remote sensing Article Evapotranspiration Estimate over an Almond Orchard Using Landsat Satellite Observations RuyanHe1,2,YufangJin2,*,MaziarM.Kandelous3,DanieleZaccaria2,BlakeL.Sanden4, RichardL.Snyder2,JinbaoJiang1andJanW.Hopmans2 1 CollegeofGeoscienceandSurveyingEngineering,ChinaUniversityofMining&Technology(Beijing), Beijing100086,China;[email protected](R.H.);[email protected](J.J.) 2 DepartmentofLand,AirandWaterResources,UniversityofCalifornia,Davis,CA95616,USA; [email protected](D.Z.);[email protected](R.L.S.);[email protected](J.W.H.) 3 DepartmentofCropandSoilScience,OregonStateUniversity,Corvallis,OR97331,USA; [email protected] 4 UniversityofCaliforniaCooperativeExtension,Bakersfield,CA93307,USA;[email protected] * Correspondence:[email protected] AcademicEditors:GeorgeP.PetropoulosandPrasadS.Thenkabail Received:7March2017;Accepted:1May2017;Published:5May2017 Abstract: California growers face challenges with water shortages and there is a strong need to usetheleastamountofwaterwhileoptimizingyield. Timelyinformationonevapotranspiration (ET), a dominant component of crop consumptive water use, is critical for growers to tailor irrigationmanagementbasedonin-fieldspatialvariabilityandin-seasonvariations.Weevaluatedthe performanceofaremotesensing-basedapproach,MappingEvapotranspirationathighResolution withInternalizedCalibration(METRIC),inmappingEToveranalmondorchardinCalifornia,driven byLandsatsatelliteobservations. ReferenceETfromanetworkofweatherstationsoverwell-watered grass (ET ) was used for the internal calibration and for deriving ET at daily and extended time o period,insteadofalfalfabasedreferenceevapotranspiration(ET ). OurstudyshowedthatMETRIC r dailyETestimatesduringLandsatoverpassdatesagreedwellwiththefieldmeasurements. During 2009–2012, a root mean square error (RMSE) of 0.53 mm/day and a coefficient of determination (R2) of 0.87 were found between METRIC versus observed daily ET. Monthly ET estimates had a higher accuracy, with a RMSE of 12.08 mm/month, a R2 of 0.90, and a relatively small relative meandifference(RMD)of9.68%during2009–2012growingseasons. NetradiationandNormalized DifferenceVegetationIndex(NDVI)fromremotesensingobservationswerehighlycorrelatedwith spatialandtemporalETestimates. AnempiricalmodelwasdevelopedtoestimatedailyETusing NDVI,netradiation(R ),andvaporpressuredeficit(VPD).Thevalidationshowedthattheaccuracy n ofthiseasy-to-useempiricalmethodwasslightlylowerthanthatofMETRICbutstillreasonable,with aRMSEof0.71mm/daywhencomparedtogroundmeasurements. TheremotesensingbasedET estimatewillsupportavarietyofStateandlocalinterestsinwateruseandirrigationmanagement,for bothplanningandregulatory/compliancepurposes,anditprovidesthefarmersobservation-based guidanceforsite-specificandtime-sensitiveirrigationmanagement. Keywords: evapotranspiration;landsat5TMand7ETM+;METRIC;almondorchard;consumptive wateruse;centralvalley 1. Introduction Almondhasbecomethefirstleadingrevenue-generatingcropcommodityinCalifornia,with atotalvalueofannualproductionover5.9billiondollarsin2014. California’salmondacreagehas beenrapidlygrowing,from700,000acres(bearingacreage: 590,000acres)in2005to1,020,000acres RemoteSens.2017,9,436;doi:10.3390/rs9050436 www.mdpi.com/journal/remotesensing RemoteSens.2017,9,436 2of21 (bearing acreage: 870,000 acres) in 2014, according to the California Department of Food and Agriculture (CDFA) [1]. On the other hand, almond growers face water supply challenges due totheincreasingfrequencyandseverityofrecurringdroughts. Waterusebyalmondorchardshasnot beenwellstudied,especiallyundervariouscroppingconditions,andthisknowledgegaplimitsthe capacityforgrowerstoachieveresource-efficientwatermanagement. Agriculturalconsumptivewateruseconsistsofwaterremovedbyevapotranspiration(ET),viasoil evaporation(E)andplanttranspiration(T).AccurateestimationandmappingofcropETacrossspace andtimeareessentialforimprovingfield-scaleirrigationmanagementandforwatershedandregional waterplanningandmanagement. Ground-basedfluxmeasurementmethodssuchaseddycovariance (EC)[2],Bowenratio(BR)[3],andmostrecentlysurfacerenewal(SR)[4],canprovidehalf-hourly, hourly,anddailyETmeasurementsandthusofferguidancetogrowersfortimesensitiveirrigation scheduling. However, these measurements are limited by the small scale of the footprint area of themeasurementstationsandtheycannotcaptureheterogeneitywithineachagriculturefield,and sometimescannotrepresenttheentirefieldororchardconditions. Theequipmentformeasuringfield ETthroughgroundmethodsisusuallyexpensive,whiletheirinstallationandmaintenancecouldalso belabor-intensive. In agricultural production areas, ET has been traditionally estimated as a product of the weather-based ET of a hypothetical reference surface, such as alfalfa (ET ) or grass (ET ) under r o well-wateredcondition,andcropcoefficient(K )[5,6]. K isoftengeneralizedforeachcroptypeand c c overafewgrowthstagesfromlimitedfieldmeasurements,andthusdoesnotcapturethedetailed temporaldynamicsofcropgrowthandspatialvariabilityofcropswithinandacrossthefieldblocks. Forexample,valuesofalmondK of0.40atinitialstage,0.90atmid-seasonand0.65attheendofthe c seasonareusuallyconsideredforirrigationmanagementinallalmondorchards[5]. Nearrealtime valuesofET arereadilyaccessibletogrowersthroughouttheStateofCaliforniafromtheCalifornia o IrrigationManagementInformationSystem(CIMIS)networkofmorethan150weatherstations,and theyareusedextensivelyforirrigationmanagementinCalifornia. However,spatially-explicitseasonal K valuesforestimatingwaterusebyalmondorchardsarenotyetavailableintheliterature. Updating c thealmondwateruseinformationisparticularlyimportantforCalifornia’salmondgrowerstoimprove theiron-farmirrigationmanagement,sincealmondproductionindustryexperiencedmajorchangesin cultivars,rootstocks,plantingdensity,canopymanagementpractices,andirrigationtechnologyand methodsduringthepast15to20years. NewapproachestotakeadvantageofremotesensingobservationstomapEThavebeendeveloped, especially in recent decades, due to increasingly available free satellite observations from multiple sensors[7–10].EmpiricalalgorithmswerebuilttorelateETtoremotelysensedvegetationindicesand weatherdata[11–14].Thesealgorithmstypicallyperformwellinareaswheretheyarecalibrated,butthe uncertaintyusuallyincreaseswhenappliedtootherareas. Thesemi-empiricalPriestley–Taylorequation, calibratedwithETmeasurements,hasalsoshownpromisingresultsforestimatingETatcontinental toglobalscale[7,8].Asuiteofalgorithmsthatwerebasedonsurfaceresidualoftheenergybalance (REB)data,usingbothopticalandthermalremotesensingobservations,hasalsoprovidedestimatesof ET.One-sourceREBmodelsincludeSurfaceEnergyBalanceAlgorithmforLand(SEBAL)[15],Surface EnergyBalanceSystem(SEBS)[16],MappingEvapotranspirationathighResolutionwithInternalized Calibration(METRIC)[17],andSimplifiedSurfaceEnergyBalance(SSEB)[18,19].Two-sourcemodels, suchastheTwo-SourceModel(TSM)[20,21]andtheDisaggregatedAtmosphere-LandExchangeInverse (DisALEXI)[22–25],integratethebiophysicalprocessesandremotesensingdatatoestimatetheplant transpirationandevaporationfromnon-vegetatedsurfacesseparately. METRIC estimates the near surface temperature gradient (dT) as an indexed function of radiometric surface temperature, and thus does not rely on accurate estimate of land surface temperaturefromthermalimagery[17,26,27].ItalsouseshourlyreferenceETtoauto-calibratethe sensibleheatcalculationforeachsatelliteimage. ThisinternalcalibrationmakesETestimatesmore robust. METRIC has been widely used to estimate agricultural water use in Idaho, California, RemoteSens.2017,9,436 3of21 Remote Sens. 2017, 9, 436 3 of 21 and New Mexico for management of water rights, irrigation scheduling, and water resource [27,28]. Regional scale ET mapping has also been done in the Texas High plains [29], in the planning [28,29]. Regional scale ET mapping has also been done in the Texas High plains [30], in mountainous areas of northern Portugal [30], and in the oasis area in Heibe River Basin in China [31], the mountainous areas of northern Portugal [31], and in the oasis area in Heibe River Basin in and the results showed reasonable accuracy. The METRIC method was used to provide good China[32],andtheresultsshowedreasonableaccuracy. TheMETRICmethodwasusedtoprovide estimates of ET over olive orchards [32–34] and over cotton fields [35]. It tends to outperform TSEB goodestimatesofEToveroliveorchards[33–35]andovercottonfields[36]. Ittendstooutperform when sufficient ancillary data are not available [35]. To our knowledge, however, there are no studies TSEB when sufficient ancillary data are not available [36]. To our knowledge, however, there are on almond ET estimation by METRIC, and it is not clear how remote sensing-based ET approaches nostudiesonalmondETestimationbyMETRIC,anditisnotclearhowremotesensing-basedET perform in almond orchard with the complex canopy structure of almond trees. approachesperforminalmondorchardwiththecomplexcanopystructureofalmondtrees. In this paper, we aim to: (1) assess the accuracy of ET estimates at the field scale in an almond Inthispaper,weaimto: (1)assesstheaccuracyofETestimatesatthefieldscaleinanalmond oorrcchhaarrdd uussiinngg tthhee MMEETTRRIICC aapppprrooaacchh,, ddrriivveenn bbyy LLaannddssaatt ssaatteelllliittee oobbsseerrvvaattiioonnss aanndd EETTo ffrroomm CCIIMMIISS;; o (2) examine the dominant drivers for temporal and spatial variation in crop water use; and (3) (2)examinethedominantdriversfortemporalandspatialvariationincropwateruse;and(3)develop develop and assess empirical methods that are easy to use for ET estimation at the farm scale. andassessempiricalmethodsthatareeasytouseforETestimationatthefarmscale. 22.. SSttuuddyy AArreeaa aanndd DDaattaasseettss 22..11.. SSttuuddyy AArreeaa TThhee ssttuuddyy aarreeaa wwaass aa 6600 hhaa mmaattuurree aallmmoonndd oorrcchhaarrdd ((PPrruunnuussdduullcciiss)) llooccaatteedd nneeaarr LLoosstt HHiillll iinn KKeerrnn CCoouunnttyy,,i nint thhees soouutthheerrnnS SaannJ JooaaqquuininV Vaallleleyyo offC Caalilfioforrnniaia( (3355.5.51100◦°NN,,1 11199.6.66677◦°WW;;F Fiigguurree1 1)).. TThhee aallmmoonndd ttrreeeess wweerree ppllaanntteedd iinn 11999999 oonn aa MMiillhhaamm ssaannddyy llooaamm,, wwiitthh SSoouutthh ttoo NNoorrtthh oorriieennttaattiioonn,, 66..44 mm bbeettwweeeenn ttrreeeessi nint htheer orowws,sa, nadnd7 .73.3m mbe btweteweenetnh ethreo wrosw[3s7 []3.6T]w. Towtyop teyspoefsm oifc rmoi-cirrroig-iarrtiiognatsioysnt esmysst,eim.e.s,, di.reip., danridp faanndje tf,awnjeerte, wuseerde tuosewda tteor wthaeteorr cthhaer dor.cThhairsdo. rTchhaisr dorwchaasrrde lwataivse rlyelahtoivmeolyg ehnoemouosgeinneteorums sino ftecarmnosp oyf sctarnuoctpuyr estsriunccteurseim siinlacre ssoiiml iwlaart esroislt owraatgeer wstaosraagceh iwevase dacfhoireavleldt rfeoers aolnl tpreuersp oonse ptuhrrpoousgeh tahrcoaurgefhu la mcaarneafugle mmeanntaogfemtheenttw oof tmheic trwo-oir mrigicartoio-nirrsiygsatteimons sdyusrtienmgs2 d0u09r–in2g0 1220.0A9–lm20o1n2d. Atrlemesonwde rtreeaebso wuetr7e mabtoaullt d7u mri ntagllo duurrsitnugd youpre srtiouddyfr poemri2o0d0 f9rotom2 2001029. to 2012. (a) (b) Figure 1. Study area shown as: (a) a Landsat 5 TM false color image; and (b) true color image from Figure 1. Study area shown as: (a) a Landsat 5 TM false color image; and (b) true color image Google Earth. The subset extent of the Landsat image (path 42, row 35) used in the Mapping fromGoogleEarth. ThesubsetextentoftheLandsatimage(path42,row35)usedintheMapping Evapotranspiration at high Resolution with Internalized Calibration (METRIC) approach for our Evapotranspiration at high Resolution with Internalized Calibration (METRIC) approach for our evapotranspiration (ET) estimate includes the almond orchard, well-watered vegetation area and bare evapotranspiration(ET)estimateincludesthealmondorchard,well-wateredvegetationareaandbare soil area. The nearest California Irrigation Management Information System (CIMIS) weather station soilarea.ThenearestCaliforniaIrrigationManagementInformationSystem(CIMIS)weatherstation (#146) and flux tower installed at the southern edge of the orchard are also shown. (#146)andfluxtowerinstalledatthesouthernedgeoftheorchardarealsoshown. RemoteSens.2017,9,436 4of21 Remote Sens. 2017, 9, 436 4 of 21 SSaannJ JooaaqquuininV Vaallleleyyh haassa at tyyppicicaallM Meedditieterrrraanneeaannc clilmimaatete..M Meeaanna annnnuuaallt teemmppeerraattuurreessr raannggeeddf frroomm 1155.9.9t too 1177..22 ◦°CC dduurriinngg 22000099––22001122. .SSuummmmere rmmonotnhtsh asraer heoht oatnadn ddryd,r wy,hwilhe iwleinwteinr tmeromntohns tahrse amreildm ailndd awndetw (Feitg(uFrigeu 2rae)2. aM).oMsto rsatirnafianlfl aollcocuccrus risni nwwinitnetre ranandd sspprirningg ffrroomm NNoovveemmbbeerr ttoo AApprriill.. PPrreeccipipititaattioionn vvaarrieiedds isgignnifiifciacnatnftr formomy eyaeratro tyoe yare,aer.,g e.,.ga.n, naunanluparle pcirpeictiaptiiotantivoanr iveadrfierodm fr9o8m.5 9m8m.5 minm20 i0n9 2to00293 5to.7 2m35m.7 inm2m0 1in0. 2A01lm0. oAnldmtoreneds tflreoews eflroiwnelar tien Flaetber uFeabryrutaoreya troly eaMrlayr cMhaarnchd arenadc hreaalcmh oaslmtfousltl fcualnl ocpanyocpoyv ecrovbeyr labtye lMataer Mcha.rHcha.r Hveasrtvteyspt itcyaplliycaolclycu orcsciunrsla itne lAatueg Auustgtuosmt tiod m-Siedp-tSeempbteemr.ber. TThheer reefeferreenncceeE ETToor reelalatteeddt otog grraassssh haadda as strtoronnggs eseaasosonnaallc ycyclcel,e,r arnanggininggf rformom2 32.38.8m mmm//mmoonntthhi nin JaJannuuaarryyt oto2 21144.1.1m mmm//mmoonntthh iinn JJuullyy ((FFiigguurree 22bb)).. TThhee aannnnuuaall aaccccuummuullaatteedd rreeffeerreennccee EETToo wwaass 11449922..22,, 11339933.8.8,,1 1333300.7.7,,a anndd1 1445500.8.8m mmm//yyeeaarr iinn 22000099––22001122,, rreessppeeccttiivveellyy.. TThhee aallmmoonndd oorrcchhaarrdd wwaassi rirrrigigaatetedd ffoolllolowwininggt ytyppicicaallp prraacctitciceessi nint htheeu uppppeerrS SaannJ oJoaaqquuininV Valallelye.y. (a) (b) FigurFei g2u. Mreo2n.tMhlyo:n (tah) layi:r (tae)mapirerteamtupree raantdu rpereacnipditparteiocinp; iatnatdio (nb;) arenfder(ebn)cree EfeTroe rnecleatEedT otor eglraatsesd dtuorginrga s2s0d09u–r2in01g2 at the Belridge CIMIS station. 2009–2012attheBelridgeCIMISstation. 2.2. Remotely Sensed Data 2.2. RemotelySensedData Landsat 5 TM and 7 ETM+ observations were obtained from USGS (http://earthexplorer.usgs.gov/) Landsat 5 TM and 7 ETM+ observations were obtained from USGS (http://earthexplorer. for path 42 and row 35 during 2009–2012, covering the almond orchard study area (Supplementary usgs.gov/) for path 42 and row 35 during 2009–2012, covering the almond orchard study area Materials Table S1). Forty-six cloud-free images were obtained during the four year study period, (SupplementaryMaterialsTableS1).Forty-sixcloud-freeimageswereobtainedduringthefouryear with an average of 12 images per year, mostly from April to November. The Landsat revisiting time studyperiod,withanaverageof12imagesperyear,mostlyfromApriltoNovember. TheLandsat was 16 days, but most images during December to March rain season were not usable for our analysis revisitingtimewas16days,butmostimagesduringDecembertoMarchrainseasonwerenotusable due to frequent cloud cover. All the images were subsetted to a common domain, as shown in Figure forouranalysisduetofrequentcloudcover. Alltheimagesweresubsettedtoacommondomain,as 1a. A careful examination of individual Landsat 7 ETM+ images showed that this domain had no data showninFigure1a. AcarefulexaminationofindividualLandsat7ETM+imagesshowedthatthis gaps during the study period. This subset of 801 by 801 pixels included both bare soil and well- domainhadnodatagapsduringthestudyperiod. Thissubsetof801by801pixelsincludedbothbare watered full cover vegetation areas, as needed by METRIC approach for the purpose of selecting cold soilandwell-wateredfullcovervegetationareas,asneededbyMETRICapproachforthepurposeof and hot pixels to calculate sensible heat. selectingcoldandhotpixelstocalculatesensibleheat. 22.3.3..M MicicrroommeetteeoorroolologgicicaallM Meeaassuurreemmeenntsts 22.3.3.1.1..S SttaattiioonnR ReeffeerreenncceeE Evvaappootrtraannssppiriraatitoionn RReefeferreenncceeE ETToo,,a assssoocciiaatteeddw wiitthhw weellll--iirrrriiggaatteeddg grraassss,,a annddo otthheerrm meetteeoorroollooggicicaalld daattaaw weerreeo obbttaainineedd ffrroommC CIMIMISIS( h(htttptp:/:///wwwwww..cciimmiiss..wwaatteerr..ccaa..ggoovv//)),, aass aanncciillllaarryy iinnppuuttss ttoo tthhee MMEETTRRIICC aalglgoorritithhmm..C CIIMMIISS wwaassj ojoinintltylyd deveveleoloppededb ybyth teheC aClaifloifronrinaiaD eDpeapratmrtmenetnotf oWf aWtearteRre Rsoeusorcuersc(eDs W(DRW)Ran) danthde tUhen iUvnerivsietrysoitfy Coafl iCfoarlnifioar,nDiaa,v iDsa(UviCs D(U)iCnD19) 8i2n to19i8n2fo trom iwnfaotremrr ewsoauterrc ereasnoduirrcreig aantido nirmriagnaatigoenm menatn.aCgIeMmISenctu. rCreInMtlIyS ocpuerrraetnetslya onpeetrwatoersk ao nfe1t6w4oaruk toofm 1a6t4e dausttoamtioantesdm setaatsiuornisn gmweaesautrhienrg pwaeraamtheetre prsaroavmeretweresl lo-vweart ewreedll- swtaantdearerddi zsteadngdraarsdsiszuerdf agcreasasc rsousrsfaCcael iafcorronsisa .CAaltiyfoprincaial.E AT otysptaitciaoln EcToon sstiasttisoonf csoenvseirsatls soefn sseovresrianlc sluendsinogrs piynrcalundoimnge tepr,ytrhaenrommisettoerr,, HtMhePrm35istteomr, peHraMtuPr3e5 antedmhpuemraitduirtye parnodb e,hwuimndidivtayn ep,raonbeem, owminetde r,vaannde, tiapnpeimngo-mbuetcekre, traanidn gtaiupgpeintgo-cboulclekcett inrfaoirnm agtaioungeo ntoso lcaorlrleacdti atiinofno,rmsoailtitoenm poenr atsuorlea,ra irratdemiatpioerna, tusroei,l rteelmatipveerahtuumrei,d iatiyr, wteimndpedriaretuctrieo,n raenladtisvpee ehdu,manidditpyr,e cwipinitdat idonir,ercetsiopne ctainvdel ys.pDeaetda, aarnedco lplereccteipditeavteioryn, respectively. Data are collected every minute and archived as totals or averages each hour. Hourly and daily values of reference ETo are not measured directly, but calculated from meteorological data RemoteSens.2017,9,436 5of21 minuteandarchivedastotalsoraverageseachhour. HourlyanddailyvaluesofreferenceET arenot o measureddirectly,butcalculatedfrommeteorologicaldatausingbothCIMISPenmanequationand thestandardizedreferenceevapotranspirationequationforshortcanopies[6]. ThestandardizedET o equationdatawereusedinthisstudy. ET wasonlyusedfortheinternalcalibrationofenergybalance o andforcalculatingthefractionofgrassreferenceETasanindextorepresenttherelativechangein weather[17](See3.2below). The closest CIMIS station, Belridge station (CIMIS #146; Lat/Lon: 35.50◦N/119.69◦W), is approximately 2 km away from the almond orchard (Figure 1a). Belridge station was located near the center of footprint of Landsat 5 TM and 7 ETM+ image subsets, and thus was selected to provide weather input data sets and reference ET for the METRIC approach in the study area. o Inparticular,weusedhourlyreferenceET ,airtemperature,vaporpressureandwindspeedatLandsat o overpasstime,typicallyaround10:30a.m.,anddailyreferenceET duringLandsatoverpassdatesfrom o BelridgeCIMISstation. HourlyreferenceET wasusedtointernallycalibrateMETRICapproachfor o sensibleheatfluxcalculation. Airtemperaturewasrequiredtocorrectlandsurfacetemperature(LST) estimatesfromLandsatthermalimagery. DailyreferenceET wasusedtoconvertinstantaneousETat o LandsatoverpasstimetodailyEToverthealmondorchardintheMETRICapproach,asshownbelow. 2.3.2. ActualEvapotranspirationMeasurements Evapotranspiration was measured with a micrometeorological tower installed 9 m above the groundinthealmondorchardinearly2008. Thissystemincludesanetradiometer,sonicanemometer, twothermocouples,andsoilheatfluxplates,whichwereassembledtomeasurecomponentsofsurface energyfluxes[38]. AREBSInc. Q7.2netradiometerwasmountedatabout10mheightontheflux towertomeasurenetradiation(R ). Sensibleheatflux(H)wasmeasuredwithbothanRMYoung n 81000RE 3-d sonic anemometer and with Campbell Scientific Inc. FW3 fine-wire thermocouples as described in Shapland et al. [39]. The ground heat flux data were measured using three sets of groundheatfluxpackages,includingaheatfluxplate(REBSInc.,Seattle,WA,USA,HFT3)andasoil temperatureaveragingsensor(CampbellScientificInc.,Logan,UT,USA,Tcav),whichwereestablished nearthetowertomeasuretheaveragegroundheatflux(G)atthesoilsurface[40]. Latentheatflux (LE)wasthenestimatedastheresidualoftheenergybalance(LE=R −G−H)everyhalfhourand n convertedtoETbydividingtheLEinMJm−2 perhalfhourby2.45MJmm−1 ofwatervaporized. HourlyanddailyETofthealmondorchardwascalculatedfromthehalf-hourlydatacollectedfrom 2009through2012. UsingthestationandmeasurementmethodologydescribedinShaplandetal.[39], therewerealmostnomissinghalfhourestimatesofalmondET.DailyandmonthlycalculationsofET wereusedtovalidatetheMETRICapproachforestimatingandmappingalmondET. 3. Methodology 3.1. Landsat5TMand7ETM+DataPreprocessing Thedigitalnumber(DN)ofvisible,nearinfraredandshortwaveinfraredbandsofLandsat5TM and7ETM+wasfirstconvertedtoradiance,andthenatmosphericallycorrectedtosurfacereflectance by using Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) [41]. Surface albedo[42],normalizeddifferencevegetationindex(NDVI)[43]andleafareaindex(LAI)[44]were derivedfromthespectralreflectancestocalculateenergyfluxes(R ,G,andH)intheMETRICapproach. n Theoriginalresolutionofthethermalband(band6)is120m. Weheredownscaledthethermal datatoa30-meterresolutiontomatchtheresolutionofthereflectivebandsbyusingcubicconvolution method. The thermal bandDN wasthen convertedto radiance usingthe coefficientsprovidedin the imagery metadata. A correction to the radiance was further performed using the method of Wukelicetal.[45],andthePlankequationwasthenappliedtocomputethelandsurfacetemperature (LST).Cloudfraction(CF)maskforeachLandsatimage,providedbyUSGS(http://earthexplorer. usgs.gov/),wasalsousedtoremovedataaffectedbycloudandcloudshadow. RemoteSens.2017,9,436 6of21 3.2. METRICEvapotranspirationEstimate: GeneralApproach METRIC™, a satellite-based surface energy balance approach, has been widely used to map field-scalecropET,mostlyoverrowcrops. Itisaone-sourcemodelthatconsiderstranspirationof vegetationandevaporationofsoilasawhole. Latentheatflux(LE),directlyrelatedtoET,iscomputed asaresidualaccordingtosurfaceenergybalanceequation(Equation(1)): LE =R −G−H (1) n Themajorenergycomponentsareestimatedasbelow: R = (1−α)∗R ↓ +R ↓ −R ↑ −(1−ε )∗R ↓ (2) n s l l 0 l (cid:16) (cid:17) G= 0.05+0.18∗e−0.52∗LAI ∗R (LAI≥0.5) n (cid:18) Ts−273.16 (cid:19) G= 1.80∗ +0.084 ∗R (LAI<0.5) (3) n R n (cid:16) (cid:17) H= ρ∗c ∗dT /r (4) p ah whereαisthesurfacealbedo,R ↓istheincomingshortwaveradiation(W/m2),R↓istheincoming s l longwaveradiation(W/m2),R↑istheoutgoinglongwaveradiation(W/m2),ε isthebroadband l 0 surfaceemissivity,ρistheairdensity(1.15kg/m3),c istheairspecificheat(1004J/kg/K).Tsisthe p landsurfacetemperature(K),anddTisthenearsurface-airtemperaturedifference(K).dTisassumed tohavealinearrelationshipwithTs(Equation(5))asdevelopedbyBastiaanssen[46](FigureS1). dT=a∗Ts+b (5) wherethecoefficientsaandbwerecalculatedusingtwosetsof“hot”and“cold”anchorpixels,as shownbelow: dT −dT a= hot cold b=dT −a∗Ts (6) Ts −Ts hot hot hot cold wheredT = Hhot∗rahhot anddT = Hcold∗rahcold. TheinitialvaluesofH,r ,andTswerefromthe hot ρ∗cp cold ρ∗cp ah selectedcoldandhotpixelsatthebeginningoftheiteration. r is the aerodynamic resistance to heat transport (s/m). An iterative method was applied ah to calculate both r and H to reduce the effects of buoyancy of heated, light air at the surface. ah Thealgorithmstartedwithfindingasetsof“hot”and“cold”pixels. ItassumedthatLEequalsto0.05 and1.05timesreferenceET(ET )for“hot”and“cold“pixelsatthebeginningoftheiteration,and o thencalculateddT anddT (Equation(4)),followedbycalculatingaandb,andthenupdatingdT, hot cold H,andr . Weused5%ofreferenceET,insteadof0,toinitiatetheLEfor“hot”pixels,consideringthe ah possibilityofsoilmoisturecontentinbaresoilsshownby[17]. Wetestedthepossibleimpactofusing ET forinternalcalibration,andfoundthatusing1.05asaconstantledtotheclosestagreementbetween o observedandestimatedET.TheMonin–Obuknovlength(L)wasusedtodefinethestabilityconditions oftheatmosphereduringiterationinMETRIC[17]. Theiterationstopswhenthevalueofr remains ah stable[44](seeFigureS1). Aftertheconvergenceofthehotandcoldpixels,iterationsarealsoneeded toconvergethesurfaceenergybalancecomponents. Dhungeletal.[47]demonstratedtheimproved behaviorofsurfaceenergybalanceconvergenceinthelowwindspeed,whichisparticularlyimportant toreduceuncertaintyinsurfaceenergybalancecomponentsduetothelackoftheconvergence. Inour study,wesetthattheiterationprocessofHcalculationstopswhenthecoefficientsofaandbremain stable. Ourtestshowedthatittypicallytakes5or6iterationstoreachconvergencewhilelowwind conditionsrequiredmoreiterations. AsimplifiedflowchartofMETRICapproachisshowninFigure3. RemoteSens.2017,9,436 7of21 Remote Sens. 2017, 9, 436 7 of 21 FigurFeig3u.reF 3lo. wFlcohwacrhtaortf oMf EMTERTIRCICa pappproroaacchh.. IInnppuut tddaatat asestest sinicnlucdluindgi nLganLdasnadt s5a tTM5 TaMnd a7n EdT7M+E TM+ obserovbasteiorvnastfiroonms fUroSmG SUaSnGdSw aenadth ewredaathtaerf rodmataB efrlroimdg eBeClrIMidgISe sCtaItMioInS asrteatuiosend atroe caulsceudl attoe icnasltcaunlataten eous surfacinesetannetragnyeofluusx essur(fiancset aenntearngeyo uflsuvxeasl u(einssatatnLtaanndeosuats ovvaelurpesa sast tiLmaned)ssautc hovaesrpnaestsr atidmiaet)i osnucfhlu axs (Rnent) ,soil heatfrlaudxia(tGio)na nflduxs e(nRsni)b, lseohile haetaftl ufxlu(xH ()Gi)n atnhde spernosciebsles inhegapt rfolucxe d(Hur)e i.nT thhee dperroicveesdsinings ptarnoctaednueoreu. sTfhrea ction ofrefedreernivceedE iTns(tEanTtoaFn)eoanusd frreafcetiroenn coef rEeTfeorewnceere EtTh (eEnTuoFs)e adntdo rdefeerrievneced EaiTlyo wanerde mtheonn tuhsleyde tvo adpeoritvrea ndsapiliyr ation and monthly evapotranspiration (ET) maps over the almond orchard. The detailed description of (ET)mapsoverthealmondorchard. ThedetaileddescriptionofMETRICapproachcanbefoundin METRIC approach can be found in Allen et al. [16,25]. Allenetal.[17,26]. In METRIC, ET of each pixel at Landsat overpass time (10:30 a.m.) is calculated from Equation I(n7)M, anEdT RthIeCn, tEhTe forfacetaiocnh opfi xreeflearetnLcaen EdTs a(EtToovFe) rips acaslscutilmateed(1 b0y:3 d0ivai.dmin.)g iisncstaalncutalnaeteodusf rEoTm byE hqouuartliyo n(7), and trheefenretnhcee fErTaoc (tEioqnuaotiforne (f8e)r)e, nobcetaiEnTed( EfrTomoF B)eislricdaglec uClIaMteIdS sbtaytidoniv. iIdt ainssguminesst athnatta tnheeo vuasluEeT ofb EyTohFo urly at Landsat overpass time is the same as the average value of 24 h during Landsat overpass day [16,25]. reference ET (Equation (8)), obtained from Belridge CIMIS station. It assumes that the value of o ET FFaintaLllayn, tdhsea dtaoilvye ErTp aast seatcihm peixiesl tihs ecaslcaumlaeteads atsh ae parovdeuractg oef vETalouF eanodf d2a4ilyh rdefuerrienngceL EaTno d(Esqautaotivoenr pass o (9)), which is the accumulative 24 h reference ETo at the station during the dates when Landsat day[17,26]. Finally,thedailyETateachpixeliscalculatedasaproductofET Fanddailyreference satellite overpasses every 16 days and when imagery is not obscured by cloud. o ET (Equation(9)),whichistheaccumulative24hreferenceET atthestationduringthedateswhen o o Landsatsatelliteoverpassesevery16dEaTy(cid:2919)(cid:2924)s(cid:2929)(cid:2930)a=nd36w0h0e∗nLiEm/(aλg∗erβy(cid:2933))is notobscuredbycloud. (5) ET F=ET /ET (6) (cid:2925) (cid:2919)(cid:2924)(cid:2929)(cid:2930) (cid:2899)_(cid:2919)(cid:2924)(cid:2929)(cid:2930) ET =3600∗LE/(λ∗β ) (7) inst w ET_daily=ET F∗ET _daily (7) (cid:2925) (cid:2899) where ETinst is the instantaneous ET inE TmomF/=houErT, i3n6st0/0E isT uOs_einds tfor converting from seconds to hours, (8) λ is the latent heat of vaporization in J/kg, βw is the density of water, ETo_inst is the hourly reference ET_daily=ET F∗ET _daily (9) ET of grass at the time of image, ET_daily is the 24o h actuaOl ET, and ETo_daily is the accumulative 24 whereh EreTferenicset hETeoi nonst athnet adnaeteo oufs iEmTagine amcqmu/ishitoiounr., 3600isusedforconvertingfromsecondstohours,λ inst ET-based irrigation scheduling requires continuous daily ET estimate especially during growing isthelatentheatofvaporizationinJ/kg,β isthedensityofwater,ET isthehourlyreferenceET w o_inst season, so that ET losses could be replaced by applying the proper amount of water at the right time ofgrassatthetimeofimage,ET_dailyisthe24hactualET,andET _dailyistheaccumulative24h to meet the plant water demands. We applied a cubic spline interpolaotion to fill in the gaps of daily referenceET onthedateofimageacquisition. EToF usiong the Landsat-based estimates of EToF at the four most adjacent dates when Landsat clear EskTy- boabsseedrviartriiognast iwonersec ahveadiluablilneg. Are cquubiirce sspcloinnet iwnuaso fuirssdt afiitltyedE tTo egsetnimeraattee ae sspmeocoiathlleydd EuTroiFn gcugrrvoew ing seasobna,sseod tohna tthEeT nloons-sleinsecaoru cludrvbee nraetpulraec eodf tbhye taepmpplyoirnalg dtyhneapmriocps eorf afrmacotuionnt ooff rwefaerteenrcaet EthTe [4ri3g].h Tthtiem eto meetctohmepplleatne ttiwmaet seerrdieesm ofa dnadilsy. EWTeoFa wppasli tehdena dcuerbivicedsp frlionme tihnet esrpplionleadti counrvtoe, fialnldin usthede igna cposmobfindaatiiloynE ToF usingwtihthe tLhae ncodnstaitn-uboausse ddaeilsyt irmefaerteenscoef EETTo oaFt tahte tBheelrifdoguer CmIMosISt astdajtaiocne ntot ddeartievse wdahileyn ELTa ensdtimsaattec lfeoarr sky obserevvaetriyo nsisnwglee rdeaayv. aMiloanbtlhel.yA, sceuasboincaslp, alinnde awnansuafilr sEtTfi etstetidmtaotegs ewneerrea tfeinaalslym aogogtrheegdatEedT frFomcu rdvaeilyb ased o values. The temporal interpolation was only done during the growing season from April to onthenon-linearcurvenatureofthetemporaldynamicsoffractionofreferenceET[44]. Thecomplete September, since there were too many missing data during October to March winter rainy season. timeseriesofdailyET Fwasthenderivedfromthesplinedcurve,andusedincombinationwiththe o continuousdailyreferenceET attheBelridgeCIMISstationtoderivedailyETestimateforevery 3.3. Automated “Cold” and “Hoot” Pixel Selection singleday. Monthly,seasonal,andannualETestimateswerefinallyaggregatedfromdailyvalues. The In order to estimate sensible heat flux (H) accurately, two “anchor” pixels, named “cold” pixel temporalinterpolationwasonlydoneduringthegrowingseasonfromApriltoSeptember,sincethere and “hot” pixel must be selected to determine the relationship between Ts and dT in the METRIC weretoomanymissingdataduringOctobertoMarchwinterrainyseason. approach. “Cold” pixels represent well-watered, full-cover vegetation areas within an image, and thus have relatively higher NDVI and relatively low Ts. The “hot” pixels, namely dry and bare soil, 3.3. Automated“Cold”and“Hot”PixelSelection on the other hand, usually have low NDVI but high Ts. The selection of these anchor pixels typically Iinnvoorldveesr stoomees ttirmainaitnegs aennds imblaenhuaela itmflaugxe i(nHte)rapcrcetuartaiotne,l ya,ntdw iso o“fatennc ahrobrit”rapriyx. eTlos, mnaakme ethde“ pcroolcde”ssp ixel and“ hot”pixelmustbeselectedtodeterminetherelationshipbetweenTsanddTintheMETRIC approach. “Cold”pixelsrepresentwell-watered, full-covervegetationareaswithinanimage,and thushaverelativelyhigherNDVIandrelativelylowTs. The“hot”pixels,namelydryandbaresoil, RemoteSens.2017,9,436 8of21 oRnemtohtee Soenths. e2r01h7a, 9n, d43,6u s uallyhavelowNDVIbuthighTs. Theselectionoftheseanchorpixelstypi8c oafl l2y1 involvessometrainingandmanualimageinterpretation,andisoftenarbitrary. Tomaketheprocess mmoorree ccoonnssiisstteenntt,, wweed deevveeloloppeedda am metehthooddt otos esleelcetctth tohsoespe ipxeixlselasu atuomtoamtiactaicllayllbya bseadseodn otnh ethseta stitsattiicsstiocfs NofD NVDIVanI danTds mTsa mpsa,pfos,l lfoowlloinwginangd anindt eingrteagtirnagtisnigm siilmarilcaorn ccoenpctsepptrso pproospedosbeyd pbrye vpiroeuvsiosutus dstiuesd[i4e8s –[5417]–. T5h0]e. cTuhme uculamtivuelahtiivsteo hgirsatmogorfamND oVf NIaDnVdIT asnwde Tres wfiresrteg feinrsetr agteende.rTatheedv. aTlhuee svoalfuNesD oVfI NatDtVheI apto tihnet opfo5in%t (o9f5 5%%) a(9n5d%t)h aenvda ltuhees voafluTessa otft hTes pato tihnet opfo9in5t% o(f5 9%5%)i n(5t%he) ianc cthuem auclcautmeduplaetrecde npteargceenctuargvee scuwrverees uwseerde iunsecodm inb incoamtiobninaastitohnr eassh otlhdrsesfhoorliddse nfotirf yiidnegnhtiofyti(ncgo ldh)otp i(xceollsd.)T poixalellosw. Tfoo rafllleoxwib ifloitry ,flwexeibeixltirtya,c twede aelxltpraixcteelsd faalllli npgixbeolst hfawlliitnhgin b±ot0h.0 1woitfhtihne ±N0D.0V1 Iotfh rtehseh oNldDsVaIn tdhwreisthhoinld±s 0a.n5d◦ CwoitfhTisn th±r0e.5s h°oCld o,fa nTds athvreersahgoelddo, vanerdt ahveeseratgweod soevtsero fthpeisxee ltswtoo csaetlcsu olfa tpeixtheles mtoe acnalcTuslfaotre “thhoe tm”aenand T“cso flodr” “phioxte”l sa(nFdig “ucroeld4)”. Wpiexetelss t(eFdigimuraeg e4r)i. eWsien dteisffteerde nimtsaegaesroiness ainn ddfioffuenredntth saetatshoenrse saunldti nfgouTnsd− tdhaTt rtehlaet iroenssuhltipinsgw Tits h−t hdiTs arueltaotmioantsihcispesl ewctiitohn thmise tahuotdomwaetriec ssiemleiclatirotno mtheotsheodfr owmerme asinmuiallasr etloe cthtioosnes .from manual selections. (a) (b) Figure 4. Automatic selection of “cold” pixels and “hot” pixels based on accumulative percentage of Figure4.Automaticselectionof“cold”pixelsand“hot”pixelsbasedonaccumulativepercentageof (a) NDVI and (b) land surface temperature (LST) maps. Red curve shows the accumulative (a)NDVIand(b)landsurfacetemperature(LST)maps.Redcurveshowstheaccumulativepercentage. percentage. 3.4. EvaluationofEvapotranspirationEstimate 3.4. Evaluation of Evapotranspiration Estimate ToassesstheuncertaintiesofMETRICapproachinestimatingEToverthealmondorchard,we To assess the uncertainties of METRIC approach in estimating ET over the almond orchard, we comparedtheMETRICETwithfieldmeasurements. Comparisonsweremadeforinstantaneous,daily compared the METRIC ET with field measurements. Comparisons were made for instantaneous, andmonthlyET.Consideringthefetchareaof50by50moftheinstalledfluxtowerinthestudyarea, daily and monthly ET. Considering the fetch area of 50 by 50 m of the installed flux tower in the study weaveragedtheMETRICETover2by3pixelscenteredatthefluxtowerlocation. Fourstatisticswere area, we averaged the METRIC ET over 2 by 3 pixels centered at the flux tower location. Four statistics reported,whicharemeanbias,meanrelativedifference(MRD),rootmeansquarederror(RMSE)and were reported, which are mean bias, mean relative difference (MRD), root mean squared error determinationcoefficient(R2). Theequationsofbias,MRDandRMSEareshownasfollows: (RMSE) and determination coefficient (R2). The equations of bias, MRD and RMSE are shown as follows: Bias=ET −ET (10) METRIC Tower Bias = ET −ET (8) |ET (cid:2897)(cid:2889)(cid:2904)(cid:2902)(cid:2893)(cid:2887)−ET(cid:2904)(cid:2925)(cid:2933)(cid:2915)(cid:2928)| MRD(%) = METRIC Tower ∗100 (11) |ET −ET | MRD (%)= (cid:2897)(cid:2889)(cid:2904)E(cid:2902)T(cid:2893)(cid:2887)Tower (cid:2904)(cid:2925)(cid:2933)(cid:2915)(cid:2928) ×100 (9) (cid:115) ET(cid:2904)(cid:2925)(cid:2933)(cid:2915)(cid:2928) ∑n (ET −ET )2 RMRMSESE== (cid:3496)∑i=(cid:2924)(cid:2919)(cid:2880)1(cid:2869)(ETM(cid:2897)(cid:2889)E(cid:2904)T(cid:2902)Rn(cid:2893)I(cid:2887)C−ET(cid:2904)T(cid:2925)o(cid:2933)w(cid:2915)e(cid:2928)r)(cid:2870) (1(102) ) n whereET isMETRIC-basedETestimateatLandsat5TMand7ETM+overpassdateandET METRIC Tower isground-basedETmeasurementatthesamedayfrommicrometeorologicaltower. Wealsoexamined where ETMETRIC is METRIC-based ET estimate at Landsat 5 TM and 7 ETM+ overpass date and ETTower theabilityofMETRICapproachtocapturetheinter-annualandspatialvariationofET. is ground-based ET measurement at the same day from micrometeorological tower. We also examined the ability of METRIC approach to capture the inter-annual and spatial variation of ET. 3.5. SimplifiedEmpiricalApproachesforEvapotranspirationEstimate 3.5. SMimapnlyifiegdr oEwmeprirsicdaol Anpoptrohaachvees tfohre Ecvaappaoctriatynstpoiraimtiopnl eEmsteimntatseo phisticated remote sensing based algorithmfortheirirrigationmanagement,especiallyonadailybasis. Wethusalsoaimedtodevelop Many growers do not have the capacity to implement sophisticated remote sensing based algorithm for their irrigation management, especially on a daily basis. We thus also aimed to develop easy-to-use and cost-effective approaches for growers to estimate ET with easily accessible data such as NDVI and weather data in this study. We took advantage of the spatially explicit ET estimates RemoteSens.2017,9,436 9of21 easy-to-useandcost-effectiveapproachesforgrowerstoestimateETwitheasilyaccessibledatasuchas NReDmoVteI Saennsd. 2w01e7a, t9h, 4e3r6d atainthisstudy. WetookadvantageofthespatiallyexplicitETestimatesder9i ovfe 2d1 fromLandsatdata,andexaminedthemainfactorscontrollingspatialandtemporalETvariationusing derived from Landsat data, and examined the main factors controlling spatial and temporal ET bothtemporalandspatialdata. WequantifiedtherelationshipbetweenMETRICET,asadependent variation using both temporal and spatial data. We quantified the relationship between METRIC ET, variable,andNDVI,whichpotentiallycanberelativelyeasytoderivefromimagerybydrones,and as a dependent variable, and NDVI, which potentially can be relatively easy to derive from imagery asuiteofenvironmentalvariablesthatgrowershaveeasyaccessto. Multivariatestatisticalmodels by drones, and a suite of environmental variables that growers have easy access to. Multivariate werebuiltusingthreeyearsofspatialdata. Theunivariatelinearandnonlinearrelationshipsbetween statistical models were built using three years of spatial data. The univariate linear and nonlinear ETandtheexplanatoryvariableswerefirstexamined,andthenvariouscombinationsoflinearand relationships between ET and the explanatory variables were first examined, and then various exponentialtermsofkeyETdrivingfactors,includingNDVI,netradiation,andvaporpressuredeficit, combinations of linear and exponential terms of key ET driving factors, including NDVI, net were explored. The parameters were optimized using “lsqcurvefit” in MATLAB to minimize the radiation, and vapor pressure deficit, were explored. The parameters were optimized using differencebetweenpredictedandMETRIC-estimatedET.Themodelswerevalidatedwiththerestyear “lsqcurvefit” in MATLAB to minimize the difference between predicted and METRIC-estimated ET. ofbothspatialETdataandfieldmeasuredETaswell. The models were validated with the rest year of both spatial ET data and field measured ET as well. 4. Results 4. Results 4.1. EvaluationwithFluxTowerData 4.1. Evaluation with Flux Tower Data WecomparedtheinstantaneousMETRC-basedETestimateusingLandsat5TMand7ETM+ data,Wavee croamgepdaroevde rthae 2inbsytan3tLanaenodussa tMpEixTeRlCw-ibnadseodw EcTe netsetrimedataet uthsiengfl uLxantodwsaetr 5l oTcMat iaonnd, w7 iEthTMET+ vdaaltuae, savdeurarignegd 1o0v:e0r0 aa 2. mby. 3t oLa1n1d:0s0at ap.imxe.l wdeinridvoewd cfreonmterfledu xatt tohwe eflrumx teoawsuerre lmoceantitosnd, uwriitnhg ELT avnadlusaest odvuerrinpga s1s0in:0g0 daa.mte.s t.o A11g:g0r0e ga.amte.d deErTiveesdt ifmroamte sfluatx dtoawilye,rm moenatshulrye,manendtsa ndnuurianlgt iLmaendscsaatle osvwerepraesasilnsog cdoamteps.a Aregdgwreigtahtecdo rEreTs peostnimdiantgesfi aetl ddmaileya, smuroenmthelnyt,s ainndo radnenrutaol vtiamlied astcealtehse wpeerrfeo armlsoa nccoemopfaMreEdT wRIitCh acporprreospacohndwinhge nfieiltdw maesaaspurpelmieednttos imn aoprdEerT taot vdailfifdearteen tthtei mpeerfsocramleasnocev eorf aMnEaTlRmIoCn adpoprrcohacahrd wihnetnh eit swoaust haperpnlieSdan toJ omaaqpu EinTV aat ldleifyf.erent time scales over an almond orchard in the southern San Joaquin Valley. 44..11..11.. IInnssttaannttaanneeoouuss aanndd DDaaiillyy EETT oonn LLaannddssaatt OOvveerrppaassssiinngg DDaatteess TThhee iinnssttaannttaanneeoouuss EETT dduurriinngg LLaannddssaatt oovveerrppaassssiinngg ttiimmee aarroouunndd 1100::3300 aa..mm..,, ddiirreeccttllyy eessttiimmaatteedd tthhrroouugghh MMEETTRRIICC aapppprrooaacchh,, aaggrreeeedd wweellll wwiitthh fifieelldd mmeeaassuurreemmeennttss iinn ggeenneerraall,, wwiitthh aa RR22 ooff 00..7744 aanndd RRMMSSEE ooff0 0.1.111m mmm/h/h,oouver,r oavtoetra al otfo4ta6lL oafn 4d6s aLtaonvderspaat sosvinegrpcalosusidn-gfr eceloduady-sfrferoe mda2y0s0 9frtoom20 21020(9F igtou r2e051a2 a(FnidguTraeb l5ea 1a)n.dW Thaebnlea g1g).r Weghaetend aagtgdreagilaytetdim aet sdcaailley, taimbeet tsecralaeg, rae ebmetetenrt awgaresefmouenndt ,wwaist hfoaunRd2,o wf0it.h8 7a, RRM2 oSfE 0o.8f70, .8R0MmSmE /odf a0y.8.0H migmhe/draaycc. uHraigchyewr aasccfuourancdy dwuarsin fgouthnedg drouwriningg tsheea sgoronw,ei.ngg., Rse2arseomn,a ein.gs.,t hRe2 sraemmea,inbsu tthReM sSaEmwe, absurte dRuMceSdE tow0a.s5 3remdmuc/edda tyoa 0n.d53m meamn/rdealyat iavnedd imffeearenn rceela(MtivReD d)ilfofewreenrecde t(oM8R.0D%) (lFoiwguerreed5 btoa 8n.d0%Ta (bFliegu1)r.e 5b and Table 1). (a) (b) Figure 5. Site-level comparison of: (a) instantaneous; and (b) daily ET estimated by Landsat-METRIC Figure5.Site-levelcomparisonof:(a)instantaneous;and(b)dailyETestimatedbyLandsat-METRIC on a total of 46 Landsat images with those measured by flux tower, at Landsat overpass time around onatotalof46Landsatimageswiththosemeasuredbyfluxtower,atLandsatoverpasstimearound 10:30 a.m. and on Landsat overpass dates during 2009–2012 over the almond orchard. 10:30a.m.andonLandsatoverpassdatesduring2009–2012overthealmondorchard. RemoteSens.2017,9,436 10of21 Remote Sens. 2017, 9, 436 10 of 21 TTaabbllee 11.. AAccccuurraaccyy ooff iinnssttaannttaanneeoouuss aanndd ddaaiillyy MMEETTRRIICC EETT eessttiimmaatteess iinn ccoommppaarriissoonn wwiitthh flfluuxx ttoowweerr mmeeaassuurreemmeennttss dduurriinngg LLaannddssaatt oovveerrppaassss ddaatteess iinn 22000099––22001122.. Instantaneous ET Daily ET InstantaneousET DailyET Number RMSE Bias MRD RMSE Bias MRD Year Number R2 RMSE Bias R2 RMSE Bias MRD Year of Days R2 (mm/h) (mm/h) MR(D%()% ) R2 (mm/Day) (mm/Day) (%) ofDays (mm/h) (mm/h) (mm/Day) (mm/Day) (%) All clear-sky Landsat overpassing dates 2009 14 0.82 0.11 A0.l0l0c lear-sk2y7L.9a1n dsat0o.8v7e rpassing0.9d3a tes −0.02 31.82 22000190 1141 00..8425 00.1.112 0.00.002 271.69.170 00.8.776 00.9.931 −−00.0.322 3111.8.629 22001101 1110 00..4859 00.1.122 0.00.204 162.87.047 00.7.968 00.9.716 −00..3327 1217.6.391 22001112 1101 00..8990 00.1.120 0−.004.06 281.34.702 00.9.986 00.7.469 0.03.727 2173.3.617 2T0o1ta2l 1416 00..9704 00.1.101 −00.0.060 132.10.279 00.9.867 00.4.890 0.02.706 1231.6.678 Total 46 0.74 0.11 0.00 21.79 0.87 0.80 0.06 21.68 Growing season (April–September) 2009 9 0.69 0.05 −0.G02ro wing6s.e3a8s on(A0p.r7i8l– Septem0b.5e6r ) −0.16 7.56 22000190 99 00..6896 00.0.059 −00.0.025 61.328.64 00.7.889 00.5.468 −−00.1.066 76.5.466 22001101 98 00..8769 00.0.191 0.00.501 121.56.493 00.8.994 00.4.584 −00..0163 68.4.361 22001112 88 00..7690 00.1.111 0−.001.06 151.09.380 00.9.848 00.5.544 0.01.326 89.3.713 2T0o1ta2l 834 00..6604 00.1.019 −00.0.060 101.18.032 00.8.887 00.5.543 0.02.603 97.7.936 Total 34 0.64 0.09 0.00 11.32 0.87 0.53 0.03 7.96 The METRIC approach captured similar seasonal dynamics of daily ET as the field measurements (Figure 6 and FigureS2). For example, estimated ET varied from 1.61 mm on 3 TheMETRICapproachcapturedsimilarseasonaldynamicsofdailyETasthefieldmeasurements December to 7.72 mm on 28 July in 2009. Similarly, the measured ET was lowest in January and (Figure6andFigureS2).Forexample,estimatedETvariedfrom1.61mmon3Decemberto7.72mmon December, increased gradually until June and July with a maximum of 9.15 mm/day on 20 June, and 28Julyin2009. Similarly,themeasuredETwaslowestinJanuaryandDecember,increasedgradually then declined again, reaching a minimum ET of 0.17 mm/day on 29 December. The large day-to-day untilJuneandJulywithamaximumof9.15mm/dayon20June,andthendeclinedagain,reaching aflmucitnuiamtiuomn oEfT fioefld0. 1m7emasmu/redda yETo nm2o9sDtlyec feomllobwer.edT hthealat rogfe thdea yr-etfoe-rdeanycefl EucTtou. aTthioen moefafine lddamilye aMsuErTedRIECT- estimated ET was 5.10 mm/day, averaged over a total of usable 14 Landsat overpassing days in 2009, mostlyfollowedthatofthereferenceET . ThemeandailyMETRIC-estimatedETwas5.10mm/day, o which was similar to that from the field measurements (5.12 mm/day) and about 7% higher than the averagedoveratotalofusable14Landsatoverpassingdaysin2009,whichwassimilartothatfrom tmheeafine dldaimlye raesfuerreemnceen EtsTo( 5o.1f 24.m80m m/mda/dya)ya.n Ad haibgohu bti7a%s ohf itghhee MrtEhTaRnItCh eapmperaonacdha wilyasr efofeurnedn cine EwTintoefr o in both 2009 and 2010. 4.80mm/day. AhighbiasoftheMETRICapproachwasfoundinwinterinboth2009and2010. FFiigguurree 66.. TTimimees esreieriseosf odfa idlyaiElyT EmTe amsueraesdubreydt hbeyfl tuhxet oflwuexr t(obwlaecrk l(ibnlea)ckan ldinees)t iamnadte edsbtiymtahteedM EbyT RtIhCe aMpEpTroRaIcCh (arpepdrtoraiacnhg (lreepdo tinritasn)golvee rpaolimntosn) dovtreere aslimno2n00d9 .trTehese dina i2ly00r9e.f eTrhene cdeaEilTyo roeffegrreansscefr EomTo Boefl rgirdagses CfrIoMmI SBsetlaritdiogne iCsIaMlsIoSs shtoatwionnh ies raelsino bshluoewlnin he.ere in blue line.
Description: