ebook img

Evaporation induced flow inside circular wells PDF

0.27 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Evaporation induced flow inside circular wells

EPJmanuscriptNo. (willbeinsertedbytheeditor) Evaporation induced flow inside circular wells 9 Yu.Yu.Tarasevich,I.V.Vodolazskaya,O.P.Isakova,andM.S.AbdelLatif 0 0 AstrakhanStateUniversity,20aTatishchevSt.,Astrakhan,414056,Russia,e-mail:[email protected] 2 n a Abstract. Flowfieldandheightaveragedradialvelocityinsideadropletevaporatinginanopencircularwellwere J calculatedfordifferentmodesofliquidevaporation. 7 PACS. 47.55.nb Capillaryandthermocapillaryflows ] n y d 1 Introduction - u l Wideusedtechniqueofpatterningsurfaceswithsolidparticles f . utilizes the evaporationof colloidaldropletsfroma substrate. s c Inparticular,evaporationofliquidsamplesisakeyproblemin i thedevelopmentofmicroarraytechnology(includinglabs-on-a s y chip),especiallyinthecaseofopenreactors[1]. h A plenty of works are devoted to the evaporation of the p sessile droplets[2–5].Oneassumesthata droplethasashape [ like a spherical cap. Nevertheless, investigation of the drops withmorecomplexgeometryisofinterest.Thuswhenahigh 1 v concentratedcolloidaldropletevaporatesfromasubstrate,the 8 solute particles in solution will form a ring like deposit wall 7 nearthe edgeof the drop(Fig.1). One can considerthiscase 7 as evaporationof a liquid drop inside open circular well with 0 verticalwallsformedbygel. . 1 In the paper [1] the flow field inside a liquid sample in 0 verythincircularwellswasmeasured.Theconfidencebetween 9 measuredvelocity[1]andtheestimationsobtainedwiththeory 0 ofringformation[2]isreasonable. : v Inthispaper,therelationshipbetweenhydrodynamicalflow i insidealiquidsampleevaporatinginopencircularwellandthe X modeofevaporationisexamined. r We foundanalyticalexpressionsof heightaveragedradial a velocity for differentmodes of evaporation.Velocity field in- Fig.1.Timeevolutionofthedepositphasegrowth[6] side the circular well was foundfor the particularcase of flat air–liquidinterface. Moreover,wewillsupposethatevaporationisasteadystate 2 Velocity field inside circular well process. This assumption is valid e.g. for evaporation of the drops of aqueous solutions under room temperature and nor- malatmospherepressure,i.e.forthetypicalexperimentalcon- 2.1 Heightaveragedradialvelocity ditions.Apexdynamicsisratherslow[1] Wewillconsideroneparticularbutinterestingcase,becauseof its practical applications, when a liquid inside a circular well may be described as a thin film. So, in paper [1] in circular H(t)=(7.38µm 6.13µm) (0.042µm/s)t. − − wells with a radius of r = 100 µm and a depth of h = f f 6 µm were investigated. Approximately the same ratio depth to radius is typical for the drops of biological fluids used for Inthecasesofmedicaltests,thetypicalvelocityofdropapex medicaltests[7,8]. isapproximately1mm/h. 2 Yu.Yu.Tarasevichetal.:Evaporationinducedflowinsidecircularwells Massconservationgivesthefollowingequationforheight whereL(x,t)= L(0,0)+4j0(1−m−e−m)t 1 x2 . averagedradialvelocity[2] m(1 e−m) − (cid:18) − (cid:19) Anotherevaporativefluxfunctionswasprop(cid:0)osedin[(cid:1)10] v (r,t) = r h i 1 r ∂h 2 ∂h j(x,τ)= j0 , (8) j(r,t) 1+ +ρ rdr, (1) K+L(x,τ) − ρrh  s ∂r ∂t Z (cid:18) (cid:19) 0 wheretheconstantK measuresthedegreeofnon-equilibrium   whereh=h(r,t)isthedropshape,ρisthedensityofsolution, at the evaporating interface and is related to material proper- j(r,t) is the evaporationrate defined as the evaporativemass ties.K 0correspondstoahighlyvolatiledroplet.Thelimit lossperunitsurfaceareaperunittime. K →correspondsto a nonvolatiledroplet. Analytical ex- Consideringthe thindropletsonly(h(r,t) rf)we will pres→sio∞n for height averaged velocity inside circular well can ≪ neglecteverywhereh2(0,t)and ∂h 2 incomparewith1.We beobtainedifvaporfluxisdescribedbyEq.8 ∂r willutilizeapproximativeequationforair–liquidinterface (cid:0) (cid:1) j h(r,t)=h(0,t) 1 r 2 , (2) hvr(x,t)i= 2x(h +L(00,t)(1 x2))× 0 −(cid:18)rf(cid:19) ! 1 L−(0,t)x2 ln 1 whererf isradiusofcircularwell. ×(cid:18)L(0,t) (cid:18) − K+h0+L(0,t)(cid:19)− Sincethedropisthinandthecontactangleissmall,wewill usetheexpression x2 1− x22 (L(0,t)−2(K+h0)) , (9) j (cid:16) (cid:17)(K+h )2  j(r)= 0 (3) 0 2  1 r r −(cid:16)rf(cid:17) whereL(0,t)=2(K+h0)+(L0−2(K+h0))exp (K+j0ht0)2 . fortheevaporationrate,whichhasareciprocalsquare-rootdi- Deeganetal.[2]demonstratedexperimentally,(cid:16)thatifeva(cid:17)p- vergencenearthe contactline[6].Thisexpressioncanbe de- oration is greatest at the center of the droplet, a uniform dis- rivedfromLaplaceequation(see[2,6]fordetails).Thisfunc- tributionofcolloidalparticlesremainedonthesubstrate.Sim- tionalformfor vaporflux is widely used, in particular,it was ulationsby [3] confirmed,that as fluid is lost from the center utilizedinpaper[1]. ofthedroplet,aninwardflowdevelopstoreplenishtheevapo- Some quantities of interest can be expressed analytically ratedfluid.TheevaporativefluxfunctionwasproposedbyFis- exploiting(3).Velocityofdropapexdecreaseis cher[3]tomimicevaporationthatisconcentratedatthecenter dh(0,t) 4j ofthedroplet = 0. (4) j dt − ρ j(x,t)= 0 e Ax2, (10) − L(0,t) Heightaveragedradialvelocityis j 1 √1 x2 2x2+x4 whereAisanadjustableconstant. 0 v (x,t) = − − − , (5) We derived the analytical expression for height averaged h r i − ρx(h +L(0,t)(1 x2)) (cid:0) 0 − (cid:1) velocityforevaporationfunctiongivenbyEq.10 wherex = r ,L = h ,h = hf.h istheheightofvertical rf rf 0 rf f wallofthewell. vr(x,t) = h i ExploitingofEq.3leadstoasingularityforbothvaporflux j 1 e Ax2 + 1 e A x2 x2 2 andgradientoftheheightaveragedvelocityofliquidinsidea 0 − − − − − , (11) dropattheedgeofdroplet.Asmoothingfunctionmaybeused (cid:16) 2Ax(h0+(cid:0)L(x,t))L(cid:1)(0,(cid:0)t) (cid:1)(cid:17) toeliminatephysicallysenselessdivergency[9] where j 1 exp( m√1 x2) j(x,t)= 0 − − − , (6) r √1 x2 1 exp( m) f − − − L(x,t)= wheremisanadjustableconstant.Inthiscase,heightaveraged j (1 e A)t radialvelocitycanbewrittenanalytically 1 x2 (h +L )2 4 0 − − h . 0 0 0 − r − A − ! j0 (cid:0) (cid:1) v (x,t) = h r i x(h0+L(x,t))m(1−e−m)× Fig.2demonstratesourcalculationsforalldescribedabove evaporativefunctions. In all figures, the plots correspondsto: m 1 x2+e−m√1−x2 m e−m initialstage(air–liquidinterfaceisconvex);air–liquidinterface − − − − (cid:18) p x2 isflat; air–liquidinterfaceis concavewith thesame curvature 2 1 m e−m 1 x2 , (7) asat theinitial stage;90% oftime, whenair–liquidinterface − − − 2 touchthebottomofthewell. (cid:18) (cid:19) (cid:19) (cid:0) (cid:1) Yu.Yu.Tarasevichetal.:Evaporationinducedflowinsidecircularwells 3 a) b) c) d) Fig.2.Heightaveragedradialvelocityfordifferentmodesofevaporation:a)(3);b)(6)ifm = 5;c)(8);d)(10).Foradditionalexplanations seethemaintext. 2.2 Velocityfield wherer isradiusofthecircularwell. f Moreover,thereisphysicallyobviousrelation VelocityfieldscalculatedforsessiledropletsfromLaplaceequa- ∂u tion[11]andfromNavier–Stokesequations[3]areverysimi- =0. (13) ∂r lar.Wehopethatidealliquidisreasonableassumptionforour (cid:12)r=0 (cid:12) objectofinterest. Thebottomofthecircula(cid:12)rwellisimpermeable,hence Cylindrical coordinates (r,ϕ,z) will be used, as they are (cid:12) ∂u mostnaturalforthegeometryofinterest.Theoriginischosen =0. (14) inthe centerofthecircularwellonthe substrate.Thecoordi- ∂z (cid:12)z=0 natezisnormaltothesubstrate,andthebottomofthecircular (cid:12) The mass flux inside the dro(cid:12)plet near the air–liquid interface wellisdescribedbyz =0,withzbeingpositiveonthedroplet (cid:12) f(r)isconnectedwithvaporflux side of the space. The coordinates (r,ϕ) are the polar radius and the angle, respectively. Due to the axial symmetry of the ∂u =f(r). (15) problemandourchoiceofthecoordinates,noquantitydepends ∂z (cid:12)freesurface ontheangleϕ,inparticularu=u(r,z). (cid:12) Laplaceequationin(cid:12)cylindricalcoordinatesfor the axially Themassfluxattheverticalwallofcircularwellisabsent, (cid:12) symmetriccaseiswrittenas hence ∂u 1 ∂ ∂u ∂2u =0, (12) r + =0. (16) ∂r(cid:12)r=rf r∂r (cid:18) ∂r(cid:19) ∂z2 (cid:12) (cid:12) (cid:12) 4 Yu.Yu.Tarasevichetal.:Evaporationinducedflowinsidecircularwells Boundaryproblem(12),(14),forequation(16) We computed velocity fields for all evaporation laws de- scribedinSec.2.1.Theresultsshowthatcurrentinsidecircular ∞ µ(n1) µ(n1) wellishorizontalexcludingrathernarrowregionnearthewall u(r,z)= a cosh z J r , (17) n r 0 r and in the center of the well for the case of practical interest f ! f ! nX=1 (h/r 0.1). ∼ whereJ (r) isthe Bessel functionofthe firstkind,orderm, Many authors supposed that evaporationinduced flow in- m µ(1) are the real zeros of Bessel J (r) function: J (r) = 0. sidethe dropletsisindependentofits height.Oursimulations n 1 1 confirmed validity of this very wide used approach for thin Notethatcondition(13)issatisfiedautomatically. droplets. Takingintoaccountrelationbetweenvelocityandpotential v= gradu,wecanfindradialcomponentofvelocity − TheauthorsaregratefultotheRussianFoundationforBasicResearch ∞ µ(n1) µ(n1) µ(n1) forfundingthisworkunderGrantNo.06-02-16027-a. v (r,z) = a cosh z J r . r n 1 h i rf ! rf rf ! n=1 X Height averaged radial velocity, i.e. the same velocity ex- References aminedin[1],canbewrittenas 1. B.Rieger,L.R.vandenDoel,L.J.vanVliet,PhysicalReviewE hf 68,036312(2003). 1 v (r) = v (r,z)dz = 2. R.D.Deegan,O.Bakajin,T.F.Dupont,G.Huber,S.R.Nagel, r r h i hf T.A.Witten,Phys.Rev.E62,756(2000) Z 0 3. B.J.Fischer,Langmuir18,60(2002) 1 ∞ µ(n1) µ(n1) 4. R.Mollaret,K.Sefiane,J.R.E.Christy,D.Veyret,Chem.Eng. ansinh hf J1 r . Res.Design82(A4),471(2004) h r r f f ! f ! n=1 5. H.Hu,R. G. Larson,Langmuir21,3963(2005) X 6. Y.O.Popov,Phys.Rev.E71,036313(2005) Coefficients a can be obtained from (15). For simplicity n 7. L. V. Savina, Crystaloscopical structures of blood serum of wewillassumethatair–liquidinterfaceisflat. healthyandseekhuman(SovyetskayaKuban,Krasnodar,1999) 8. V.N.Shabalin,S.N.Shatokhina,MorphologyofBiologicalFlu- ∂u = ids(Khrizostom,Moscow,2001) ∂z 9. M. Cachile, O. Be´nichou, A. M. Cazabat, Langmuir 18, 7985 (cid:12)z=hf (cid:12) (2002) ∞(cid:12)(cid:12) a µ(n1) sinh µ(n1)h J µ(n1)r =f(r). (18) 10. D.M.Anderson,D.M.Davis,PhysicsofFluids7,248(1995) n f 0 rf rf ! rf ! 11. Y.Y.Tarasevich,Phys.Rev.E71,027301(2005) n=1 X Weintroducenotation f(r)rdr =F(r). Z ∞ µ(n1) F(r) c J r = (19) n 1 r r f ! n=1 X isaFourier–BesselseriesofF(r)/r,where µ(1) n c =a sinh h . (20) n n f r f ! Hence, a = n 2 rf µ(1) n J r F(r)dr. (21) rf2sinh µr(nf1)hf J02 µ(n1) Z0 1 rf ! (cid:16) (cid:17) (cid:16) (cid:17) We need to determine f(r) to find the unknown coeffi- cients. Massconservationleadstotherelation ∂u ∂L(r,t) J(r,t) = . (22) ∂z − ∂t − ρ (cid:12)z=hf (cid:12) (cid:12) (cid:12) Yu.Yu.Tarasevichetal.:Evaporationinducedflowinsidecircularwells 5 1,0 1,0 0,8 0,8 0,6 0,6 hz0 hz0 0,4 0,4 0,2 0,2 0 0,0 0 0,2 0,4 0,6 0,8 1,0 0,0 0,2 0,4 0,6 0,8 1,0 r r 1,0 1,0 0,8 0,8 0,6 0,6 z z h0 h0 0,4 0,4 0,2 0,2 0 0 0 0,2 0,4 0,6 0,8 1,0 0 0,2 0,4 0,6 0,8 1,0 r r 1,0 1,0 0,8 0,8 0,6 0,6 hz0 hz0 0,4 0,4 0,2 0,2 0 0,0 0 0,2 0,4 0,6 0,8 1,0 0,0 0,2 0,4 0,6 0,8 1,0 r r 1,0 1,0 0,8 0,8 0,6 0,6 z z h0 h0 0,4 0,4 0,2 0,2 0 0 0 0,2 0,4 0,6 0,8 1,0 0 0,2 0,4 0,6 0,8 1,0 r r Fig.3.Velocityfieldinsidecircularwellfordifferenevaporativemodes.Theair–liquidinterfaceissupposedtobeflat.Fromtoptobottom(3), (6)withm=5,(8),(10).Leftcolumncorrespondstoratioh /r =0.0618,rightcolumncorrespondstoratioh /r =0.99 f f f f

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.