticsestimatesand/or low phase or in the subsequent decay phase (e.g. Liang et al. inmodelingtheX-rayshallowphaseandestimatingthetempo- 2007; Butler and Kochevski 2007). This lack of X-ray spec- ralbreakbetweentheshallowandthestandardphases.Someof tral variations has suggested that the observed X-ray temporal thediscrepanciesmightalsobeascribedtothedifferentsizeand steepeningisnotassociatedwiththecrossingofacharacteristic qualityoftheGRBsamplesusedbydifferentauthors. synchrotronfrequency(e.g. the cooling frequency).Opticalaf- terglow lightcurvesoften show a different behavior from those A linear dependencebetween the logarithmof the duration of the shallow phase, and the logarithm of the burst istropic ⋆ INAFpersonnelresidentatASDC equivalentenergy would be expected if the temporalbreak be- 2 Pleasegiveashorterversionwith:\authorrunning and/or \titilerunning priorto \maketitle dominated by features such as spikes or flares that may affect GRB 060714 @ z=2.71 themeasurementofthedecayindex;iii)sinceouranalysiscon- centrateson the study of the intrinsic propertiesof the shallow 1 phase,weconsideredonlyGRBsatknowndistances.Inthisway 0.1 weselected21GRBs(outofatotalofabout60burstsatknown redshiftforwhichthestatisticsweregoodenoughtocarryouta detailedtemporalanalysis).Thesample, aswellthe redshiftof GRB 070306 @ z=1.4959 eachburst,isgiveninTable1.InFigure1thelightcurvesofthree 1 GRBsfromour‘goldensample’(seebelow),takenfromEvans 0.1 et al. (2007),are plotted after rescaling of the temporalaxis to theirrestframe.Theshapeofthe lightcurvesclearlyshowsthe wellknown‘canonical’behavior(e.g.Nouseketal.2005).Since GRB 060729 @ z=0.54 ourgoalistomeasurethedurationoftheshallowphase,wefit- tedtheobservedlightcurveswithpowerlawsas: 1 0.1 10 100 1000 Fν(t)∝ttt−−−ααα021 t1tt<<>ttt<12 t2 (1) restframe time since GRB trigger (s) Fig.1. X-ray afterglow lightcurves from Evans et al. (2007) In Eq. (1), t < t1 indicates the interval where the typical wherethetemporalaxishasbeenrescaledtotheburstrestframe initial steep decay from the prompt is observed, t1 < t < t2 for3GRBsofour‘goldensample’adifferentredshift(see§2). correspondstotheshallowdecayphase,andt >t2 tothesubse- quentstandarddecay.Inthiswork,weconsidert asameasure 2 ofthedurationoftheshallowdecay.ForGRB060614andGRB tweentheshallowphaseandthestandardphasewereinterpreted 060814,weexcludedtheinitialsteepdecayfromthefitbecause as‘jetbreak’time(tj)andtheGRBenergycorrectedforbeam- it could not be well-fitted by a power-law decay. We also ex- ing factor were constant(e.g. Frail et al. 2001).Indeed, the jet cluded fromthe fit those intervalsin which flares were present openinganglecanbeestimatedfromthetimetjatwhichtherel- for t < t1 in the lightcurvesof other GRBs (see last columnof ativisticbeaming(1/Γ(tj)whereΓ(tj)isthefireballLorentzfac- Tab.1). tor) becomes equal to the geometric beaming of the fireball of Table 1 shows the selected dataset where t represents the 2 half-openingangleθj,thatis,θj ∝(t3j/Eiso)1/8(Sarietal.1999), observedepochatwhichtheshallowphasesteepenstothestan- whereE istheequivalentisotropicenergy.Atthattime(t ),the dard decay (calculated from the burst onset as determined by iso j afterglowlightcurvedecaysteepens.Thebeamedcorrecteden- Swift/BAT), and α represents the temporal index of the shal- 1 ergyisE =E (1−cosθ )∼ E θ2.IfE isconstant,itfollows low decay region. Errors are given at the 1σ confidence level. γ iso j iso j γ thatE ∝t−1.ThecorrelationfoundbyGhirlandaetal.(2004) In some cases Eq. (1) provided a poor approximation of the iso j steepeningfromtheshallowphasetothestandardone.Wethus between the intrinsic peak energies and the beaming-corrected burst energies tells that the relation E ∝ t−1 is still (nearly) checkedwhetherotherestimatesofthetemporalbreakbetween iso j the shallow phase and the standard phase obtained assuming validforGRBswithsimilarintrinsicpeakenergy.Inthejetsce- morecomplexmodels(e.g.Willingaleetal.2007;Ghiselliniet nario, the lightcurve steepening is expected to be achromatic. al. 2008) provided different results and we find no significant Thisconditionis barelysatisfied if we considerboththe X-ray differenceswithintheuncertainties,exceptfortwocases1. andtheopticalenergydomains,since,asmentionedabove,sev- We first checked whether any commonintrinsic value t′ of eralX-rayshallowphasesarenottrackedintheopticalregime. 2 theepochatwhichtheX-rayshallowdecayends(t′ =t /(1+z)) However,byrestrictingtheenergyrangetotheX-rays,thecon- 2 2 exists for all GRBs. The observed epoch t covers 3 orders of dition is satisfied since the lack of any spectral variation is a 2 magnitudes(0.5-80ks).Theintrinsicepocht′ stillcoversawide characteristicfeatureoftheX-rayshallowphaseandthesubse- 2 rangeofvalues(0.2-50ks,Tab.1).Wefindnoevidenceofclus- quentstandarddecayphase. tering around any particular value. We then checked whether In the present paper we consider a sample of GRBs with a there is any redshift dependence on t . We found that an anti- well-monitoredX-raylightcurveandknownredshift,whichun- 2 correlationexistsbetweenthelogarithmoft andz,witharank ambigously showed a shallow decay phase. We find clear evi- 2 correlationfactorof -0.4.With 19degreesoffreedom,the null dence of a redshift dependence of the duration of the shallow hypothesisisrejectedata95%confidencelevel.Aftercorrecting decayphase. t forcosmologicaldilation,wefoundthattheanticorrelationis 2 strengthened,witharankcorrelationfactorof-0.6:thenullhy- 2. Thesampleanddataanalysis pothesis is now rejected at 99.6% (non-directionalprobability) confidencelevel(Fig.2).Thattheanticorrelationalreadypresent The X-ray afterglow lightcurves supplied by the UK Swift fort becomesmoresignificantaftercorrectionforcosmological Science Data Centre at the University of Leicester were used 2 dilationprovidesevidencethatthecorrelationisgenuineandnot (Evans et al. 2007). The sample was built by selecting in the biasedby the redshiftcorrection.To confirmthisresult,we se- SwiftarchiveallGRBsobservedintheperiodfromMarch2005 lecteda”goldensample”of10GRBsfromouroriginal21GRB toJune2008withthefollowingcharacteristics:i)a0.3-10keV samplebyconsideringonlythoseGRBswiththebestXRTcov- XRTlightcurvefeaturingshallowbehaviorwithtemporalindex erageinallthethreetypicalSwift/XRTX-raylightcurvecompo- α < 0.8 (i.e. shallower than the ‘standard’fireball modelpre- 1 dictions, e.g. Sari et al. 1998), over a temporalinterval greater 1 Willingaleetal.(2007)estimatedforGRB060607Aadurationof than 0.5 ks (so that the power-law decay index can be mea- T = 56+4 ks and Ghisellini et al. (2008) for GRB 050319 estimated a −3 sured accurately); ii) the shallow decay interval should not be T =7ks(thelatterisintherestframe). A Pleasegiveashorterversionwith:\authorrunning and/or \titilerunning priorto \maketitle 3 GRB t [ks] α z E [1052]erg E [keV] Comments 2 1 iso peak,i 050315 9.0±0.2 −0.2±0.1 1.949 − − steepphaseexcluded 050319 2.7±0.1 0.1±0.2 3.240 − − − 050401 5.0±0.3 0.63±0.02 2.90 35±7A 467±110(1) − 050505 6.4±0.4 0.1±0.1 4.27 19.5±3.1N 622±211(2) − 051109A 2.0±0.1 0.54±0.03 2.346 6.5±0.7A 539±200(1) − 060502A 30±2 0.43±0.09 1.51 − − − 060526 20±2 0.11±0.07 3.21 2.6±0.3A 105±21(1) flareexcluded 060607A 12.9±0.2 0.44±0.02 3.082 12.2±1.8N 535±164(2) flareexcluded 060614 47±2 0.05±0.03 0.125 0.21±0.09A 55±45(1) steepphaseexcluded 060714 3.6+1.2 0.24±0.05 2.71 − − flareexcluded −0.7 060729 77±1 0.12±0.02 0.54 − − flareexcluded 060814 9.9±0.2 0.25±0.06 0.84 7.0±0.7A 473±155(1) flareexcluded 061121 3.6±0.5 0.25±0.04 1.314 22.5±2.6A 1289±153(1) − 070306 27.2±0.8 0.11±0.02 1.4959 − − 070529 2+2 0.7±0.1 2.4996 − − − −1 070611 50+10 0.1±0.1 2.04 − − − −13 070802 5+2 0.1±0.2 2.45 − − − −1 080310 4.5±0.9 0.7±0.1 2.42 − − flareexcluded 080430 15+8 0.4±0.1 0.767 − − − −3 080605 0.55±0.03 0.68±0.04 1.6398 − − − 080607 1.5±0.2 0.1+0.9 3.036 − − flareexcluded −0.3 Table1. SelectedsampleofGRBswithknownredshiftthatpresentsashallowdecayphase. (1)FromAmatietal.2008;(2)FromNavaetal.2007. nents(e.g.Nouseketal.2005),whichareaninitialsteepdecay 1 and Figure 2), we find that t′ anticorrelateswith E , with a 2 iso followed by the shallow and then standard decay. Despite the rank correlation factor of –0.80 and null hypothesisrejected at decreaseinthesampleofGRBs,theanticorrelationbetweenthe 98.2%confidencelevel(Fig.2).Ifwerestrictourselvestocon- logarithmoft andzpersists,witharankcorrelationfactorof- sideringonlythoseGRBswithsimilarintrinsicpeakenergy,we 2 0.85.(Thenullhypothesisisrejectedat99.2%confidencelevel.) still find marginalevidence of the anticorrelation,although the Thegoldensampleis markedwithredopencirclesin Figure2 statisticsarepoor(Fig.2).Eventhoughafirmconclusioncould andinboldfaceinTable1. notbereached,thisresultisconsistentwiththeresultsobtained Thesefindingscannotbeinterpretedasduetoanenergyde- byDadoetal.(2008)andSatoetal.(2007),whileatoddswith pendenceofthedurationoftheshallowphaseasonemaycon- findingsbyLiangetal.(2007)andNavaetal.(2007). clude for example from Figure 1 where the shallow phase at Asmentionedin§1,theanticorrelationbetweent′ and E 2 iso energiesof 1-37 keV (for GRB 060714at z=2.711)in the rest suggeststhatt couldbeconsideredasthejetbreaktimeof(the 2 frame is shorter than the one at 0.5-15 keV (for GRB 060729 partof)thefireballthatgivesrisetotheX-rayafterglow(see§1). atz=0.54).Infact, itis wellknownthatthehardnessratio,de- Severalsuggestionshavebeenmadetoreconcilethejetinterpre- finedasthefluxratiointhe0.3–1.5keVand1.5–10keVenergy tationwithfeaturesobservedinsomeGRB,suchasachromatic bands,doesnotshowanyevidenceofvariationsalongtheshal- evolutionofthebreakorthetemporalbreakatlaterepochs.For lowphase(e.g.ButlerandKocevski2007;Liangetal.2007). example, the two-component jet model (e.g. Peng et al. 2005; The anticorrelation of the intrinsic duration of the X-ray Racusinetal.2007)explainsthelackofasimultaneousoptical shallow phase with redshift that we discussed above may be break as a deficit in the optical emission from the narrower of a consequence of an anticorrelation of t′ with burst energy. the two jets, responsible for the two X-ray temporalbreaks. In 2 Indeed, the GRBs that we observe at high-redshift are on av- another model, Ghisellini et al. (2007) propose to interpret the eragemoreenergeticthanthelow-redshiftonesduetoasimple observedX-rayplateauasthesumoftwocomponents:thelate selection effect. We cannot see faint GRBs at large distances. promptemission(internalshockbetweenlateemittedshells)and Therefore,shorter plateaus might be observedmore frequently theafterglow.ThetemporalbreakattheendoftheX-rayshallow at high redshiftbecause associated with more energetic GRBs. decayphaseistheproofthattheLorentzfactorofthelateshells Alternatively,theanticorrelationoft′ withzcanbeexplainedas (typically smaller than that of the external shell giving rise to 2 acosmologicalevolutionofthemechanismthatgivesrisetothe theafterglow)hasreachedthe1/θj value(see§1).Whetherthe shallowdecay.Webrieflydiscussbothpossibilitieshere. break is tracked in the optical band dependson the relative in- tensity of each component. The second break at later times is producedwhentheLorentzfactoroftheshellproducingtheaf- 2.1.Theburstenergydependenceoft′ terglowhasreachedthe1/θ value. 2 j To verify the dependence of the energy of the burst from t′ is 2 notaneasygoalsincetheGRBenergetics,usuallyestimatedby 2.2.Evidenceofcosmicevolution? E , is often affected by large uncertainties in the burst spec- iso tral parameters, the peak energy E of the EF spectrum in Giventheuncertaintiesaffectingtheburstenergeticevaluations peak E particular. For this reason, we considered only those GRBs of andthepoorstatisticsavailabletodefinitivelyconfirmtheanti- our sample for which precise measurementsof Epeak are avail- correlationbetweenEisoandt2′,wespeculateonanotherpossible able (e.g. Amati et al. 2008;Nava et al. 2007).For 8 GRBs of interpretation of the redshift anticorrelation with t′ where the 2 oursample(3ofwhicharepartofthe‘goldensample’,seeTab. shallow phase depends on an external component that evolves 4 Pleasegiveashorterversionwith:\authorrunning and/or \titilerunning priorto \maketitle 3. Conclusions In this work we analyzed 21 GRBs with known redshift that feature a shallow phase in the X-ray lightcurve. Our main re- sult is a clear anticorrelationof the intrinsic durationof the X- ray shallow phase with redshift. Considering only those GRBs in our sample that have well-measured burst peak energy, we findmarginalevidenceforburstenergyanticorrelationwiththe shallow phase duration.The latter anticorrelationwouldbe ex- pected if the observed temporal break (t ) arises from a col- 2 limated outflow. In this case, the t′ anticorrelation with z can 2 be interpreted as the evidence of a selection effect since high- redshift bursts with lower energies and shorter plateaus would be missed. However, a larger sample of bursts at known red- shiftwithwell-measuredburstspectralparametersisrequiredto definitivelyassesstheE anticorrelationwitht′.Inanalterna- iso 2 tive scenario, the shallow phase may arise from a mechanism that operates differently at high redshift, such as for example fromX-raydustscatteringoranevolutionoftheintrinsicGRB propertiesasforexampletheinnerengine(Guettaetal.inprepa- ration).Finallywenotethatbyvirtueofitsredshiftdependence (though with large scatter), the observed X-ray shallow phase duration (t ) may be regarded as an additional figure of merit 2 tosingleouthigh-redshiftGRBs directlyfromX-raysobserva- tions.Thismightprovideusefulinformationforburstfollow-up campaignsatopticalandNIRwavelengths. Acknowledgements. Wethank theanonymous referee forhis/her useful com- ments.Thisworkissupported inItalyfromASIScience DataCenterandby ASIgrantI/024/05/0andMIURgrant2005025417. References Fig.2. Top panel: redshift versus the intrinsic duration of the Amati,L.etal.2008,MNRASinpress,arXiv:0805.0377 shallowphase.Theobservedanticorrelationhasanullhypothe- Burrows,D.N.,etal.2005a,SpaceScienceRev.,120,165 sisrejectedat≥99.6%confidencelevel.Thefilledblackcircles Butler,N.R.andKocevski,D.2007,ApJ,668,400 aretheGRBswithmeasuredpeakenergyandthoseencircledin Dado,S.,Dar,A.andDeRu´jula,A.2008,ApJ,680,517 red representthe ‘goldensample’ (in bold face in Tab. 1). The DePasquale,M.etal.2008,MNRAS,377,1638 Evans,P.A.,etal.2007,A&A,469,379 restofthesampleisplottedwithopencircles.Bottompanel:the Frail,D.A.etal.2001,ApJ,562,55 isotropic equivalentenergyof the burstversus the intrinsic du- Gehrels,N.2004,AIPC,727,637 ration of the shallow phase. The observedanticorrelationhasa Ghisellini,G.etal.2007,ApJ,658,75 nullhypothesisrejectedat≥ 98.2%confidencelevel.Blackcir- Ghisellini,G.etal.2008,MNRASinpress,arXiv:0811.1038 Ghirlanda,G.etal.2004,ApJ,616,331 cles, red triangles, and blue square indicate GRBs with similar Nousek,J.A.etal.2006,ApJ,642,389 intrinsic peak energy (400 ≤ E ≤ 600 keV, E ≤ 200 peak,i peak,i Klose,S.1998,ApJ,507,300 keVandEpeak,i ≥1000keVrespectively,seeTable1. Klose,S.1999,MPEReport272,327 Liang,E.W.,Zhang,B.B.Zhang,B.2007,ApJ,670,565 Nava,L.etal.2007,MNRAS,377,1464 Panaitescu,A.etal.2006,MNRAS,369,2059 Panaitescu,A.etal.2007,MNRAS,379,331 Peng,F.etal.2005,ApJ,626,966 Racusin,J.L.etal.2008,Nature,455,183 withredshift.Thisisthecase,forexample,iftheshallowphase Sari,R.,Piran,T.andNarayan,R.ApJ,497,17 isproducedbytheinteractionoftheX-rayemissionwiththesur- Sato,R.etal.2007,submittedtoApJ,arXiv:0711.0903 roundinginterstellar dust(e.g.Klose 1998,1999;Shao andDai Shao,L.andDai,Z.G.2007,ApJ,660,1319 2007,2008).The expecteddecreasein the interstellar dustcon- Shao,L.,Dai,Z.G.,Mirabal,N.2008,ApJ,675,507 Shen,R.F.etal.2008,submittedtoMNRAS6,arXiv:0806.3541 tentwith redshiftmightbe the reasonforthe observedanticor- Willingale,R.etal.2007,ApJ,662,1093 relationbetweenthedurationoftheshallowphaseandredshift. Zhang,B.B.etal.2006,ApJ,642,354 Moreover,itisexpectedwithinthismodelthattheX-rayandop- Zhang,B.B.2007,CJAA,7,1 tical temporalbreaksare in generaluncorrelated,in agreement withanumberwell-sampledafterglowlightcurves(Liangetal. 2007).However,thisinterpretationfacesproblemsinexplaining thelackofthepredictedspectralvariationintheX-rayspectra, as already pointed out by Shen et al. (2008). A possible solu- tion might involve complex dust distribution along the line of sight.Otherscenariosarestillpossible,asforexampleiftheX- rayshallowphasedependsontheintrinsicGRBsproperties(e.g. innerengine)thatmayevolvewithincosmologicaltimescales.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.