ebook img

Evaporation of extrasolar planets PDF

0.68 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Evaporation of extrasolar planets

Bull.Astr.Soc.India(2010)38,137–145 Evaporation of extrasolar planets 2 1 0 A. Lecavelierdes Etangs1 ∗ 2 1Institutd’astrophysiquedeParis,CNRS/UPMC,98bisbldArago,F-75014Paris,France n a J Received2010November25;accepted2010December02 3 2 Abstract. Thisarticlepresentsareviewontheobservationsandtheoreticalmodeling ] P oftheevaporationofextrasolarplanets.Theobservationsandtheresultingconstraints E ontheupperatmosphere(thermosphereandexosphere)ofthe”hot-Jupiters”. arede- h. scribed. The early observations of the first discovered transiting extrasolar planet, p HD209458b,allowedthediscoverythatthisplanethasanextendedatmosphereofes- - capinghydrogen.Subsequentobservationsshowedthepresenceofoxygenandcarbon o at very high altitude. These observations give unique constraints on the escape rate r t andmechanismintheatmosphereofhot-Jupiters.ThemostrecentLyman-alphaHST s a observations of HD189733b and MgII observations of Wasp-12b allow for the first [ time comparison of the evaporationfrom differentplanets in different environments. 1 Modelstoquantifytheescaperatefromthemeasuredoccultationdepths,andanen- v ergydiagramtodescribetheevaporationstateofhot-Jupitersarepresented.Usingthis 7 diagram,it isshownthatfew alreadyknownplanetslike GJ876dor CoRot-7bcould 3 beremnantsofformerlygiantplanets. 6 4 . 1 1. Risingtemperature inthe upper atmosphere: thethermosphere 0 2 1 Physical parametersof the upper atmospheresof extrasolar planetup to the exosphere(the so- : v calledthermosphere)canbedeterminedusingabsorptionspectroscopyoftransits.Thistechnique i has been developed in details for HD209458b (Sing et al. 2008a, 2008b; De´sert et al. 2008) X where the detailed Temperature-Pressure-altitudeprofile has been estimated from 0.1mbar to r ∼ a 50mbar. Inparticular,becausetheatmosphericscaleheightisdirectlyrelatedtothetempera- ∼ ture,thetemperaturecanbeeasilydeterminedbymeasurementofvariationoftransitoccultation depth as a function of wavelength. For instance, when detected the slope of absorption as a functionofwavelengthduetothe Rayleighscatteringallowsa directdeterminationofthetem- peratureatthealtitudewhereRayleighscatteringisopticallythick(LecavelierdesEtangsetal. 2008a,2008b). e-mail:[email protected] ∗ 2 A.LecavelierdesEtangs TheabsorptionprofileofthesodiumhasbeenrecentlysolvedbyVidal-Madjaretal. (2011) to furtherconstrain the verticalstructure of the HD209458batmosphereoveran altitude range ofmorethan6500km,correspondingtoapressurerangeof14scaleheightsspanning1millibar to10 9 barpressures. Theyfoundariseintemperatureabove3mbarpressurelevel,andabove − anisothermalatmosphericlayerspanningalmost6scaleheightsinaltitudeasharprisingofthe temperaturetoabout2500K at 10 9 barshowingthepresenceofathermospherefromwhich − ∼ thegascanescapeintotheexosphere(Vidal-Madjaretal.2011). 2. HD209458b, an evaporatingplanet Figure1. Anumericalsimulationofhydrogenatomssensitivetoradiationpressure(0.7timesthestellar gravitation)aboveanaltitudeof0.5timestheRocheradiuswherethedensityisassumedtobe2 105cm 3 − × ispresentedhere.Itcorrespondstoanescapefluxof 1010gs 1.Themeanionizationlifetimeofescaping − ∼ hydrogenatomsis4hours. Themodelyieldsanatompopulationinacurvedcometaryliketail(seedetails inVidal-Madjar&Lecavelier2004). Higher in the atmosphere, transit observations have also revealed evaporation of the hot- Jupiters closed to their parentstars. For more than ten years, transit observationsallowed dis- coveries,detection,andcharacterizationofextrasolarobjects(LecavelierdesEtangsetal.1995, 1997, 1999a, 1999b, 2005; Lamers et al. 1997; Nitschelm et al. 2000; He´brard & Lecavelier des Etangs 2006; Ehrenreich et al. 2006, 2007). In the recent discoveries, the evaporation of hot-Jupitersopensanewfieldofresearchintheexoplanetfield. Thefieldwasopenwiththeob- servationaldiscoverythatHD20958bisevaporating(Vidal-Madjaretal.2003,hereafterVM03). Thisdiscoveryhasbeenchallengedbya recentworkofBenJaffel(2007);butthe apparentdis- crepancyhasbeensolvedandthe resultobtainedfromthisobservationdataset is strengthened (Vidal-Madjaretal.2008). Evaporationofextrasolarplanets 3 In the VM03 program,three transits of HD209458bwere surveyedwith the STIS spectro- graph on-board HST ( 20 km.s 1 resolution). For each transit, three consecutive HST orbits − ∼ werescheduledsuchthatthefirstorbitendedbeforethefirstcontacttoserveasareference,the two followingonesbeingpartlyorentirelywithinthetransit. Anaverage15 4%(1σ)relative ± intensitydropnearthecenteroftheLyman-αlinewasobservedduringthetransits. Thisislarger thanexpectedfortheatmosphereofaplanetoccultingonly 1.5%ofthestar. ∼ Becauseofthesmalldistance(8.5R )betweentheplanetandthestar(allowinganintense ∗ heatingoftheplanetanditsclassificationasa“hotJupiter”)theRochelobeisonlyat2.7plane- taryradii(i.e.3.6R ).Fillingupthislobewithhydrogenatomsgivesamaximumabsorptionof Jup 10%duringplanetarytransits.Sinceamoreimportantabsorptionwasdetected,hydrogenatoms ∼ coveralargerareacorrespondingtoasphericalobjectof4.3R . ObservedbeyondtheRoche Jup limit,thesehydrogenatomsmustbeescapingtheplanet. Independently,thespectralabsorption width,withblue-shiftedabsorptionupto-130km.s 1alsoshowsthatsomehydrogenatomshave − large velocitiesrelative to the planet, exceedingthe escape velocity. This further confirmsthat hydrogenatomsmustbeescapingtheplanetaryatmosphere. Theobserved15%intensitydropcouldonlybeexplainedifhydrogenatomsareabletoreach theRochelobeoftheplanetandthenescape.Toevaluatetheamountofescapingatomsaparticle simulationwasbuilt,inwhichhydrogenatomsareassumedtobesensitivetothestellargravity andradiationpressure(LecavelierdesEtangsetal.2008c;seeFig.1).Inthissimulation,escaping hydrogenatomsexpandinanasymmetriccometaryliketailandareprogressivelyionizedwhen movingawayfromtheplanet. Atomsintheevaporatingcomaandtailcoveralargeareaofthe star. Anescapefluxof 1010g.s 1isneededtoexplaintheobservations.Takingintoaccountthe − ∼ tidalforcesandthetemperatureriseexpectedintheupperatmosphere,theoreticalevaluationsare ingoodagreementwiththeobservedrate(seereferencesinSect6). 3. Hydrodynamical escape or“Blow-off” Four transits of HD209458b were then observed, again with the STIS spectrograph on board HST,butatlowerresolution(Vidal-Madjaretal.2004,hereafterVM04).Thewavelengthdomain (1180-1710Å) includes Hi as well as Ci , Ci , Ci , Nv , Oi , Si, Siiii, Siv and Feii lines. During the transits, absorptions are detected in Hi , Oi and Cii (5 2%, 10 3.5% and 6 3%, ± ± ± respectively). No absorptions are detected for other lines. The 5% mean absorption over the wholeHiLyman-alphalineisconsistentwiththepreviousdetectionathigherresolution(VM03), becausethe15%absorptioncoversonly1/3oftheemissionlinewidth(seediscussioninVidal- Madjaretal.2008).TheabsorptiondepthsinOiandCiishowthatoxygenandcarbonarepresent in the extendedupperatmosphereof HD209458b. Thesespeciesmustbe carriedoutup tothe Rochelobeandbeyond,mostlikelyinastate ofhydrodynamicescapeinwhichtheescapecan bedescribedasaverticalplanetarywindcaringallspeciesincludingtheheavierspecies. Thispicturehasbeenstrengthenedby thelatest HST UV observationsofHD209458bper- formedwiththenewCOSspectrographonboardHST.In2009,theAtlantisSpaceShuttleser- 4 A.LecavelierdesEtangs vicingmissionhasputthenewspectrographCOSwhichis10to20timesmoresensitiveinthe UV.ObservationsofHD209448btransitshavebeencarriedoutbyFranceetal.(2010)andLin- skyetal.(2010). Linskyetal.(2010)foundanexospheretransitsignaturewithafluxdecreased by7.8% 1.3%forthe CIIlineat1334.5Åandmoresurprisinglyby8.2% 1.4%fortheSiIII ± ± 1206.5Åline.Thesehighresolutionobservationsalsoshowfirstdetectionofvelocitystructurein theexpandingatmosphereofanexoplanet. Linskyetal.(2010)estimatedamass-lossrateinthe range(8-40) 1010g/s,assumingthatthecarbonabundanceissolar. Thismass-lossrateestimate × is consistentwith previousestimates fromhydrogenescape and with theoreticalhydrodynamic modelsthatincludemetalsintheoutflowinggas. 4. ObservationsofHD189733b TheobservationoftheHD209458btransitsrevealedthattheatmosphereofthisplanetishydro- dynamicallyescaping(Sect.2and3). Theseobservationsraisedthequestionoftheevaporation stateofhot-Jupiters.IstheevaporationspecifictoHD209458borgeneraltohot-Jupiters?What is the evaporation mechanism, and how does the escape rate depend on the planetary system characteristics? ThediscoveryofHD189733b(Bouchyetal.2005),aplanettransitingabright and nearby K0 star (V=7.7), offers the unprecedented opportunity to answer these questions. Indeed, among the stars harboring transiting planets, HD189733 presents the largest apparent brightnessinLyman-α,providingcapabilitiestoconstraintheescaperatetohighaccuracy. An HST program has been developedto observed HI, CII and OI stellar emission lines to searchforatmosphericabsorptionsduringthetransitsofHD189733b(lecavelierdesEtangset al.2010).AtransitsignatureintheHiLyman-αlightcurvehasbeendetectedwithatransitdepth of5.05 0.75%. Thisdepthexceedstheoccultationdepthproducedbytheplanetarydiskalone ± atthe3.5σlevel. ThisisconfirmedbytheanalysisofthewholespectraredwardoftheLyman- α line which has enoughphotonsto show a transit signature consistent with the absorption by theplanetarydiskalone. Therefore,thepresenceofanextendedexosphereofatomichydrogen around HD 189733bproducing5% absorption of the full unresolvedLyman-α line flux shows thattheplanetislosinggas. TheLyman-αlightcurvehasbeenfittedbyanumericalsimulation of escaping hydrogen to constrain the escape rate of atomic hydrogen to be between 109 and 1011g/s, making HD 189733b the second extrasolar planet for which atmospheric evaporation hasbeendetected(LecavelierdesEtangsetal. 2010). These observations give new constraints for our understanding of the evaporation of hot- JupiterbecauseHD189733bhasdifferentcharacteristicsthanHD2095458b. Itis indeeda very shortperiodplanet(P=2.2days)orbitinganearbylatetypestar(K0V)withbrightchromospheric emissionlines. Thisnewdetectionofanevaporatingplanetthusprovidesnewinformationonthe closeconnectionbetweenthestarandplanetfortheseextremeplanetarysystems. Evaporationofextrasolarplanets 5 5. New casefordetection ofevaporating exosphere : Wasp-12b Fossati et al. (2010)obtained near-UV transmission spectroscopyof the highly irradiated tran- siting exoplanetWASP-12b with the COS spectrographon the Hubble Space Telescope. They detectedenhancedtransitdepthsattributabletoabsorptionbyresonancelinesofmetalsintheex- osphereofWASP-12blikeabsorptionintheMgIIλ2800Åresonancelinecores.Thisobservation suggeststhattheplanetissurroundedbyanabsorbingcloudwhichoverfillstheRochelobeand thereforemustbeescapingtheplanet. These recent observations show that observation of evaporating exosphere is now feasible forplanettransitinginfrontof starsfainterthanHD189733borHD209458b,possiblydownto star as faint as mv 10. More importantly, this definitely shows that evaporation is a common ∼ phenomenonforJupiter-massplanetsorbitingatfewstellarradiifromtheirparentstar. 6. A diagram forthe evaporationstatus ofextrasolarplanets The observational constraints given in previous sections have been used to developed a large numberofmodels. Thesemodelsaimatabetterunderstandingoftheobservedescaperateand evaporationproperties,andsubsequentlydrawingtheconsequenceonotherplanetsandplanetary systems(Lammeretal. 2003;LecavelierdesEtangsetal. 2004,2007;Baraffeetal. 2004,2005, 2006;Yelle2004,2006;Jaritzetal. 2004;Tianetal. 2005;Garcia-Munoz2007). However,all themodelingeffortsleadtotheconclusionthatmostoftheEUVandX-rayinputenergybythe harboringstarisusedbytheatmospheretoescapetheplanetgravitationalpotential. Therefore, to describe the evaporation status of the extrasolar planets, an energy diagram as been developedin which the potentialenergy of the planets is plotted versus the energy re- ceived by the upperatmosphere(Lecavelierdes Etangs2007). Thisdescription allowsa quick estimate of both the escape rate of the atmospheric gas and the lifetime of a planetagainstthe evaporationprocess. Intheenergydiagram,thereisanevaporation-forbiddenregioninwhicha gaseousplanetwouldevaporateinlessthan5billionyears. Withtheirobservedcharacteristics, allextrasolarplanetsarefoundoutsidethisevaporation-forbiddenregion(Fig.2). 7. Neptune massplanets inthediagram AplotofthemassdistributionoftheextrasolarplanetsshowsthatNeptune-massandEarth-mass planetsplayaparticularrole(LecavelierdesEtangs2007).InNovember2010,withradialveloc- itysearches,forty-six(46!)planetshavebeenfoundwithmassbelow0.08M (25Earth-mass), Jup while onlynine(9!) planethasbeenidentifiedwith massin the range0.08M -0.16M (25- jup jup 50Earth-mass).Thisgapisnotabiasintheradialvelocitysearches,sincemoremassiveplanets are easier to detect. This revealsthe differentnatureof these Neptune mass planets orbitingat shortorbitaldistances.Buttheirnatureisstillamatterofdebate(Baraffeetal.2005).Inparticu- larthequestionarisesiftheycanbetheremnantsofevaporatedmoremassiveplanets(“chthonian 6 A.LecavelierdesEtangs Figure2. Plot of the potential energy of the extrasolar planets as a function of the mean EUV energy receivedperbillionofyears,< dE /dt >. Tokeeptheplanetswiththesmallestorbitaldistancesinthe EUV leftpartofthediagram,thedirectionoftheabscissaaxisischosenwiththelargestvalueofthemeanenergy fluxtowardtheleft. Identifiedplanetsareplottedwithsymbolsdependingonthetypeofthecentralstar: trianglesforFstars,filledcirclesforGstars,diamondsforKstarsandsquaresforMstars;planetsorbiting classIIIstarsareplottedwithemptycircles.Fromthepositioninthediagram,thetypicallifetimeofagiven planetcanberapidlyextracted.Ifthemeanenergyflux<dE /dt>isgiveninunitofergperbillionyears, EUV andthepotentialenergyisgiveninunitoferg,thesimpleratioofbothquantitiesprovidesthecorresponding lifetimeinbillionofyears. Inthediagram, lifetimeisochronesarestraightlines. Thelifetimeof5Gyris plottedwithathickline. The striking result is the absence of planets in the bottom left region which corresponds to light planets (small E )atshortorbitaldistances(large< dE /dt >). Aplotofthelifetimelineatt=5Gyr,shows − ′p EUV thattherearenoplanetsinthispartofthediagramsimplybecausethisisanevaporation-forbiddenregion. PlanetsinthisregionwouldreceivemoreEUVenergythanneededtofillthepotentialwelloftheplanet,and evaporateinlessthan5Gyr,leavingaremainingcore,anevaporationremnant(alsonameda“chthonian” planet;LecavelierdesEtangsetal.2004). planets”)asforeseeninLecavelierdesEtangsetal.(2004)? Otherpossibilitiesincludegaseous Neptune-likeplanets,super-Earthorocean-planets(Kutchner2003,Le´geretal.2004). We plottedthepositionoftheseNeptunemassplanetsintheenergydiagramwith different hypothesisontheirdensity(Fig.3). Weusedmeanplanetarydensityofρ =6gcm 3foratypical p − density of refractory-richplanetswhich shoulddescribe the chthonianandsuper-Earthplanets. A lower density on the order of ρ =2gcm 3 can be considered as more plausible for volatile- p − richplanetsdescribingtheoceanplanets. Forgas-richplanetswe assumedmuchlowerdensity ofρ =0.2gcm 3 andρ =0.4gcm 3, describingplanetswhichshouldlookmorelike irradiated p − p − Neptune-likeplanets. Evaporationofextrasolarplanets 7 Figure3.PlotofthepotentialenergyoftheNeptunemassplanetasafunctionoftheEUVfluxforvarious planets’density. ForGJ581b, GJ436b,HD69830b, 55CnceandGJ876d, andassumingsini = √2 1, − lifetimeshorterthan5Gyrareobtained fordensitiesbelow 0.28, 0.55, 0.56, 0.69and3.1gcm 3, respec- − tively. Ifsini=1(dottedline),thecritical(minimum)densitiesareincreasedto0.38,0.74,0.78,0.93and 4.2gcm 3,forGJ581b,GJ436b,HD69830b,55Cnce,andGJ876 respectively. − GJ876d cannot have the density of an ocean planet and needs to be dense enough to be locatedabovethe t = 5Gyrlifetimelimit. Thisplanetrequiresadensitylargerthan3.1gcm 3 − for its atmosphere to survive. GJ876d could be a big rocky planet, like a super-Earth, or a refractoryremnantofapreviousmoremassiveplanet(anevaporatedoceanplanet?). In brief, the energy diagram allows us to trace three different categories for the presently identifiedNeptunemassplanets.Forhalfofthem,theEUVinputenergyseemsnotstrongenough toaffectsignificantlytheseplanets;wecannotconcludeontheirnature. Foratleastthreeother planets(GJ436b, 55Cnce andHD69830b), itappearsthattheycannotbe a kindoflow mass gaseousplanets. Withdensitynecessarilyabove0.5gcm 3 tosurviveevaporation,theseplanets − must contain a large fraction of solid/liquid material. Finally, GJ876d must be dense enough, withadensitylargerthan 3gcm 3,tosurvivethestrongEUVenergyfluxfromitsnearbyparent − ∼ star. Thisplanetmustcontainalargefractionofmassiveelements(Fig.3). 8. Conclusion Insummary,theobservationofHILyman-αtransitallowsthedetectionofescapingatmosphere of HD209458b. The escape rate has been estimated through modeling of the observed tran- sit light curve, given as estimate around 1010gs 1. The detection of heavy elements has then − constrainedtheescapemechanismtobeanhydrodynamicalescape,or“blow-off”.Theevapora- 8 A.LecavelierdesEtangs tionprocessesareconsistentwithallmeasurementsofthetemperatureprofilesinthehot-Jupiter upper atmospheres with the presence of temperature rise in thermospheres. Finally, an energy diagramallowsputtingconstraintsonthedensityoffewHot-Neptunes. Itappearsthatsomeof thelow-massplanets(masslowerthan 15Earthmass)maybeevaporationremnant,or“chtho- ∼ nianplanets”(LecavelierdesEtangsetal.2004). Presently,themostextremecaseistheplanet CoRot-7b,orbitinginnomorethan20hoursaroundaK0Vtypestarwithasemi-majoraxisof 0.017AU (about3.6solar radius). With a mass ofabout11 Earth-massanda density ofabout 5gcm 3 (Le´geretal.,2009),thisplanetisverysimilartowhatweexpectfortheremnantcores − offormerhot-Jupiterswhoseatmosphereshavebeenevaporated. References Baraffe,I.,Selsis,F.,Chabrier,G.,etal.,2004,A&A,419,L13 Baraffe,I.,Chabrier,G.,Barman,T.S.,etal.,2005,A&A,436,L47 Baraffe,I.,Alibert,Y.,Chabrier,G.,&Benz,W.,2006,A&A,450,1221 Ben-Jaffel,L.,2007,ApJ,671,L61 Bouchy,F.,Udry,S.,Mayor,M.,etal.,2005,A&A,444,L15 De´sert,J.-M.,LecavelierdesEtangs,A.,Vidal-Madjar,A.,etal.,2008,A&A,492,585 Ehrenreich,D.,Tinetti,G.,LecavelierdesEtangs,A.,Vidal-Madjar,A.,&Selsis,F.,2006,A&A,448,379 Ehrenreich,D.,He´brard,G.,LecavelierdesEtangs,A.,etal.,2007,ApJ,668,L179 Fossati,L.,Bagnulo,S.,Elmasli,A.,etal.,2010,ApJ,720,872 France,K.,Stocke,J.T.,Yang,H.,etal.,2010,ApJ,712,1277, Garc´ıaMun˜oz,A.,2007,Planetary&SpaceScience,55,1426 He´brard,G.,&LecavelierdesEtangs,A.,2006,A&A,445,341 Jaritz,G.F.,Endler,S.,Langmayr,D.,etal.,2005,A&A,439,771 Kuchner,M.J.,2003,ApJ,596,L105 Lamers,H.J.G.L.M.,LecavelierDesEtangs,A.,&Vidal-Madjar,A.,1997,A&A,328,321 Lammer,H.,Selsis,F.,Ribas,I.,etal.,2003,ApJ,598,L121 LecavelierdesEtangs,A.,Deleuil,M.,Vidal-Madjar,A.,etal.,1995,A&A,299,557 LecavelierdesEtangs,A.,Vidal-Madjar,A.,Burki,G.,etal.,1997,A&A,328,311 LecavelierdesEtangs,A.,Vidal-Madjar,A.,&Ferlet,R.,1999a,A&A,343,916 LecavelierdesEtangs,A.,1999b,A&AS,140,15 LecavelierdesEtangs,A.,Vidal-Madjar,A.,He´brard,G.,McConnell,J.,2004,A&A,418,L1 LecavelierdesEtangs, A.,Nitschelm,C.,Olsen,E.H.,Vidal-Madjar,A.,&Ferlet,R.,2005, A&A,439, 571 LecavelierdesEtangs,A.,2007,A&A,461,1185 LecavelierdesEtangs,A.,Pont,F.,Vidal-Madjar,A.,&Sing,D.,2008a,A&A,481,L83 LecavelierdesEtangs,A.,Vidal-Madjar,A.,Desert,J.-M.,&Sing,D.,2008b,A&A,485,865 LecavelierdesEtangs,A.,Vidal-Madjar,A.,&Desert,J.-M.,2008c,Nature,456,E1 LecavelierdesEtangs,A.,Ehrenreich,D.,Vidal-Madjar,A.,etal.,2010,A&A,514,A72 Le´ger,A.,Selsis,F.,Sotin,C.,etal.,2004,Icarus,169,499 Le´ger,A.,Rouan,D.,Schneider,J.,etal.,2009,A&A,506,287 Linsky,J.L.,Yang,H.,France,K.,etal.,2010,ApJ,717,1291, Nitschelm,C.,LecavelierdesEtangs,A.,Vidal-Madjar,A.,etal.,2000,A&AS,145,275 Sing,D.K.,Vidal-Madjar,A.,Desert,J.-M.,LecavelierdesEtangs,A.,&Ballester,G.,2008a,ApJ,686, 658 Sing,D.K.,Vidal-Madjar,A.,LecavelierdesEtangs,A.,etal.,2008b,ApJ,686,667 Evaporationofextrasolarplanets 9 Tian,F.,Toon,O.B.,Pavlov,A.A.,&DeSterck,H.,2005,ApJ,621,1049 Vidal-Madjar,A.,LecavelierdesEtangs,A.,De´sert,J.-M.,etal.,2003,Nature,422,143 Vidal-Madjar,A.,&LecavelierdesEtangs,A.,2004,ASPConf.Ser.,321,152 Vidal-Madjar,A.,De´sert,J.-M.,LecavelierdesEtangs,A.,etal.,2004,ApJ,604,L69 Vidal-Madjar,A.,LecavelierdesEtangs,A.,De´sert,J.-M.,etal.,2008,ApJ,676,57 Vidal-Madjar,A.,Sing.,D.K.,LecavelierdesEtangs,A.,etal.2011,A&A,inpress,astro-ph. Yelle,R.V.,2004,Icarus,170,167 Yelle,R.V.,2006,Icarus,183,508

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.