DRAFTVERSIONFEBRUARY2,2008 PreprinttypesetusingLATEXstyleemulateapj EVIDENCEFORALINKBETWEENFEKαEMISSIONLINESTRENGTHANDQPOPHASEINABLACKHOLE J.M.MILLER1,2ANDJ.HOMAN3 Subjectheadings:Blackholephysics–relativity–stars: binaries–physicaldataandprocesses:accretiondisks DraftversionFebruary2,2008 ABSTRACT In X-ray binaries, the frequencies revealed in X-ray quasi-periodic oscillations (QPOs) are often interpreted 5 as characteristic frequenciesin the inner accretion disk, though the exact oscillation mechanism is unknownat 0 0 present. BroadenedFeKα linesare alsoexcellentdiagnosticsoftheinneraccretionflow, iftheir broadeningis 2 indeedduetoinnerdiskreflection.Herein,wepresenttwocaseswherethefluxandequivalentwidthoftheFeKα emissionlinesinspectraoftheGalacticblackholeGRS1915+105varywiththephaseofstrong1Hzand2Hz n QPOsintheX-rayflux.TheseresultsprovidestrongevidencethatbothQPOsandtheFeKαlinesoriginateinthe a innerdisk.Ifthe1HzQPOisonlyaKeplerianorbitalfrequency,theQPOcomesfromadistanceof84±26R J Schw. fromtheblackhole;the2HzQPOimpliesaradiusof50±15R . Attheseradii,relativisticshapingofadisk 8 Schw lineisinevitable. Moreover,thelinkholdsinradio–brightandradio–faintphases,signalingthatinsystemslike 1 GRS1915+105,theFeKαlineisadisklineandnotajetlineasperSS433.Aparticularlyinterestingpossibility 1 isthatastablewarpintheinnerdisk,e.g.duetoLense-Thirringprecession,mayproducetheobservedQPOsand v linemodulations.Morebroadly,theFeK–QPOlinkprovidesanunprecedentedmechanismforrevealingtheinner 1 accretionflowandrelativisticregimeinaccretingsystems,inthatitgivestwomeasuresofradius:foragivendisk 7 QPOmodel,thefrequencytranslatesintoaspecificradius,andrelativisticlinemodelsyieldradiidirectly. 3 1 1. INTRODUCTION further. We report the discovery of a link between discrete 0 timingfeatures(QPOs)andspectralfeatures(FeKαemission 5 Inaccretion-poweredsources,agreatdealoftheoreticaland 0 observationaleffortis devotedto the studyof the inneraccre- lines): Fe Kα emission line strength varies with QPO phase / in radio–bright and radio–faint states of the “microquasar” h tionflow,andtousingtheaccretionflowitselfasatooltostudy GRS 1915+105. Our results provide the first indication that p the centralcompactobject. High frequencyQPOs in Galactic thesediagnosticsoftheinneraccretionflowarerelated. - black hole systems may be related to the Keplerianfrequency o attheinnermoststablecircularorbit(forzero-spinblackholes, r t ν =220 Hz 10 M⊙/MBH; e.g., Strohmayer2001, Miller et al. 2. DATASELECTIONANDREDUCTION s a 2001, Remillard et al. 2002, Homan et al. 2004), but they are WechosetoinvestigateGRS1915+105asstrongQPOs(see, v: onlyobservedinahandfullofsources.QPOsatlowerfrequen- e.g., Morgan, Remillard, & Greiner 1997) and Fe Kα emis- cies, typically 1–10 Hz are much more common. Although i sionlines(Munoetal.2001,Martocchiaetal.2002,Milleret X their origin is unclear, interpreting them as a Keplerian fre- al. 2004a) have been reported in this source. The high mass ar qsiuoenncfryeqpuuetsncthyeamt tahte∼<i1n0n0erRdSicshkw..(eI.fg.t,hedsueeQtoPOfrsamareedarapgregcinegs-, ofGRS 1915+105(MBH =14.4±4.4M⊙, Harlaftis& Greiner 2004) means that for a given QPO frequency, the QPOs may see Markovic& Lamb 1998), theyproberegionsmuch closer trace regions closer to the black hole in this source than in to the black hole. Broad, asymmetric Fe Kα emission lines lower-mass black holes. GRS 1915+105 displays a wide va- are foundin the spectra of bothsupermassiveblack holesand riety of radio states. Steady radio emission is associated with stellar-mass Galactic black holes (Reynolds & Nowak 2003). compactjets(Fender2004),andthisfactcanbeexploitedtoex- These lines appear to be imprinted with the extreme Doppler aminewhetheranyrelationbetweenFeKαlinefluxandQPOs shiftsandgravitationalred-shiftsexpectedneartoablackhole, dependsonthepresenceofajet. butthecaseisnotentirelyshut. To extract QPO phase-selected spectra, QPOs should be A natural evolution of the means by which inner accretion strong enough to dominate the X-ray variability and be di- flows are studied is to bringspectralandtiming constraintsto rectly visible in the X-ray lightcurves. Morgan, Remillard, bearjointly.Ithasbeenshownthatthediskreflectionspectrum & Greiner (1997) found large amplitude, sinusoidal QPOs in (theFeKαlineisthemostprominentpartofthereflectedspec- GRS 1915+105 that could be seen in the naked lightcurve. trum;seeGeorge&Fabian1991)inGalacticblackholesvaries The QPOs were found to be quasi–periodic largely due to withbroad-bandfrequency(Gilfanov,Churazov,&Revnivtsev random jumps in phase. We selected two observations of 2000). Thisisstrongevidencethattimingandspectralproper- GRS 1915+105available in the RXTE public archive: 20402- tiesareintimatelyrelated,andsupportsmodelswhereinFeKα 01-15-00 (obs. date: 9 Feb. 1997) and 20402-01-50-01 (obs. emissionlinesariseintheinnerdisk. date:16Oct.1997).Thespectralandtimingpropertiesofthese Inthiswork,wetakespectralandtimingconnectionsastep observations(includinganFeKαemissionline) 1Harvard-SmithsonianCenterforAstrophysics,60GardenStreet,Cambridge,MA02138,[email protected] 2NSFAstronomyandAstrophysicsFellow 3CenterforSpaceResearchandDepartmentofPhysics,MassachusettsInstituteofTechnology,Cambridge,MA02139–4307,[email protected] 1 2 TheIronLine–QPOConnection radio bright radio faint FIG. 1.—Thepowerdensityspectraoftheradio-brightobservation(black) andradio-faintobservation(red)areshownabove. ThestrongestQPOshave frequenciesof1.052(3)Hzand2.260(2)Hz,andamplitudesof14.7(3)%rms FIG. 2.— Approximately 20 cycles of the QPO wave from randomly selected intervals in each observation are shown above. Clearly the QPOs and13.6(1)%rms,respectively. stronglydominatethelightcurves. Solidlinesmarkthemeancountrate,and have previously been reportedon by Muno et al. (2001). Im- dashedlinesaboveandbelowmarkthecountratelevelsusedtoselectthehigh portantly, Muno et al. (2001)also studied the radio properties andlowphasesoftheQPOwaves.Theradio-brightdataarebinnedto0.128s, ofGRS1915+105duringtheseobservations;thefirstoccurred andtheradio-faintdataarebinnedto0.064s. ina“radio–faint”state(hereafter,“RF”;thesourcewasnotde- 0.01–100HzrangewithLorentzianfunctionsintheν–maxrep- tected at 8.3 GHz), and the second in a radio-brightor radio- resentation(see,e.g.,Homanetal.2004).EachPDSisstrongly plateaustate(74±6mJyat8.3GHz;hereafter“RB”). dominatedbyasingleQPO(seeFigure1). ThestrongestQPO ToolswithinLHEASOFTversion5.3andCIAOversion3.1 in the RF obs. has a frequency of 2.273(4) Hz, a Q–value of were usedto reduceandanalyzethese observations. Standard 6.0(2),andanamplitudeof11.8(2)%rms(errorsare1σ). The RXTE data screening and good time selections were applied strongestQPOintheRBobs.hasafrequencyof1.050(3)Hz,a (e.g.,forSAAavoidance).Wefurtherscreenedthedatatoonly Q–valueof7.9(4),andanamplitudeof11.1(2)%rms. Assum- include times duringwhich all five PCUs were operated. The ingablackholemassofMBH=14.4±4.4M⊙,ifthesefrequen- nettotalgoodtimefortheRFobs.(15-00)was10.1ksec,and ciesare merelyKeplerianorbitalfrequencies,theycorrespond the nettotal goodtime forRB obs. (50-01)was 4.5 ksec. All toradiiof84±26R and50±15R respectively. Schw. Schw. spectra and lightcurves were generated using the tool “saex- Lightcurves from the “B_8ms_16A_0-35_H” mode data trct”, and all response matrices were generated with the tool fromeachobservationwereanalyzed,andthetotalmeancount “pcarsp”. As GRS 1915+105is very bright and we are inter- rateandmeancountratein100sintervalswerecalculated.The ested in relative variations, backgroundspectra were not sub- meanrateintheRFobs.is3532c/s,witharangeof3298–3727 tracted. We made time-averaged broad-band PCA spectra by c/swhenmeasuredin100sintervals. ThemeanrateintheRB combiningdatafromalllayersofallPCUstakenin“Standard- obs.is6602c/s,witharangeof6496–6793c/s. 2” mode (129 energy channels between 2 and 60 keV, taken As the QPOs in each observation dominate the X-ray vari- every16s). Spectraandlightcurveswerealsomadefromdata ability(seeFigure2),andbecausethemeancountrateineach takenin“B_8ms_16A_0-35_H”mode(16energychannelsup observationisverysteady,weappliedsimplecount-rateselec- tochannel35–roughly13keV–takenevery8ms). tionstoisolatethemaximaandminimaoftheQPOwaves. For To accurately estimate relative flux differences in data ac- the RF obs. selecting periods when the flux was 15% above quired with the same detector, it is only important to under- orbelowthemeaneffectivelyisolatedthemaximaandminima. stand the degree to which systematic errors may change over For the RB obs. there is less noise apart from the QPO, and time. Forthispurpose,wereducedandanalyzedCrabspectra periodswhenthefluxwas10%aboveorbelowthemeanwere obtained before and after each observationof GRS 1915+105 found to effectively isolate maxima and minima. The CIAO (spectra obtained on 31 Jan. 1997 and 16 Feb. 1997, and 12 tool“dmgti”wasusedtogenerateadditionalgoodtimefilesof Oct.1997and27Oct.1997).Absorbedpower-lawfitstothese themaximaandminima. Thesefileswerethanappliedwithin spectra reveal that most channels below 10 keV (those most “saextrct”toproducespectraofthemaximaandminima. importantforFeKαlinestudies)differby0.2%orless. Tobe All spectral analysis was done using XSPEC version 11.3 conservative, we added 0.2% systematic errors to the spectra. (Arnaud 1996) and IDL version 5.4. Analysis of the time– Thisislessthanthe0.5–1.0%systematicerrorsoftenaddedto averagedstandard-2spectrawasperformedinthe3.0–20.0keV PCAspectrawhenabsolutefluxesareofinterest. band. ThePCAiscalibratedwellinthisenergyrange,andthis rangeisnotmuchgreaterthantherangeofthe“B_8ms_16A_0- 3. ANALYSISANDRESULTS 35_H”modedata.Fitstothespectrawithanumberofcommon Wemadepower-densityspectra(PDS)oftheX-rayfluxfrom modelsrevealed the Fe Kα emission line previouslynoted by eachobservationusingallavailabledata,andfitthe Munoetal.(2001).Ineachcase,theadditionofasimple Miller&Homan 3 high phase low phase FIG. 3.— Fitstothehighandlowphasespectrafromtheradio–faintob- FIG. 4.— Theplotaboveshowstherelative intensityoftheradio-bright servation ofGRS1915+105areshownabove. Thespectrawerefitwiththe and radio-faint spectra of GRS 1915+105 (and a “control” observation of model described in Table 1, using the fixed line centroid and width (which H1743- 322)inhighandlowcountratephases. Thelowcountratespectra givesasmallerdifferenceinthelinefluxesthaniftheseparametersfloat).The weresubtracted fromthehighcountrate spectra, andthedifference was di- linefluxwassettozeroontheratioplottoshowthedifferenceinFeKαline videdbythemeancountratefortheentireobservation. Errorbarsareplotted intensitybetweenhighandlowQPOphases. butareverysmall.Channelbinswereconvertedtoenergyspacebutthedetec- torresponsehasnotbeenremoved(sotheXeLedgecomplexbetween4–6keV Gaussiancomponenttomodelthelinewassignificantatmore isseen). UnliketheH1743- 322differencespectrum,theFeKαlinebinsare than the 8σ level of confidence. We find that disk reflection dominantintheGRS1915+105difference spectra. Thismodel–independent modelsprovidethebestoverallfittothebroad-bandspectrum analysisconfirmsthattheFeKαlineintensityvarieswithQPOphase. anddonotrequirea diskthatisprominentin theRXTEband- timescales of seconds, but had a steady mean count rate on pass. Ourmodeldoesnotincludeadisk,butthisonlyreflects 100 s scales in this window. Spectroscopy of H 1743- 322in thefactthatacooldiskwithmoderatefluxisnoteasilyseenin outburst did not reveal an Fe Kα emission line (Miller et al. theRXTEbandpass,especiallywhenN ishigh. 2004b), and the Fe Kα line bins are not globally dominantin H Wefitthetime-averaged,highphase,andlowphasespectra thedifferencespectrumshowninFig.4. with absorbed cut-off power-law (for the radio-bright phase) 4. DISCUSSIONANDCONCLUSIONS or brokenpower-law (for the radio-faintphase) models, mod- ified by the addition of a Gaussian component (to model the Themainresultsofthisworkmaybesummarizedasfollows: FeKαemissionline)andsmearededgecomponent(“smedge” • Fe Kα line flux (and possibly FWHM and centroid energy) in XSPEC) to mimic a reflected continuum. Trudolyubov depends on QPO phase in 1–2 Hz QPOs in GRS 1915+105, (2001)alsofoundthatthesedifferingspectralmodelswerere- linkingtwoindependentdiagnosticsoftheinneraccretionflow. quired in RF and RB states. The “phabs” model was used to •TheQPOfrequenciesatwhichtheFeKαlinefluxismodu- accountfor absorptionin the neutralISM. The “smedge” was latedcorrespondtoradiiof84±26R and50±15R ,if Schw. Schw. notstatisticallyrequiredinallfits,anditsparameterscouldnot theyaremerelyKeplerianorbitalfrequencies. Thislinklikely be well constrained. However, the smedge effectivelymimics ties Fe Kα lines in Galactic black holes to the inner disk and a disk reflection spectrum at energies above the Fe Kα emis- furthersupportsevidence that the observedline broadeningis sion line, so we fixed the model parameters to modest values dueto dynamicsin the disk (Dopplershifts, gravitationalred- consistentwiththedata(E=8.5keV,τ =0.3,width=10keV). shifts)closetotheblackhole. Theparametersobtainedfromthespectralfitsare shownin • The presence of Fe Kα lines, QPOs, and the link between Table 1. Inallcases, the linefluxesandequivalentwidthsare themdoesnotdependonjetactivity(takingradiofluxasajet significantly different in the high and low phase spectra (see indicator). Althoughthebaseofafailedjetmaybeasourceof Fig.3). Theconfidenceintervalsdonotoverlapevenwhenthe hardX-rayswhichirradiatethedisk,FeKαlinesandQPOsdo 1σ error bars are multiplied by 5. There is evidence that the notariseinanextendedjet. Fe Kα emissionline fluxisbroaderandslightlyshiftedto the redinthehighphaserelativetothelowphase. Blobs in the inner accretion disk might create QPOs and To demonstrate that the line flux varies in a model– could give a quasi-periodically changing reflector area. Sim- independentmanner, we subtracted the low countrate spectra ilarly, if the height of hard X-ray emitters (flares, or the base fromthe highcountrate spectra, anddividedthe resultby the of a jet) changes quasi-periodically, QPOs and Fe Kα line mean count rate for the entirety of each observation. Using variations might be expected. However, while both explana- theenergytochannelboundsfoundintheresponsematrixfor tions are possible, such explanations seem inconsistent with each observation, the bins in the difference spectra were con- the strength and constancyof the QPOs found in these obser- verted to energy bounds; however, the detector response was vations of GRS 1915+105, and with the fact that the Fe K– not removed and no spectral fitting was performed. In both QPOconnectionholdsoverafactoroftwoinfluxandinboth theradio–brightandradio–faintobservations,themostpromi- radio-brightandradio-faintphases.Moreover,associatinglow- nentdifferencebetweenthehighandlowphasesistheFe Kα frequencyQPOswithKeplerianfrequenciesisproblematicfor line (see Fig. 4). For a “control” observation, we extracted tworeasons: (1)X-rayproductioninaccretiondisksshouldbe highandlowphasespectra(10%above/belowthemean)from centrallyconcentrated,withlittleemissionfromr≥100R , Schw. a 1.2 ksec slice of an observation of the Galactic black hole and (2) QPOs are strongerat higher energies, suggesting they H 1743- 322obtainedon28May2003. Liketheobservations are also centrally produced (see, e.g., Homan et al. 2001). A ofGRS1915+105,H1743- 322washighlyvariableon stablewarpattheinnerdisk,e.g.duetoLense-Thirringpreces- 4 TheIronLine–QPOConnection TABLE 1 FitstoQPOPhaseSpectra NH Γ1,Γ2 Ebreak(keV) Norm. EGauss(keV) FWHM flux(10- 2ph/cm2/s) EW(eV) χ2/ν RFavg. 5.40(6) 2.18(1),1.922(5) 11.4(1) 4.55(6) 6.58(5) 1.9(1) 1.13(7) 150(10) 70.5/38.0 RFhigh† 5.40 2.125(3),2.5(1) 11.4 5.45(3) 6.58 1.9 2.00(8) 200(8) – RFlow† 5.40 2.335(6),1.00(5) 11.4 4.42(2) 6.58 1.9 0.66(3) 120(5) – RFhigh 5.40 2.122(4),2.3(1) 11.4 5.37(4) 6.32(6) 2.7(2) 2.8(2) 260(20) – RFlow 5.40 2.328(6),1.29(9) 11.4 4.32(4) 6.72(4) 1.1(1) 0.52(3) 100(6) – NH Γ1 Ecut(keV) Norm. EGauss(keV) FWHM flux(10- 2ph/cm2/s) EW(eV) χ2/ν RBavg. 5.96(8) 1.97(2) 29(1) 7.3(2) 6.43(3) 1.9(1) 4.2(2) 280(10) 189.2/39 RBhigh† 5.96 1.927(2) 29 8.27(3) 6.43 1.9 5.6(1) 300(5) – RBlow† 5.96 2.044(1) 29 6.89(2) 6.43 1.9 3.13(4) 250(10) – RBhigh 5.96 1.925(3) 29 8.18(5) 6.33(3) 2.4(1) 6.7(2) 360(10) – RBlow 5.96 2.046(1) 29 6.96(2) 6.53(1) 1.4(1) 2.59(4) 220(4) – NOTE.—“RF”refers totheradio-faint observation (fitwithabroken power-law), and“RB” totheradio-bright observation (fitwithacut-off power-law). A “smedge”withE=8.5keV,τ=0.3,andwidth=10keVwasincludedinallfits.Fitsto“avg”spectraarefitstostandard-2datainthe3–20keVband.Allotherfitsare tolowerresolution“B_8ms_16A_0-35_H”datainthe3–13keVband.†DenotesfitsinwhichtheFeKαlinecentroidandFWHMwerefixedtothevaluesmeasured intheaveragespectrum.Whereerrorsarenotgiven,parametersfromthestandard-2fitswerefixed.Systematicerrorsof0.2%wereaddedtoallspectrapriortofitting toestimatethedriftindetectorresponse.Fitstothephase-selectedspectrawithlinecentroidenergyandFWHMfixedtotheaveragevalue,andwithparametersfree, arebothreportedforcomparison.Allerrorsare1σerrorstoallowconfidencestobeinferreddirectly.Formallyacceptablefitsareobtainedwithsystematicerrorsset to0.6%,whichistypicalforspectroscopywhereinabsolutefluxmeasurementsareimportant. sion,couldcauseQPOsandwouldalsoservetocreateaquasi- Young & Reynolds 2000), and observations of disk hot spots periodicallychangingreflectorarea,modulatingthestrengthof orbitingclosetotheblackholesinAGN(e.g.,Iwasawa,Mini- FeKαlineemission.IthasbeensuggestedthatLense-Thirring utti, & Fabian 2004). Long RXTE exposures with carefully precessionmaybethecauseoflow-frequencyQPOsinaccret- chosen PCA modes are needed to obtain additional data for ingsystems(e.g.,Markovic&Lamb1998),andtheFeK–QPO new studies. The large effective areas of XMM-Newton and connectionmaybeevidenceforthisGeneralRelativisticeffect. Astro-E2maysupportsuchstudiesaswell,andmayevenallow Whether or not Lense-Thirring precession can account for studiesofthelineshapewithQPOphase.AnewX-raymission the Fe K–QPOconnection,theFe K–QPO connectionhasthe withanareaof2–10m2andCCDspectralresolution(orbetter) potential to reveal the innermostregime in accreting systems. mayfullyexploittheFeK–QPOconnection. Foragivendisk–drivenQPOmodel,theFeK–QPOconnection givestwomeasuresofradius: frequenciesimplyspecificradii, We wish to thank Ed Bertschinger, Andy Fabian, Keith Ja- andrelativisticdisklinemodelsconstrainradiidirectly(Fabian hoda, Fred Lamb, Cole Miller, Ed Morgan, and Mike Nowak et al. 1989, Laor 1991). The connection over–constrains the for helpful discussions. We thank Keith Arnaud, Aneta system,ifQPOsarediskfrequencies. Siemiginowska,andTodStrohmayerforguidancein handling Work of this kind in Galactic black holes may have impor- systematic errorsin this work. J.M.M. acknowledgesfunding tantimplicationsforFeKαlinereverberationmappinginAGN fromtheNSF,throughitsAAPFprogram. Thisworkwaspar- withplannedmissionssuchasConstellation-XandXEUS(e.g., tiallysupportedbyfundingfromtheRXTEGOprogram. REFERENCES Arnaud, K.A., 1996, ADASSV,eds. G.Jacoby andJ.Barnes, ASP Conf. Martocchia,A.,Matt,G.,Karas,V.,Belloni,M.,&Feroci,M.,2002,A&A, Series101,17 387,215 Fabian,A.C.,Rees,M.J.,Stella,L.,&White,N.E.,1989,MNRAS,239,729 Miller,J.M.,etal.,2001,ApJ,563,928 Fender,R.P.,2004,“JetsfromX-rayBinaries”,toappearin“CompactStellar Miller,J.M.,Fabian,A.C.,Nowak,M.A.,&Lewin,W.H.G.,2004a,inthe X-raySources”eds. W.H.G.Lewin&M.vanderKlis,Cambridge,2004, Proc. ofthe10thMarcelGrossmannMeetingonGeneralRelativity,astro- seeastro-ph/0303339 ph/0402101 George,I.M.,&Fabian,A.C.,1991,MNRAS,249,352 Miller,J.M.,etal.,2004,ApJ,subm.,astro-ph/0406272 Gilfanov,M.,Churazov,E.,&Revnivtsev,M.,2000,MNRAS,316,923 Morgan,E.H.,Remillard,R.A.,&Greiner,J.,1997,ApJ,482,993 Harlaftis,D.,&Greiner,J.,2004,A&A,2004,414,13 Muno,M.P.,etal.,2001,ApJ,556,515 Homan,J.,etal.,2001,ApJS,132,377 Remillard,R.A.,Muno,M.P.,McClintock,J.E.,&Orosz,J.A.,2002,ApJ, Homan,J.,etal.,2004,ApJ,inpress,astro-ph/0406334 580,1030 Iwasawa, K.,Miniutti, G., &Fabian, A.C., 2004, MNRAS,inpress, astro- Reynolds,C.S.,&Nowak,M.A.,2003,PhR,377,389 ph/0409293 Strohmayer,T.,2001,ApJ,552,L49 Laor,A.,1991,ApJ,376,90 Trudolyubov,S.P.,2001,ApJ,558,276 Markovic,D.,&Lamb,F.K.,1998,ApJ,507,316 Young,A.J.,&Reynolds,C.S.,2000,apJ,529,101