Bull.Astr.Soc.India(2010)38,137–145 Evaporation of extrasolar planets 2 1 0 A. Lecavelierdes Etangs1 ∗ 2 1Institutd’astrophysiquedeParis,CNRS/UPMC,98bisbldArago,F-75014Paris,France n a J Received2010November25;accepted2010December02 3 2 Abstract. Thisarticlepresentsareviewontheobservationsandtheoreticalmodeling ] P oftheevaporationofextrasolarplanets.Theobservationsandtheresultingconstraints E ontheupperatmosphere(thermosphereandexosphere)ofthe”hot-Jupiters”. arede- h. scribed. The early observations of the first discovered transiting extrasolar planet, p HD209458b,allowedthediscoverythatthisplanethasanextendedatmosphereofes- - capinghydrogen.Subsequentobservationsshowedthepresenceofoxygenandcarbon o at very high altitude. These observations give unique constraints on the escape rate r t andmechanismintheatmosphereofhot-Jupiters.ThemostrecentLyman-alphaHST s a observations of HD189733b and MgII observations of Wasp-12b allow for the first [ time comparison of the evaporationfrom differentplanets in different environments. 1 Modelstoquantifytheescaperatefromthemeasuredoccultationdepths,andanen- v ergydiagramtodescribetheevaporationstateofhot-Jupitersarepresented.Usingthis 7 diagram,it isshownthatfew alreadyknownplanetslike GJ876dor CoRot-7bcould 3 beremnantsofformerlygiantplanets. 6 4 . 1 1. Risingtemperature inthe upper atmosphere: thethermosphere 0 2 1 Physical parametersof the upper atmospheresof extrasolar planetup to the exosphere(the so- : v calledthermosphere)canbedeterminedusingabsorptionspectroscopyoftransits.Thistechnique i has been developed in details for HD209458b (Sing et al. 2008a, 2008b; De´sert et al. 2008) X where the detailed Temperature-Pressure-altitudeprofile has been estimated from 0.1mbar to r ∼ a 50mbar. Inparticular,becausetheatmosphericscaleheightisdirectlyrelatedtothetempera- ∼ ture,thetemperaturecanbeeasilydeterminedbymeasurementofvariationoftransitoccultation depth as a function of wavelength. For instance, when detected the slope of absorption as a functionofwavelengthduetothe Rayleighscatteringallowsa directdeterminationofthetem- peratureatthealtitudewhereRayleighscatteringisopticallythick(LecavelierdesEtangsetal. 2008a,2008b). e-mail:[email protected] ∗ 2 A.LecavelierdesEtangs TheabsorptionprofileofthesodiumhasbeenrecentlysolvedbyVidal-Madjaretal. (2011) to furtherconstrain the verticalstructure of the HD209458batmosphereoveran altitude range ofmorethan6500km,correspondingtoapressurerangeof14scaleheightsspanning1millibar to10 9 barpressures. Theyfoundariseintemperatureabove3mbarpressurelevel,andabove − anisothermalatmosphericlayerspanningalmost6scaleheightsinaltitudeasharprisingofthe temperaturetoabout2500K at 10 9 barshowingthepresenceofathermospherefromwhich − ∼ thegascanescapeintotheexosphere(Vidal-Madjaretal.2011). 2. HD209458b, an evaporatingplanet Figure1. Anumericalsimulationofhydrogenatomssensitivetoradiationpressure(0.7timesthestellar gravitation)aboveanaltitudeof0.5timestheRocheradiuswherethedensityisassumedtobe2 105cm 3 − × ispresentedhere.Itcorrespondstoanescapefluxof 1010gs 1.Themeanionizationlifetimeofescaping − ∼ hydrogenatomsis4hours. Themodelyieldsanatompopulationinacurvedcometaryliketail(seedetails inVidal-Madjar&Lecavelier2004). Higher in the atmosphere, transit observations have also revealed evaporation of the hot- Jupiters closed to their parentstars. For more than ten years, transit observationsallowed dis- coveries,detection,andcharacterizationofextrasolarobjects(LecavelierdesEtangsetal.1995, 1997, 1999a, 1999b, 2005; Lamers et al. 1997; Nitschelm et al. 2000; He´brard & Lecavelier des Etangs 2006; Ehrenreich et al. 2006, 2007). In the recent discoveries, the evaporation of hot-Jupitersopensanewfieldofresearchintheexoplanetfield. Thefieldwasopenwiththeob- servationaldiscoverythatHD20958bisevaporating(Vidal-Madjaretal.2003,hereafterVM03). Thisdiscoveryhasbeenchallengedbya recentworkofBenJaffel(2007);butthe apparentdis- crepancyhasbeensolvedandthe resultobtainedfromthisobservationdataset is strengthened (Vidal-Madjaretal.2008). Evaporationofextrasolarplanets 3 In the VM03 program,three transits of HD209458bwere surveyedwith the STIS spectro- graph on-board HST ( 20 km.s 1 resolution). For each transit, three consecutive HST orbits − ∼ werescheduledsuchthatthefirstorbitendedbeforethefirstcontacttoserveasareference,the two followingonesbeingpartlyorentirelywithinthetransit. Anaverage15 4%(1σ)relative ± intensitydropnearthecenteroftheLyman-αlinewasobservedduringthetransits. Thisislarger thanexpectedfortheatmosphereofaplanetoccultingonly 1.5%ofthestar. ∼ Becauseofthesmalldistance(8.5R )betweentheplanetandthestar(allowinganintense ∗ heatingoftheplanetanditsclassificationasa“hotJupiter”)theRochelobeisonlyat2.7plane- taryradii(i.e.3.6R ).Fillingupthislobewithhydrogenatomsgivesamaximumabsorptionof Jup 10%duringplanetarytransits.Sinceamoreimportantabsorptionwasdetected,hydrogenatoms ∼ coveralargerareacorrespondingtoasphericalobjectof4.3R . ObservedbeyondtheRoche Jup limit,thesehydrogenatomsmustbeescapingtheplanet. Independently,thespectralabsorption width,withblue-shiftedabsorptionupto-130km.s 1alsoshowsthatsomehydrogenatomshave − large velocitiesrelative to the planet, exceedingthe escape velocity. This further confirmsthat hydrogenatomsmustbeescapingtheplanetaryatmosphere. Theobserved15%intensitydropcouldonlybeexplainedifhydrogenatomsareabletoreach theRochelobeoftheplanetandthenescape.Toevaluatetheamountofescapingatomsaparticle simulationwasbuilt,inwhichhydrogenatomsareassumedtobesensitivetothestellargravity andradiationpressure(LecavelierdesEtangsetal.2008c;seeFig.1).Inthissimulation,escaping hydrogenatomsexpandinanasymmetriccometaryliketailandareprogressivelyionizedwhen movingawayfromtheplanet. Atomsintheevaporatingcomaandtailcoveralargeareaofthe star. Anescapefluxof 1010g.s 1isneededtoexplaintheobservations.Takingintoaccountthe − ∼ tidalforcesandthetemperatureriseexpectedintheupperatmosphere,theoreticalevaluationsare ingoodagreementwiththeobservedrate(seereferencesinSect6). 3. Hydrodynamical escape or“Blow-off” Four transits of HD209458b were then observed, again with the STIS spectrograph on board HST,butatlowerresolution(Vidal-Madjaretal.2004,hereafterVM04).Thewavelengthdomain (1180-1710Å) includes Hi as well as Ci , Ci , Ci , Nv , Oi , Si, Siiii, Siv and Feii lines. During the transits, absorptions are detected in Hi , Oi and Cii (5 2%, 10 3.5% and 6 3%, ± ± ± respectively). No absorptions are detected for other lines. The 5% mean absorption over the wholeHiLyman-alphalineisconsistentwiththepreviousdetectionathigherresolution(VM03), becausethe15%absorptioncoversonly1/3oftheemissionlinewidth(seediscussioninVidal- Madjaretal.2008).TheabsorptiondepthsinOiandCiishowthatoxygenandcarbonarepresent in the extendedupperatmosphereof HD209458b. Thesespeciesmustbe carriedoutup tothe Rochelobeandbeyond,mostlikelyinastate ofhydrodynamicescapeinwhichtheescapecan bedescribedasaverticalplanetarywindcaringallspeciesincludingtheheavierspecies. Thispicturehasbeenstrengthenedby thelatest HST UV observationsofHD209458bper- formedwiththenewCOSspectrographonboardHST.In2009,theAtlantisSpaceShuttleser- 4 A.LecavelierdesEtangs vicingmissionhasputthenewspectrographCOSwhichis10to20timesmoresensitiveinthe UV.ObservationsofHD209448btransitshavebeencarriedoutbyFranceetal.(2010)andLin- skyetal.(2010). Linskyetal.(2010)foundanexospheretransitsignaturewithafluxdecreased by7.8% 1.3%forthe CIIlineat1334.5Åandmoresurprisinglyby8.2% 1.4%fortheSiIII ± ± 1206.5Åline.Thesehighresolutionobservationsalsoshowfirstdetectionofvelocitystructurein theexpandingatmosphereofanexoplanet. Linskyetal.(2010)estimatedamass-lossrateinthe range(8-40) 1010g/s,assumingthatthecarbonabundanceissolar. Thismass-lossrateestimate × is consistentwith previousestimates fromhydrogenescape and with theoreticalhydrodynamic modelsthatincludemetalsintheoutflowinggas. 4. ObservationsofHD189733b TheobservationoftheHD209458btransitsrevealedthattheatmosphereofthisplanetishydro- dynamicallyescaping(Sect.2and3). Theseobservationsraisedthequestionoftheevaporation stateofhot-Jupiters.IstheevaporationspecifictoHD209458borgeneraltohot-Jupiters?What is the evaporation mechanism, and how does the escape rate depend on the planetary system characteristics? ThediscoveryofHD189733b(Bouchyetal.2005),aplanettransitingabright and nearby K0 star (V=7.7), offers the unprecedented opportunity to answer these questions. Indeed, among the stars harboring transiting planets, HD189733 presents the largest apparent brightnessinLyman-α,providingcapabilitiestoconstraintheescaperatetohighaccuracy. An HST program has been developedto observed HI, CII and OI stellar emission lines to searchforatmosphericabsorptionsduringthetransitsofHD189733b(lecavelierdesEtangset al.2010).AtransitsignatureintheHiLyman-αlightcurvehasbeendetectedwithatransitdepth of5.05 0.75%. Thisdepthexceedstheoccultationdepthproducedbytheplanetarydiskalone ± atthe3.5σlevel. ThisisconfirmedbytheanalysisofthewholespectraredwardoftheLyman- α line which has enoughphotonsto show a transit signature consistent with the absorption by theplanetarydiskalone. Therefore,thepresenceofanextendedexosphereofatomichydrogen around HD 189733bproducing5% absorption of the full unresolvedLyman-α line flux shows thattheplanetislosinggas. TheLyman-αlightcurvehasbeenfittedbyanumericalsimulation of escaping hydrogen to constrain the escape rate of atomic hydrogen to be between 109 and 1011g/s, making HD 189733b the second extrasolar planet for which atmospheric evaporation hasbeendetected(LecavelierdesEtangsetal. 2010). These observations give new constraints for our understanding of the evaporation of hot- JupiterbecauseHD189733bhasdifferentcharacteristicsthanHD2095458b. Itis indeeda very shortperiodplanet(P=2.2days)orbitinganearbylatetypestar(K0V)withbrightchromospheric emissionlines. Thisnewdetectionofanevaporatingplanetthusprovidesnewinformationonthe closeconnectionbetweenthestarandplanetfortheseextremeplanetarysystems. Evaporationofextrasolarplanets 5 5. New casefordetection ofevaporating exosphere : Wasp-12b Fossati et al. (2010)obtained near-UV transmission spectroscopyof the highly irradiated tran- siting exoplanetWASP-12b with the COS spectrographon the Hubble Space Telescope. They detectedenhancedtransitdepthsattributabletoabsorptionbyresonancelinesofmetalsintheex- osphereofWASP-12blikeabsorptionintheMgIIλ2800Åresonancelinecores.Thisobservation suggeststhattheplanetissurroundedbyanabsorbingcloudwhichoverfillstheRochelobeand thereforemustbeescapingtheplanet. These recent observations show that observation of evaporating exosphere is now feasible forplanettransitinginfrontof starsfainterthanHD189733borHD209458b,possiblydownto star as faint as mv 10. More importantly, this definitely shows that evaporation is a common ∼ phenomenonforJupiter-massplanetsorbitingatfewstellarradiifromtheirparentstar. 6. A diagram forthe evaporationstatus ofextrasolarplanets The observational constraints given in previous sections have been used to developed a large numberofmodels. Thesemodelsaimatabetterunderstandingoftheobservedescaperateand evaporationproperties,andsubsequentlydrawingtheconsequenceonotherplanetsandplanetary systems(Lammeretal. 2003;LecavelierdesEtangsetal. 2004,2007;Baraffeetal. 2004,2005, 2006;Yelle2004,2006;Jaritzetal. 2004;Tianetal. 2005;Garcia-Munoz2007). However,all themodelingeffortsleadtotheconclusionthatmostoftheEUVandX-rayinputenergybythe harboringstarisusedbytheatmospheretoescapetheplanetgravitationalpotential. Therefore, to describe the evaporation status of the extrasolar planets, an energy diagram as been developedin which the potentialenergy of the planets is plotted versus the energy re- ceived by the upperatmosphere(Lecavelierdes Etangs2007). Thisdescription allowsa quick estimate of both the escape rate of the atmospheric gas and the lifetime of a planetagainstthe evaporationprocess. Intheenergydiagram,thereisanevaporation-forbiddenregioninwhicha gaseousplanetwouldevaporateinlessthan5billionyears. Withtheirobservedcharacteristics, allextrasolarplanetsarefoundoutsidethisevaporation-forbiddenregion(Fig.2). 7. Neptune massplanets inthediagram AplotofthemassdistributionoftheextrasolarplanetsshowsthatNeptune-massandEarth-mass planetsplayaparticularrole(LecavelierdesEtangs2007).InNovember2010,withradialveloc- itysearches,forty-six(46!)planetshavebeenfoundwithmassbelow0.08M (25Earth-mass), Jup while onlynine(9!) planethasbeenidentifiedwith massin the range0.08M -0.16M (25- jup jup 50Earth-mass).Thisgapisnotabiasintheradialvelocitysearches,sincemoremassiveplanets are easier to detect. This revealsthe differentnatureof these Neptune mass planets orbitingat shortorbitaldistances.Buttheirnatureisstillamatterofdebate(Baraffeetal.2005).Inparticu- larthequestionarisesiftheycanbetheremnantsofevaporatedmoremassiveplanets(“chthonian 6 A.LecavelierdesEtangs Figure2. Plot of the potential energy of the extrasolar planets as a function of the mean EUV energy receivedperbillionofyears,< dE /dt >. Tokeeptheplanetswiththesmallestorbitaldistancesinthe EUV leftpartofthediagram,thedirectionoftheabscissaaxisischosenwiththelargestvalueofthemeanenergy fluxtowardtheleft. Identifiedplanetsareplottedwithsymbolsdependingonthetypeofthecentralstar: trianglesforFstars,filledcirclesforGstars,diamondsforKstarsandsquaresforMstars;planetsorbiting classIIIstarsareplottedwithemptycircles.Fromthepositioninthediagram,thetypicallifetimeofagiven planetcanberapidlyextracted.Ifthemeanenergyflux<dE /dt>isgiveninunitofergperbillionyears, EUV andthepotentialenergyisgiveninunitoferg,thesimpleratioofbothquantitiesprovidesthecorresponding lifetimeinbillionofyears. Inthediagram, lifetimeisochronesarestraightlines. Thelifetimeof5Gyris plottedwithathickline. The striking result is the absence of planets in the bottom left region which corresponds to light planets (small E )atshortorbitaldistances(large< dE /dt >). Aplotofthelifetimelineatt=5Gyr,shows − ′p EUV thattherearenoplanetsinthispartofthediagramsimplybecausethisisanevaporation-forbiddenregion. PlanetsinthisregionwouldreceivemoreEUVenergythanneededtofillthepotentialwelloftheplanet,and evaporateinlessthan5Gyr,leavingaremainingcore,anevaporationremnant(alsonameda“chthonian” planet;LecavelierdesEtangsetal.2004). planets”)asforeseeninLecavelierdesEtangsetal.(2004)? Otherpossibilitiesincludegaseous Neptune-likeplanets,super-Earthorocean-planets(Kutchner2003,Le´geretal.2004). We plottedthepositionoftheseNeptunemassplanetsintheenergydiagramwith different hypothesisontheirdensity(Fig.3). Weusedmeanplanetarydensityofρ =6gcm 3foratypical p − density of refractory-richplanetswhich shoulddescribe the chthonianandsuper-Earthplanets. A lower density on the order of ρ =2gcm 3 can be considered as more plausible for volatile- p − richplanetsdescribingtheoceanplanets. Forgas-richplanetswe assumedmuchlowerdensity ofρ =0.2gcm 3 andρ =0.4gcm 3, describingplanetswhichshouldlookmorelike irradiated p − p − Neptune-likeplanets. Evaporationofextrasolarplanets 7 Figure3.PlotofthepotentialenergyoftheNeptunemassplanetasafunctionoftheEUVfluxforvarious planets’density. ForGJ581b, GJ436b,HD69830b, 55CnceandGJ876d, andassumingsini = √2 1, − lifetimeshorterthan5Gyrareobtained fordensitiesbelow 0.28, 0.55, 0.56, 0.69and3.1gcm 3, respec- − tively. Ifsini=1(dottedline),thecritical(minimum)densitiesareincreasedto0.38,0.74,0.78,0.93and 4.2gcm 3,forGJ581b,GJ436b,HD69830b,55Cnce,andGJ876 respectively. − GJ876d cannot have the density of an ocean planet and needs to be dense enough to be locatedabovethe t = 5Gyrlifetimelimit. Thisplanetrequiresadensitylargerthan3.1gcm 3 − for its atmosphere to survive. GJ876d could be a big rocky planet, like a super-Earth, or a refractoryremnantofapreviousmoremassiveplanet(anevaporatedoceanplanet?). In brief, the energy diagram allows us to trace three different categories for the presently identifiedNeptunemassplanets.Forhalfofthem,theEUVinputenergyseemsnotstrongenough toaffectsignificantlytheseplanets;wecannotconcludeontheirnature. Foratleastthreeother planets(GJ436b, 55Cnce andHD69830b), itappearsthattheycannotbe a kindoflow mass gaseousplanets. Withdensitynecessarilyabove0.5gcm 3 tosurviveevaporation,theseplanets − must contain a large fraction of solid/liquid material. Finally, GJ876d must be dense enough, withadensitylargerthan 3gcm 3,tosurvivethestrongEUVenergyfluxfromitsnearbyparent − ∼ star. Thisplanetmustcontainalargefractionofmassiveelements(Fig.3). 8. Conclusion Insummary,theobservationofHILyman-αtransitallowsthedetectionofescapingatmosphere of HD209458b. The escape rate has been estimated through modeling of the observed tran- sit light curve, given as estimate around 1010gs 1. The detection of heavy elements has then − constrainedtheescapemechanismtobeanhydrodynamicalescape,or“blow-off”.Theevapora- 8 A.LecavelierdesEtangs tionprocessesareconsistentwithallmeasurementsofthetemperatureprofilesinthehot-Jupiter upper atmospheres with the presence of temperature rise in thermospheres. Finally, an energy diagramallowsputtingconstraintsonthedensityoffewHot-Neptunes. Itappearsthatsomeof thelow-massplanets(masslowerthan 15Earthmass)maybeevaporationremnant,or“chtho- ∼ nianplanets”(LecavelierdesEtangsetal.2004). Presently,themostextremecaseistheplanet CoRot-7b,orbitinginnomorethan20hoursaroundaK0Vtypestarwithasemi-majoraxisof 0.017AU (about3.6solar radius). With a mass ofabout11 Earth-massanda density ofabout 5gcm 3 (Le´geretal.,2009),thisplanetisverysimilartowhatweexpectfortheremnantcores − offormerhot-Jupiterswhoseatmosphereshavebeenevaporated. References Baraffe,I.,Selsis,F.,Chabrier,G.,etal.,2004,A&A,419,L13 Baraffe,I.,Chabrier,G.,Barman,T.S.,etal.,2005,A&A,436,L47 Baraffe,I.,Alibert,Y.,Chabrier,G.,&Benz,W.,2006,A&A,450,1221 Ben-Jaffel,L.,2007,ApJ,671,L61 Bouchy,F.,Udry,S.,Mayor,M.,etal.,2005,A&A,444,L15 De´sert,J.-M.,LecavelierdesEtangs,A.,Vidal-Madjar,A.,etal.,2008,A&A,492,585 Ehrenreich,D.,Tinetti,G.,LecavelierdesEtangs,A.,Vidal-Madjar,A.,&Selsis,F.,2006,A&A,448,379 Ehrenreich,D.,He´brard,G.,LecavelierdesEtangs,A.,etal.,2007,ApJ,668,L179 Fossati,L.,Bagnulo,S.,Elmasli,A.,etal.,2010,ApJ,720,872 France,K.,Stocke,J.T.,Yang,H.,etal.,2010,ApJ,712,1277, Garc´ıaMun˜oz,A.,2007,Planetary&SpaceScience,55,1426 He´brard,G.,&LecavelierdesEtangs,A.,2006,A&A,445,341 Jaritz,G.F.,Endler,S.,Langmayr,D.,etal.,2005,A&A,439,771 Kuchner,M.J.,2003,ApJ,596,L105 Lamers,H.J.G.L.M.,LecavelierDesEtangs,A.,&Vidal-Madjar,A.,1997,A&A,328,321 Lammer,H.,Selsis,F.,Ribas,I.,etal.,2003,ApJ,598,L121 LecavelierdesEtangs,A.,Deleuil,M.,Vidal-Madjar,A.,etal.,1995,A&A,299,557 LecavelierdesEtangs,A.,Vidal-Madjar,A.,Burki,G.,etal.,1997,A&A,328,311 LecavelierdesEtangs,A.,Vidal-Madjar,A.,&Ferlet,R.,1999a,A&A,343,916 LecavelierdesEtangs,A.,1999b,A&AS,140,15 LecavelierdesEtangs,A.,Vidal-Madjar,A.,He´brard,G.,McConnell,J.,2004,A&A,418,L1 LecavelierdesEtangs, A.,Nitschelm,C.,Olsen,E.H.,Vidal-Madjar,A.,&Ferlet,R.,2005, A&A,439, 571 LecavelierdesEtangs,A.,2007,A&A,461,1185 LecavelierdesEtangs,A.,Pont,F.,Vidal-Madjar,A.,&Sing,D.,2008a,A&A,481,L83 LecavelierdesEtangs,A.,Vidal-Madjar,A.,Desert,J.-M.,&Sing,D.,2008b,A&A,485,865 LecavelierdesEtangs,A.,Vidal-Madjar,A.,&Desert,J.-M.,2008c,Nature,456,E1 LecavelierdesEtangs,A.,Ehrenreich,D.,Vidal-Madjar,A.,etal.,2010,A&A,514,A72 Le´ger,A.,Selsis,F.,Sotin,C.,etal.,2004,Icarus,169,499 Le´ger,A.,Rouan,D.,Schneider,J.,etal.,2009,A&A,506,287 Linsky,J.L.,Yang,H.,France,K.,etal.,2010,ApJ,717,1291, Nitschelm,C.,LecavelierdesEtangs,A.,Vidal-Madjar,A.,etal.,2000,A&AS,145,275 Sing,D.K.,Vidal-Madjar,A.,Desert,J.-M.,LecavelierdesEtangs,A.,&Ballester,G.,2008a,ApJ,686, 658 Sing,D.K.,Vidal-Madjar,A.,LecavelierdesEtangs,A.,etal.,2008b,ApJ,686,667 Evaporationofextrasolarplanets 9 Tian,F.,Toon,O.B.,Pavlov,A.A.,&DeSterck,H.,2005,ApJ,621,1049 Vidal-Madjar,A.,LecavelierdesEtangs,A.,De´sert,J.-M.,etal.,2003,Nature,422,143 Vidal-Madjar,A.,&LecavelierdesEtangs,A.,2004,ASPConf.Ser.,321,152 Vidal-Madjar,A.,De´sert,J.-M.,LecavelierdesEtangs,A.,etal.,2004,ApJ,604,L69 Vidal-Madjar,A.,LecavelierdesEtangs,A.,De´sert,J.-M.,etal.,2008,ApJ,676,57 Vidal-Madjar,A.,Sing.,D.K.,LecavelierdesEtangs,A.,etal.2011,A&A,inpress,astro-ph. Yelle,R.V.,2004,Icarus,170,167 Yelle,R.V.,2006,Icarus,183,508