ScienceoftheTotalEnvironment610–611(2018)1029–1037 ContentslistsavailableatScienceDirect Science of the Total Environment journal homepage: www.elsevier.com/locate/scitotenv Evaluation of water quality during successive severe drought years within Microcystis blooms using fish embryo toxicity tests for the San Francisco Estuary, California TomofumiKurobea,⁎,PeggyW.Lehmanb,M.E.Haquec,TizianaSeddad,SarahLesmeistere,SweeTeha aDepartmentofAnatomy,PhysiologyandCellBiology,SchoolofVeterinaryMedicine,UniversityofCalifornia,Davis,CA95616,USA bCaliforniaDepartmentofFishandWildlife,2109ArchAirportRoad,Stockton,CA95206,USA cDepartmentofZoology,FacultyofBiologicalSciences,JahangirnagarUniversity,Savar,Dhaka1342,Bangladesh dDepartmentofVeterinaryMedicine,UniversityofSassari,ViaVienna2,07100Sassari,Italy eCaliforniaDepartmentofWaterResources,3500IndustrialWay,WestSacramento,CA95691,USA H I G H L I G H T S G R A P H I C A L A B S T R A C T • Californiaexperiencedaseveremultiple yeardroughtin2014and2015. • Waterqualitywastestedbyfishembryo toxicitytestsusingDeltaSmeltandMe- daka. • HighmortalitywasobservedinMedaka embryoinconjunctionwiththegrowth ofAeromonas. • GrowthofAeromonaswasenhancedby Microcystiscelllysate. • Cyanobacterialbloomsmaybeacause of waterquality deteriorationby en- hancingbacterialgrowthinthewild. a r t i c l e i n f o a b s t r a c t Articlehistory: IntheSanFranciscoEstuary,California,thelargestestuaryonthePacificCoastofNorthAmerica,thefrequency Received7April2017 andintensityofdroughtandassociatedcyanobacteriabloomsarepredictedtoincreasewithclimatechange. Receivedinrevisedform28June2017 Toassesstheimpactofwaterqualityconditionsonestuarinefishhealthduringsuccessiveseveredrought Accepted30July2017 yearswithMicrocystisblooms,weperformedfishembryotoxicitytestingwithDeltaSmeltandMedaka.Fishem- Availableonline30August2017 bryoswereexposedtofilteredambientwatercollectedfromtheSanFranciscoEstuaryduringtheMicrocystis bloomseasonin2014and2015,thethirdandfourthmostsevererecordeddroughtyearsinCalifornia.Medaka Editor:HennerHollert embryosincubatedinfilteredambientwatersexhibitedhighmortalityrates(N77%),whichwasmainlydueto Keywords: bacterialgrowth.Medakamortalitydatawasnegativelycorrelatedwithchloride,andpositivelycorrelated Fishembryotoxicitytesting withwatertemperature,totalanddissolvedorganiccarbon,andambientandnetchlorophyllaconcentration. DeltaSmelt DeltaSmeltembryomortalityrateswerelower(b42%)andnoprominentseasonalorgeographictrendwasob- Medaka served.TherewasnosignificantcorrelationbetweentheDeltaSmeltmortalitydataandwaterqualityparame- Bacterialgrowth ters.AeromonaswasthedominantbacteriathatadverselyaffectedMedaka.ThegrowthofAeromonaswas Developmentaldeformity suppressedwhensalinitywasgreaterthanorequalto1psuandresultedinasignificantreductioninmortality Mortality rate.BacterialgrowthtestdemonstratedthatthelysateofMicrocystiscellsenhancedthegrowthofAeromonas. ToxinproductionbyMicrocystisisamajorenvironmentalconcern,however,weconcludethatdissolvedsub- stancesreleasedfromMicrocystisbloomscouldresultinwaterqualitydeteriorationbypromotinggrowthofbac- teria.Furthermore,adistinctivedevelopmentaldeformitywasobservedinMedakaduringthetoxicitytests; ⁎ Correspondingauthorat:1089VeterinaryMedicineDr.,VM3B,Room3202,SchoolofVeterinaryMedicine,UniversityofCalifornia,Davis,CA95616,USA. E-mailaddress:[email protected](T.Kurobe). http://dx.doi.org/10.1016/j.scitotenv.2017.07.267 0048-9697/©2017ElsevierB.V.Allrightsreserved. 1030 T.Kurobeetal./ScienceoftheTotalEnvironment610–611(2018)1029–1037 somiteformationwasinhibitedatthesametimethatcardiogenesisoccurredandthefunctionalheartwasob- servedtobebeating.Theexactcauseoftheembryonicdevelopmentaldeformityisstillunknown. ©2017ElsevierB.V.Allrightsreserved. 1.Introduction ofaquaticspecies.TheStateofCaliforniaDepartmentofWaterRe- sourcesestablishedaresearchprogramtoinvestigatethemagnitude, FortheSanFranciscoEstuary(SFE)inthestateofCalifornia,the timing,distribution,andfoodwebimpactofMicrocystisintheupper largestestuaryalongthePacificCoastofNorthAmerica,climatechange SFE,knownastheSacramentoandSanJoaquinDeltainthesummer wasassociatedwithaseveremultipleyeardroughtthatbeganin2012 of2014and2015,thethirdandfourthdriestyearsonrecordinthe andpersistedthrough2015(Cayanetal.,2009).The2012to2015 SFE.Asapartofthistwo-yearresearchprogram,thisstudyperformed droughtinCaliforniawascharacterizedbybelowaverageprecipitation fishembryotoxicitytestingtodeterminethepotentialimpactofambi- andaboveaverageatmospherictemperature(USEPA,2015).These entwaterqualityconditionsonthefisheryintheSFE.Weaddressedthe atmosphericconditionsalsoproducedadecreaseinfreshwaterinflow hypothesisthatcontaminantsinthewatercolumnoriginatingfromnat- and increase in water temperature, which favored the growth of uraland/oranthropogenicsourcesduringseveredroughtyearsleadto cyanobacteria harmful algal blooms (CyanoHABs), particularly deteriorationinwaterqualitythatimpactthehealthoffishesintheSFE. Microcystisspp.(Lehmanetal.,2017).Because,thefrequencyandinten- sityofdroughtandassociatedcyanobacteriabloomsareexpectedtoin- 2.Materialsandmethods crease with climate change, understanding their impact on fishery productioninSFEiscriticallyimportant(IPCC,2007). 2.1.Sitedescription Microcystisbloomsareamajorwaterqualityprobleminsurfacewa- ters worldwide. Microcystis can produce cyanotoxins, including TheSFEcontains1100kmofwaterways,whichreceivefreshwater microcystins,whichpromotelivercancerinhumansandwildlifefrom fromtheSacramentoRiveronthenorth,theSanJoaquinRiveronthe freshwatertomarineecosystems(Zeguraetal.,2003;International south, and marine water from the San Francisco Bay on the west Agency for Research on Cancer, 2006; Ibelings and Havens, 2008; (Fig.1).Thewaterintheestuaryisusedforagricultureanddrinking Milleretal.,2010).Microcystisalsocontainslipopolysaccharideendo- waterandprovideshabitatforalargesuiteofaquaticorganismsinclud- toxins,whichinhibitiontransportinfishgills,aswellasfishembryode- ingendangeredfishspecies(Nicholsetal.,1986;Brownetal.,2013). velopment(Codd,2000).Microcystishasbeenassociatedwithnegative MicrocystisbloomsoccurinthesummerandfallintheSFE,butthe impactstothehealthandsurvivaloffishexposedtomicrocystinsinthe length of the bloom season was longer during the drought years dietandzooplanktonexposedtobothdissolvedmicrocystinsinthe (Lehman et al., 2017). Microcystis bloomsbegin in the SanJoaquin waterandmicrocystinsinthediet(Geretal.,2009,2010;Acuñaetal., RiverandextendbothnorthwardandwestwardintotheSacramento 2012).Variouswaterqualityconditionsandenvironmentalfactors, RiverandSuisunBaywithflowandtide(Lehmanetal.,2005).The suchaselevatedwatertemperature,highlightintensity,andincreased mainriverchannelsare12mdeepandarelinkedwithshallowwater nutrients enhanced the growth of Microcystis and production of habitatsinfloodedislandsandfloodplainsthatareonlyafewmeters microcystins(Davisetal.,2009;Pineda-Mendozaetal.,2016). deep. Waterqualitydeteriorationduetoanthropogeniccontaminantscan alsobeenhancedduringdroughtconditionsintheSFE.Forexample,re- 2.2.Fieldsampling ducedfreshwaterinflowcanenhancepesticideconcentrationsinsur- facewatersduetoconcentrationeffects,becausepesticideapplication Sampling was conducted bi-weekly at 10 stations during the inagriculturallandsinCaliforniahasbeenconstantorslightlyincreas- Microcystisbloomseasonin2014(betweenJulyandDecember)and ingsince2010(CADPR,2017).Herbicidesarealsosprayedtocontrolin- 2015(betweenAugustandNovember;Fig.1).Watertemperature,spe- vasiveaquaticplants,suchaswaterhyacinth(Eichhorniacrassipes)and cificelectricalconductance,dissolvedoxygenconcentration,pH,and EgeriadensaintheSFE(Santosetal.,2009).Controllingundesirableor- turbidityweremeasuredat0.3mdepthusinganYSI6600sonde(YSI, ganismsiseconomicallyimportant,however,theincreasingconcentra- https://www.ysi.com/).Specificelectricalconductancedatawerecon- tionsofanthropogenicchemicalsduringseveredroughtyearsraises vertedtosalinity.Waterwascollectedforwaterqualitymeasurements environmentalconcernsonhealthofendemicaquaticorganismsin andfishembryotoxicitytestingwithavanDornsamplerat0.3mdepth theSFE,wherefisheryproductionhasdeclinedsince2000(Sommer (subsurfacewatersamples)andimmediatelystoredonice.Waterfor etal.,2007). chloride,ammonium,nitrateplusnitrite,silicateandsolublereactive Toxicitystudiesusingfishembryosofferauniqueperspectiveon phosphorus measurements was filtered through Nucleopore filters ecologicalhealthevaluation.Organismsattheembryonicstagearevul- (0.45μmporesize)andfrozenuntilanalysis(UnitedStatesEnviron- nerabletocontaminantsbecausetheirtissuesandvitalbiologicalsys- mental Protection Agency, 1983; United States Geological Survey, temsaredifferentiatinganddevelopingrapidly.Thusanydisruption 1985;AmericanPublicHealthAssociationetal.,1998).Waterfordis- or impact at the embryonic stage can exert lifelong consequences, solved organic carbon (DOC) analysis was filtered through pre- suchasdeformities(McKim,1977;Embryetal.,2010).Thecumulative combustedGF/Ffilters(poresize0.7μm)andkeptat−20°Cuntilanal- effect of differentiation and development makes embryos an ideal ysis(AmericanPublicHealthAssociationetal.,1998).Unfilteredwater modelforacuteandchronictoxicitystudiesaswell(Belangeretal., samplesfortotalandvolatilesuspendedsolids,totalorganiccarbon 2013;Wagneretal.,2017).Fishembryonictoxicitytestinghasbeen (TOC),andtotalphosphateanalyseswerekeptat4°Cuntilanalysis widelyutilizedtoassessdevelopmentaltoxicityofvarioustypesof (AmericanPublicHealthAssociationetal.,1998). chemicalcompounds,suchascyanotoxins,pesticides,andnanoparticles WatersamplesfordeterminationofMicrocystisbiovolume(N75μm (Berryetal.,2007;Choetal.,2013;Alharbietal.,2016;Wagneretal., sizefraction)andchlorophyllaconcentrationwerealsocollectedfrom 2017). thesurfaceofthewatercolumnbyagentlehandtowofa0.3mdiam- Despiteconcernsabouttheimpactsofdroughtonwaterqualityin eterplanktonnet(75μmmesh)overadistanceof30.5m.Thenet theSFE,littleisknownabouthowCyanoHABandcontaminantsfrom wasfittedwithfloatsthatkepttheringjustbelowthesurface,making anthropogenicsourcesduringdroughtyearscouldimpactthehealth thenettowanintegratedsampleofthe0.3msurfacelayer.Asurface T.Kurobeetal./ScienceoftheTotalEnvironment610–611(2018)1029–1037 1031 Fig.1.MapoftheSanFranciscoEstuaryshowingthelocationofthesamplingstations. nettowwasusedinordertogetarepresentativesampleofthelarge becauseitisahardyspeciesthatiseasytoculture,andimportantly Microcystiscolonies,whichwerewidelydispersedacrossthesurface Medaka is an asynchronous spawner and lays eggs year-round ofthewatercolumnandcanreach50,000μmindiameter.Microcystis underacontrolledlaboratory setting whileDeltaSmelteggsare biovolume and chlorophyll a concentration in the net tow were available only in spring. Compared to other fish models such as correctedtothetotalvolumeofwatersampledusingaGeneralOceanics Zebrafish, Medaka embryos have an extended post-fertilization 2030Rflowmeter. hatchtime,whichisidealforinvestigatingdevelopmentaleffects, SamplesfordeterminationofMicrocystisbiovolumewerepreserved becausemoretimeisallowedfortoxicactiontooccur(Kinoshita withLugol'ssolution.ThebiovolumeofMicrocystiscolonieswascom- etal.,2009;Wagneretal.,2017). puted as an area based diameter using a FlowCAM digital imaging FertilizedDeltaSmelteggswereprovidedbyDr.Tien-ChiehHung flowcytometer(FluidImagingTechnologies;Sierackietal.,1998).Cell attheFishConservationandCultureLaboratoryatUCDavis.Medaka abundanceestimatesbasedonFlowCAMmeasurementswereclosely eggs were collected from in-house mass cultures at the Aquatic correlatedwiththosedeterminedbymicroscopicanalyses(Lehman HealthProgram,UCDavis.Fishembryotoxicity testing wasper- etal.,2017).Replicatewatersamplesforchlorophyllaandphaeophytin formedfollowingaprotocolproposedbyBraunbeckandLammer pigmentanalysiswerefilteredthroughGF/Ffilters(0.7μmporesize), (2006) with some minor modifications. Briefly, fish eggs (b6 h treatedwith1%magnesiumcarbonatesolutiontopreventacidity,and post-fertilization)werecollectedfromaquariums,cleanedinsaltso- frozenuntilanalysis.Pigmentswereextractedin90%acetoneandquan- lutionfor10min(1%NaCl),incubatedinanembryorearingsolution tifiedusingspectrophotometry(AmericanPublicHealthAssociation for30min(1gL−1NaCl,0.030gL−1KCl,0.040gL−1CaCl ·H O, 2 2 etal.,1998). 80 mg L−1 MgSO , and 1 mg L−1 methylene blue in distilled 4 Water samples for fish toxicity testing were transported to the water),andthensortedforviablefisheggs.Eggswereplacedin AquaticHealthProgramat the UniversityofCalifornia (UC),Davis. 96-wellplatesfilledwithtwicefilteredambientwater(oneembryo Watersampleswerefilteredtwice,firstbyglassmicrofiberfilter(GF/ perwell,200μLofambientwaterperwell).Atotalof32eggswere F,poresize:1.5μm,FisherScientific,Waltham,MA),followedbyanad- usedperwatersampleperfishspecies.Forcontrolgroups,embryos ditionalfiltrationwithapolyethersulfonesyringefilter(PESfilter,pore wereculturedinthefieldblank(DIwater)withadditionofminerals size:0.22μm,GeneseeScientific,SanDiego,CA)tocompletelyremove forstabilizingpHandforfishosmoregulation(USEPA,2002).Fish particulateorganicmatterandbacteria.FortoxicitytestingwiththeMe- embryoswerekeptinanenvironmentalchamber(PercivalScientif- dakaembryos,exposuretotheambientwaterwasinitiatedwithin48h ic,Perry,IA)atoptimalgrowthtemperaturesforDeltaSmelt(16°C) ofsamplecollection.ForDeltaSmeltembryotoxicitytesting,filtered andMedaka(25°C)ona16:8hlight:darkcycleduringtheexposure water was stored in a −20 °C freezer, for up to five months, until period.At3dayspost-exposure,embryosthatfailedtodevelopdue DeltaSmelteggswereavailableinJanuary. topooreggqualitywereremovedfromtheplates.Approximately 90%ofthewaterineachwellwaschangedevery48hfor14days 2.3.Fishembryotoxicitytesting oruntilhatching.Allembryoswereobserveddailyandrecorded forsignsofabnormaldevelopment,mortality,andhatchingsuccess. Two fish species were selected for the tests: Delta Smelt Embryoswithoutvisibleheartbeatswereconsidereddead.OnlyMe- (Hypomesus transpacificus) and Medaka (Oryzias latipes). Delta dakafishembryotoxicitytestswereconductedatthepeakofthe SmeltisapelagicfishspeciesendemictotheSFEandisanendan- Microcystis bloom in August and September of 2014. Both Delta geredspeciesthatisconsideredtobeanindicatorofestuarinehealth Smelt and Medaka fish embryo toxicity tests were conducted (Moyleetal.,2016).Medakawasusedasafishmodelforthisstudy throughoutthebloomseasonin2015. 1032 T.Kurobeetal./ScienceoftheTotalEnvironment610–611(2018)1029–1037 2.4.Taxonomicidentificationofbacteria control.Theexperimentwasperformedintriplicatewithatotalvolume of3mLinasterilizedplastictube.Thebacterialdensitywasmeasured Medaka embryos with active bacterial growth (Survey: August byplatecultureassay.Briefly,subsamplesofculturesolutionscontain- 2015;Samplingstations:FT,MI,andSJ;poolof3individualembryos ingbacteria(50μL)werecollectedatthebeginningandendoftheex- perstation)wereusedforidentificationofbacteria.Medakaembryos periment(0and72hpost-inoculation),seriallydilutedby1:10with withbacterialgrowthwerehomogenizedin1×phosphatebufferedsa- 1×PBS,mixedwith60%glycerol(finalconcentration:25%),andthen line(PBS).Thehomogenateswereseriallydilutedwith1×PBS(1:10di- stored in −80 °C. The day after collecting the subsamples at 72 h lutions)andtheninoculatedontoLuria-Bertani(LB)bacteriaculture post-inoculation,thesubsamplesofbacteriaculturesolutionswere platestoobtainisolatedbacterialcolonies.At2dayspost-incubation slowlydefrostedonice,spreadontoLBcultureplates,andthenthe atroomtemperature,bacterialcoloniesonthecultureplateswerevisu- plateswereincubatedatroomtemperatureuntilbacterialcoloniesbe- allyexaminedandthedominantbacterialspeciesaccountingforover camevisible.Thenumberofbacterialcolonieswerecountedandthere- 90%oftheentirebacterialcolonieswassubjectedtotaxonomicidentifi- sultswerereportedasthenumberofcolonyformingunitspermilliliter cationbydeterminingtheDNAsequenceforthe16SribosomalRNA ofculturesolution(cfumL−1). gene(16SrDNA),amarkergenethatiswidelyusedforbacterialidenti- fication(Santamariaetal.,2012;Salmanetal.,2013;Boydetal.,2015). 2.7.Statisticalanalysis Aportionof16SrDNA,approximately1500basepairs,wasamplifiedby apolymerasechainreactionwithagenericprimerset,EUBAandEUBB Spearman'srankcorrelationcoefficientwasusedtocalculatethe withtheoptimizedamplificationcondition(Guntheretal.,2010).The correlationbetweenfishembryomortalityandwaterqualityparame- amplifiedDNAfragmentwasextractedfromagelandsubmittedto ters(PRIMR-esoftwarever.6;http://www.primer-e.com/).Forthebac- theUCDNASequencingFacilityforDNAsequencingreactions(http:// teriagrowthtestswithdifferentconcentrationsofMicrocystislysate, dnaseq.ucdavis.edu/).TheDNAsequencesweresubjectedtoquality meansandstandarderror(S.E.)werecomputed,andthedifferences trimmingusingGeneioussoftwarever.5.0.4,followedbyBLASTNfora among the treatment means were analyzed by one-way ANOVA, DNAsequencesimilaritysearchandtaxonomicidentification(Kearse followedbypost-hoctestbyDunnett'stestusingapackage“multcomp” etal.,2012;http://www.ncbi.nlm.nih.gov/). ver.1.4-6inRsoftwarever.3.3.0(Hothornetal.,2010;RCoreTeam, 2016). 2.5.Fishtoxicitytestingatdifferentsalinitylevels 3.Results AnadditionalfishembryotoxicitytestwasconductedwithMedaka todeterminehowincreasedsalinityaffectsmortality.Theexperimental 3.1.Waterqualitydata solutionswerepreparedbyaddingInstantOceanSeaSaltsolutions(In- stantOcean,Blacksburg,PA)toambientwatercollectedfromstationSJ Waterqualityparametersmeasuredinthisstudyareavailableinour onAugust15th,2015toproducesalinityof1.0,2.5,and5.0psu.Thedi- previouspublication(Lehmanetal.,2017).In2014and2015,theDOC lutionofambientwaterbysaltsolutionwasaconcern,thereforethe concentrationandwatertemperaturesvariedwithtimeandlocation samevolumeoftheInstantOceanSeaSaltsolutionsatdifferentconcen- intheSFE(Fig.2).Amongthe10samplingstations,theDOCconcentra- trations(2mL)wasspikedintotheambientwatertostandardizethe tionandwatertemperaturewereslightlyhigheratRRthantheotherlo- experiment(38mLoftheambientwater,1:20dilution).Theambient cations (Fig. 2). The salinity at the confluence of the rivers was waterfromSJwaschosenforthesalinitytestasitrepresentswater constantly above 1.5 psu (AT and CV; average: 3.7 psu) while the quality in the South Delta where salinity was constantly low othersamplingstations(LowerSanJoaquinRiverandSouthDelta) (b1.0psu)andMedakaexperiencedhighmortality(N90%).Theambi- hadlowersalinitylevelsthroughoutthesurveys(average:0.6psu,max- entwaterspikedwithDIwaterwasusedasacontroltoensurethat imum:0.8psu). highmortalityratewasreproducibleinthisexperiment. 3.2.Mortalityandadverseeffects 2.6.BacteriagrowthtestwithMicrocystislysate Inboth2014and2015,Medakaembryosincubatedintheambient Microcystiscelllysate,afluidcontainingcontentsoflysedMicrocystis waterfromthestationscontainingMicrocystisbloomsstartedtoexhibit cells,waspreparedasfollows:Microcystis(StrainUTEXLB2386,non- microcystinproducer)obtainedfromtheCultureCollectionofAlgaeat theUniversityofTexas(https://utex.org/pages/about-us)wascultured inCBmedia(500mL)withcontinuousaerationfor10daysinatemper- aturecontrolledenvironmentalchamberat25°C(Shiraietal.,1989). The algal cells were harvested by centrifugation at 2500 rpm for 10minatroomtemperature,followedby3rinseswithautoclavedDI water and then resuspension in 30 mL of DI water. The algal cells werelysedbyafreeze-thawmethod;thealgalcellswereplacedin −80°Cfor20minandthenthawedslowlyatroomtemperature.The freeze-thawcyclewasperformed3timesandthealgalcellswerevisu- allyobservedunderalightmicroscope.Thealgallysateinthedissolved fractionwascollectedbycentrifugation(2500rpmatroomtempera- ture),followedbyfiltrationusingPESfilters(poresize:0.22μm,Gene- seeScientific).TheDOCconcentrationwasmeasuredbysubmittinga portionofthealgalcelllysatetotheStableIsotopeFacilityatUniversity ofCalifornia,Davis(http://stableisotopefacility.ucdavis.edu/).Abacteria growthtestwasperformedbyspikingAeromonasintothreedifferent concentrationsoftheMicrocystislysatewithDOCconcentrationsof 27.7,14.7,and8.5mgL−1.TheAeromonasusedfortheexperiment Fig.2.ScatterplotshowingtheDOCconcentrationandwatertemperaturerecordedfor wasisolatedfromtheMedakatoxicitytesting.DIwaterwasusedasa the2014and2015surveys. T.Kurobeetal./ScienceoftheTotalEnvironment610–611(2018)1029–1037 1033 growthofmotilebacteriaonthechorion(theouterenvelopeofthefish 3.4.BacteriagrowthtestwithMicrocystislysate egg)oflivefishembryoswithin5daysofexposure(Fig.3a).Medaka embryoswithbacteriadiedwithaportionoftheeggyolkortheentire ThebacterialgrowthtestdemonstratedthatMicrocystislysateen- embryonicbodyextrudedfromthechorion(Fig.3bandc).In2014,the hancedthegrowthofAeromonas(Fig.4).ThedensitiesofAeromonasin- Medakamortalityratesrangedbetween77.4and96.9%atthe8sam- creasedfrom6.3×104±1.4×102(Mean±S.E.)cfumL−1at0hpost- plingstationslocatedintheLowerSanJoaquinRiverandSouthDelta inoculation(hpi)to1.46×106±1.25×105,2.87×106±1.07×106, (BI,JP,MI,FT,SJ,OR,VCandRR),andbelow10%attheconfluenceof and7.40×105±5.44×105cfumL−1intheLysate1,2,and3treatment theSacramentoandSanJoaquinrivers(ATandCV)forAugustandSep- attheendoftheexperiment(72hpi),respectively.Fewbacterialcolo- tember(Table1a).Thehighmortalityratesofthefishembryoswereob- nieswereobservedinthecontrolgroupat72hpi.Thebacterialdensities servedinconjunctionwiththegrowthofthebacteria,Aeromonas.In inLysate1and2werestatisticallysignificantfromthecontrolgroup. 2015,themortalityratesexceeded90%forallthesamplingstationsin theLowerSanJoaquinRiverandSouthDeltainAugust,andthende- 4.Discussion creasedinthefollowingmonths(Table1b).Growthofbacteriawas stillobservedinembryosincubatedinOctoberandNovembersamples ThehighmortalityratesofMedakaembryoswereassociatedwith fromthesamesamplingstations,howevernotallfishdied.Incontrast, thegrowthofmotilebacteria,Aeromonas.Aeromonasareubiquitously attheconfluenceoftherivers(ATandCV),theMedakamortalityrates presentinnaturalwaterbodiesaswellasfishculturefacilities,and remained10%orlowerthroughout2015.Bothin2014and2015,there cause disease, particularly when the abundance of the bacteria is waslittlemortalityinthecontrolgroupsandgrowthofbacteriawas enhancedbyabioticfactors(e.g.,organicpollutants,watertemperature) barelyobserved(b4%;Table1a,b;Fig.3e).TheMedakapercentmortal- orthefishimmunesystemiscompromisedbystressors(e.g.,inadequate itywasnegativelycorrelatedwithchloride(Pearson'sr=−0.59,Pb waterquality,lowdissolvedoxygen)(JandaandAbbott,2010;White, 0.001),andwaspositivelycorrelatedwithMicrocystisbiovolume(r= 2013).MassmortalityeventscausedbyAeromonashavebeenwidelyre- 0.36,Pb0.05),ambientwatertemperature(r=0.58,Pb0.001),DOC portedinthewild,aswellasculturedfishpopulations(Harikrishnanand (r=0.31,Pb0.05),TOC(r=0.47,Pb0.001),andsurfacechlorophyll Balasundaram,2005).TheadverseeffectsobservedinMedakaembryos, aconcentration(r=0.34,Pb0.05)(Table2). suchasextrusionoftheeggyolkandfishbodyfromthechorion,were TheDeltaSmeltmortalityratesremainedbelow20%inthemajority likelyduetoAeromonassinceathickbacteriallayerwasobservedon ofthewatersamplestested(23/30or77%;Table1c).SimilartoMedaka, theaffectedfishembryos.AdultfishinfectedwithAeromonasexhibited growthofmotilebacteriawasassociatedwithDeltaSmeltmortality. skinulcers,indicatingthatAeromonaserodesfishtissue(Harikrishnan However,theDeltaSmeltmortalityrateswerelowerthanthatforMe- andBalasundaram,2005).Althoughspeculative,giventheeffectsof daka,andrangedbetween3.1%(multiplestationsinSeptemberandNo- Aeromonasontheepidermaltissueofadultfish,itispossiblethatthead- vember 2015) and 41.9% (JP in November 2015; Table 1c). Unlike verseeffectsobservedinthisstudywereduetoAeromonaserodingthe Medaka,nocorrelationwasobservedbetweenDeltaSmeltmortality chorionlayerofthefishembryos. dataandambientwaterqualityparameters(Table2). ItissuspectedthatAeromonasoriginatedfromthefishculturefacil- Inaddition,adevelopmentaldeformity“heart-onlysyndrome”was ityandwereintroducedintothestudyfromtheembryos,becausethe observedduringthetoxicitytestsforMedaka.Theterm,“heart-only ambientwatersampleswerefilteredtwice(1.7and0.22μm)priorto syndrome”,wasusedtodescribethedistinctivesymptomthatoccurred theexposureteststocompletelyremoveanybacteria.AlthoughMeda- wheninhibitionofsomiteformationco-occurredwithcardiogenesis kaeggsweretreatedwithsaltsolutiontolowerbacterialloadspriorto andbeatingofafunctionalheart(Fig.3d).Thefrequencyofthedevelop- thefishembryotoxicitytesting,thecleaningprocessmaybeinsufficient mentaldeformitywaslowatb0.5%ofthefishembryostests.Therewas incompletelyremovingbacteriaonfisheggs.However,becauseMeda- noclearseasonalandgeographictrendintheoccurrenceofthedevel- kaembryosincontrolgroupsshowedlittletonomortality,weconclud- opmentaldeformity,however,oneofthesamplinglocationsinwhich edthatthegrowthofAeromonaswasenhancedbydissolvedsubstances thedevelopmentaldeformityobservedwaslocatedinthemiddleof intheambientwater. largeagriculturalfields(VC).Thedeformitywasnotfoundineither AplausibleexplanationforthegrowthofAeromonasinMedakatests thecontrolgroupsorthefishculturefacilities. isthepresenceofdissolvedsubstances,particularlytheorganiccarbon releasedfromMicrocystiscells(e.g.cellorganelle,lipopolysaccharide, 3.3.SalinitytestwithMedakaembryos orcyanotoxins).TheMedakamortalitydatashowedapositivecorrela- tionwithMicrocystisbiovolume,TOCorDOCconcentration,andother ThereweresignificantreductionsintheMedakamortalityrates(≤ variablesthatarerelatedtoMicrocystisblooms,suchasambientand 13.3%)atsalinity≥1.0psu,comparedwiththesameambientwater net chlorophyll a concentration, and water temperature. We also samplewithoutsaltaddition(96.7%;Table3).Growthofthemotilebac- foundthatthegrowthofAeromonaswassignificantlyenhancedbydis- terialwasnotobservedatsalinity≥2.5psu.Nomortalitywasobserved solvedorganicsubstancesextractedfromMicrocystiscells.Dissolvedor- inthecontrolgroup. ganic carbon is oftentheprimary substrate forbacterial growth in Fig.3.ImagesofMedakaembryoincubatedintheambientwatersamplesshowinggrowthofbacteriaonthechorionasindicatedbytheredarrowhead(a),extrudedeggyolk(b)and wholeembryonicbodyfromthechorion(c),inhibitionofsomiteformationwhileafunctionalheartwasobservedasindicatedbytheyellowarrowhead(d),andnormalMedakaembryo incontrolgroupat8dayspost-fertilization(e).Scalebar:3mm. 1034 T.Kurobeetal./ScienceoftheTotalEnvironment610–611(2018)1029–1037 Table1 SummaryofthefishtoxicitytestingresultsforMedaka2014(a)and2015(b)andDeltaSmelt2015(c). (a) TreatmentNo. Station August September Morta Totalb Mort(%)c Mort Total Mort(%) 1 AT 3 31 9.7 2 32 6.3 2 CV 1 32 3.1 1 31 3.2 3 BI 28 32 87.5 30 31 96.8 4 FT 27 32 84.4 28 32 87.5 5 JP 31 32 96.9 24 31 77.4 6 OR 30 32 93.8 30 31 96.8 7 MI 27 31 87.1 30 31 96.8 8 SJ 30 32 93.8 27 32 84.4 9 RR 28 31 90.3 25 32 78.1 10 VC 29 32 90.6 28 32 87.5 Control Fieldcontrol 0 32 0 1 32 3.1 (b) TreatmentNo. Station August September October November Mort Total Mort(%) Mort Total Mort(%) Mort Total Mort(%) Mort Total Mort(%) 1 AT 3 30 10.0 2 31 6.5 1 32 3.1 1 32 3.1 2 CV 2 32 6.3 1 31 3.2 1 32 3.1 0 32 0 3 BI 31 31 100 2 32 6.3 3 32 9.4 5 31 16.1 4 FT 32 32 100 7 32 21.9 9 32 28.1 5 31 16.1 5 JP 32 32 100 4 31 12.9 3 32 9.4 6 29 20.7 6 OR 32 32 100 3 31 9.7 14 32 43.8 1 27 3.7 7 MI 29 30 96.7 9 31 29.0 10 32 31.3 9 30 30.0 8 SJ 28 28 100 5 31 16.1 14 32 43.8 5 32 15.6 9 RR 27 29 93.1 2 32 6.3 19 32 59.4 9 32 28.1 10 VC 31 31 100 6 32 18.8 11 32 34.4 3 29 10.3 Replicate AT 2 32 6.3 1 31 3.2 3 32 9.4 0 30 0 Control Fieldcontrol 1 31 3.2 0 30 0 1 32 3.1 1 30 3.3 (c) TreatmentNo. Station September October November Morta Totalb Mort(%) Mort Total Mort(%) Mort Total Mort(%) 1 AT 4 32 12.5 4 32 12.5 3 32 9.4 2 CV 3 32 9.4 6 31 19.4 2 32 6.3 3 BI 3 32 9.4 8 32 25.0 1 32 3.1 4 FT 7 31 22.6 12 32 37.5 9 32 28.1 5 JP 4 32 12.5 2 32 6.3 13 31 41.9 6 OR 1 32 3.1 5 32 15.6 1 32 3.1 7 MI 6 32 18.8 6 32 18.8 5 32 15.6 8 SJ 6 32 18.8 7 32 21.9 5 32 15.6 9 RR 11 32 34.4 6 32 18.8 6 32 18.8 10 VC 1 32 3.1 6 32 18.8 4 32 12.5 Replicate AT 3 32 9.4 4 32 12.5 5 32 15.6 Control Fieldcontrol 3 32 9.4 6 32 18.8 5 32 15.6 a Numberofmortalities. b Totalnumberofembryos. c Percentageofmortality. aquaticecosystems(Williamsonetal.,1999).Furthermore,DOCre- dissolvedorganiccarbonconcentrationwassignificantlycorrelated leasedfromphytoplanktonandcyanobacteriaisconsideredtobehigh with the abundance of the cyanobacterium, Aphanizomenon quality carbon for bacterial growth (Eiler et al., 2003; Bade et al., (Spearman'sr=0.33;Pb0.01,Lehmanetal.,2017).Alltheseresults 2007).Guillemetteetal.(2016)alsoreportedthatbacterialcommuni- suggestthatbloomsofMicrocystisandothercyanobacteriaspeciescan tiesprefertoutilizealgalcarboneveninlakesthataredominatedbyter- contributetotheconcentrationoforganiccarboninambientwaters, restrialcarbon. and therefore, will increase the potential growth of bacterial as Bothallochthonousinputsofterrestrialmaterialsandautochtho- CyanoHABsbecomemoreintense. nousinputsbyphytoplankton,benthicalgae,andaquaticmacrophytes Differenceinwatertemperaturemaypotentiallyexplainthehigh allcontributetotheTOCandDOCinaquaticecosystems(Volketal., mortalityratesforMedakacomparedwiththelowmortalityratesfor 2002;Aitkenhead-Petersonetal.,2003;BertilssonandJones,2003; DeltaSmelt.IntheSFE,spawningofwildDeltaSmeltoccursinspring Bade et al., 2007). However, the DOC in the SFE mainly originated whenthewatertemperatureisbetween7and15°C(Bennett,2005). fromphytoplanktonorcyanobacteriaandnotterrestrialorganicmatter Duringtheexposuretests,DeltaSmeltembryosweremaintainedat asdemonstratedbystableisotopicanalysis(Lehmanetal.,2015).In theoptimumtemperatureof16°Cfortheirnormaldevelopment.This 2014,thelargestbiomassofMicrocystiswasobservedsincetheblooms watertemperaturewassignificantlylowerthantheoptimumforthe beganin1999,withmedianchlorophyllaconcentrationreachinglevels growthofAeromonasat28°C(Statneretal.,1988).RoufandRigney thatwere13and9timesgreaterthaninpreviouswetanddryyears,re- (1971)reportedthatthegrowthofAeromonassignificantlydecreased spectively(Lehmanetal.,2017).Inaddition,dissolvedorganicsub- at15°C.Incontrast,Medakatestswereperformedat25°C,whichis stancescouldhavebeenreleasedfromothercyanobacteria.In2014, close to the optimum for Aeromonas growth. Although Aeromonas T.Kurobeetal./ScienceoftheTotalEnvironment610–611(2018)1029–1037 1035 2 MK 0.33 TMaobrlteal3ityofMedakaembryosculturedinambientwateratdifferentsalinitylevels. 3 WT 0.11⁎⁎0.58 1TreatmentNo. SSJtdation bSa0l.i1nity(psu) 2M9orta T3o0talb 9M6o.7rt(%)c 4 DO 0.16⁎−0.27⁎⁎−0.57 234 SSSJJJ 125...050 400 333012 1003.3 Control Fieldcontrol b0.1 0 31 0 5 CL −0.26⁎⁎−0.59⁎−0.270.03 ab NToutmalbneurmofbmeroorftaelmitibesry.os. c Percentageofmortality. 6 Turb −0.04⁎−0.35−0.14−0.07⁎⁎0.66 d AmbientwatercollectedatSJinAugust2015. 7 pH 0.01⁎0.390.12⁎⁎0.39⁎−0.36⁎⁎−0.45 geendroctwehitenhmtahtoedrtwiafflaeittreyernrtetestmuelmptsep.reartautrueruessewdafsonrothtetetswteodfiisnhtshpisesctieusdlyik,tehlyeadfiffefecrt-- ⁎9⁎7 9 WeconsiderthehighMedakamortalityduetobacterialgrowthto 8 NH4 0.25−0.2−0.2⁎0.300.170.13−0.1 bcoenadpitoiotennstaianldlyaismsopcoirattaendtMfaicctroorcyasftfiescbtilnogomthseoinmfipsahctsopfefcuietusriendthroeuSgFhEt, 9 NO3 0.30−0.090.030.060.01−0.02−0.19⁎⁎0.77 p(Aalrotsicauslaaprildyisisnimtha)eafnredsThhwreaatedrfinreSghioadns(.DSopraowsonminagpeotfenAemnseer)icoacncuSrhbaed- 10 SRP 0.310.16⁎0.29−0.12−0.11−0.10−0.10⁎⁎0.60⁎⁎0.93 tnwumeebnelrasteofAyporuilnagndfisAhutghuasttrienmthaeinSianntJhoeaqfrueisnhRwivaeterrarnedg,ipornosdoufctehlearegse- tuary until November (Walburg and Nichols, 1967; Feyrer et al., 11 TP 0.320.09⁎0.26−0.09−0.07−0.08−0.13⁎⁎0.67⁎⁎0.94⁎⁎0.97 2im00p9a)c.tDedurbinygptahtehsoegmenoincthbas,cetemribarysouschanadseAaerrlyomlifoensatsa.gAemfisohngcotuhled1b0e 12 TOC 0.21⁎⁎0.47⁎⁎0.45⁎−0.24⁎⁎−0.56⁎⁎−0.450.050.22⁎⁎0.52⁎⁎0.68⁎⁎0.67 saoanthmdepwrlsianttaegtrisottenamsti(opFneirsga.tm2u)ro.enTsihtaoetrRweRdarwimneertehriwrsealsattteuirvdetyel,ymthhpieegrhDaetOruCtrhecason(nNtch2eo5nst°erCai)ntiaotnhndes 13 DOC 0.23⁎0.31⁎⁎0.35−0.15⁎⁎−0.48⁎⁎−0.410.08⁎0.26⁎⁎0.540.67⁎⁎0.67⁎⁎0.83 oythefeaAreDsr.OoCmCuorcrnoeannsctaleynntdthraaentrieyoinosstnh(oeNro4fb.fi5accimtaelgrdiaLal−tas1pr)eemcpioeigrsthdintughribanvigoedtehivneehsraseinvtyeceraednddgrraoobuwugnthh-t 14 DON 0.20−0.120.05−0.070.08−0.03−0.03⁎0.25⁎0.36⁎⁎0.33⁎0.36⁎0.27⁎0.27 dthaencdeoomfibnaacntetrsipaeicniesusrifnacfieshweatmerbirnyothteoxSiFcEit.yAetreosmtinogn,ahsowwaesvfoeru,ntdhitsorbee- sultmaynotrepresentbacterialassemblagesinthefields.Furtherre- 15 TSS −0.16⁎⁎−0.55⁎−0.290.01⁎⁎0.79⁎⁎0.70⁎−0.30⁎0.240.04−0.12−0.08⁎⁎−0.59⁎⁎−0.510.12 sDeOaCrcohriigsinsatrtionnggflryomwaCryraannoteHdABtosoinnvtehsetiggraotwetthheofcpoantthroibgeuntiiocnbaocftetrhiea inthefield. meters. 16 TDS −0.25⁎⁎−0.58⁎−0.260.04⁎⁎0.99⁎⁎0.66⁎−0.360.170.02−0.10−0.06⁎⁎−0.56⁎⁎−0.480.08⁎⁎0.79 bryoTsh,e“hfienadritn-gonolfyasydnevderolompem”,eanltsaoldsuepfopromrtistythoebsimerpveodrtainncMeeodfaiknaveesmti-- a qualitypar 17 Chl-a,sub 0.170.21−0.050.11⁎⁎−0.51⁎−0.400.09−0.100.080.110.11⁎⁎0.50⁎0.32⁎0.28⁎⁎−0.48⁎⁎−0.51 gDPlaeetvcitneolgonpnemmataue,nrCataalllaotntohdxriiaxcn,itatihnersdoaFpsiosscoghceeinarietcelldcaoiwnntictalhumdcieynatanhneottsaorixnreintshsteofrfaoemmmbObiersyncoitlnlwaitcaotdreiear-., er velopmentatmid-blastulastage,developmentofpericardialperitoneal andwat 18 Chl-a 0.04⁎0.34−0.020.07⁎−0.35−0.21⁎0.28−0.18−0.110.00−0.05⁎0.230.180.09⁎−0.28⁎−0.35⁎⁎0.68 a at b d u ortality 19 Phae,s −0.020.060.21−0.220.030.17−0.19⁎0.39⁎⁎0.48⁎⁎0.59⁎⁎0.62⁎⁎0.44⁎0.32⁎0.360.240.040.200.05 m fiensh 20 MIC 0.10⁎0.36⁎0.28⁎−0.36−0.10−0.020.13−0.21−0.18−0.05−0.070.210.19⁎0.290.02−0.110.22⁎⁎0.420.09 e w mputedbet (DS)(MK)(WT)(DO)(CL)(Turb)(pH)(NH4)(NO3)(SRP)(TP)(TOC)(DOC)(DON)(TSS)(TDS)(Chl-a,sub)(Chl-a)(Phae,sub)(MIC) 5. 2fimancorrelationcoefcientsco DeltaSmeltmortalityMedakamortalityWatertemperatureDissolvedoxygenChlorideTurbiditypHAmmoniumNitrateSolublereactivephosphorusTotalphosphorusTotalorganiccarbonDissolvedorganiccarbonDissolvedorganicnitrogenTotalsuspendedsolidsTotaldissolvedsolidsSub-surfacechlorophyllaSurfacechlorophyllaSub-surfacephaeophytinMicrocystisbiovolume bumbersinboldindicateP0.0b0.05.b0.001. sFoiglu.4ti.oBna)rpculolttusrheodwwinigthabduifnfdearenncetocofAnecreonmtroantaiosnssp.o(fcoMloicnryocfoyrsmtisinlgysuanteit:mLyL−sa1teof1cu(lDtuOrCe TableSpear 1234567891011121314151617181920 Then⁎P⁎⁎P caobnuncednatnrcaetiwona:sm27e.a7sumregdLa−t17)2,h2p(o1s4t.-7inmocgulaLt−io1n),.(a*nPdb30.0(85.,5**mPbg0L.−0011).).Thebacterial 1036 T.Kurobeetal./ScienceoftheTotalEnvironment610–611(2018)1029–1037 edemas,andinhibitionoforganogenesis(Berryetal.,2007).Similarly, Belanger,S.E.,Rawlings,J.M.,Carr,G.J.,2013.Useoffishembryotoxicitytestsforthepre- dictionofacutefishtoxicitytochemicals.Environ.Toxicol.Chem.32:1768–1783. anthropogeniccontaminantsalsocausedmorphologicalabnormalities http://dx.doi.org/10.1002/etc.2244. infishembryos.Pamanjietal.(2015)reportedthatZebrafishexposed Bennett,W.A.,2005.CriticalAssessmentoftheDeltaSmeltPopulationintheSan toprofenofos,anorganophosphateinsecticide,exhibitedvariousmor- FranciscoEstuary,California. 3.SanFranciscoEstuaryandWatershed, p.2. Berry,J.P.,Gantar,M.,Gibbs,P.D.,Schmale,M.C.,2007.Thezebrafish(Daniorerio)embryo phologicaldeformitiesincludingyolksacedemaandmalformationsin asamodelsystemforidentificationandcharacterizationofdevelopmentaltoxins thetailandhead.Thecauseofthedevelopmentaldeformity,“heart- frommarineandfreshwatermicroalgae.Comp.Biochem.Physiol.,PartC:Toxicol. onlysyndrome”isstillunknown,however,associationofnaturaloran- Pharmacol.145,61–72. thropogeniccontaminantsissuspected.Furtherinvestigationiswar- Bertilsson,S.,Jones,J.B.,2003.Supplyofdissolvedorganicmattertoaquaticecosys- tems:autochthonoussources.In:Findlay,S.E.G.,Sinsabaugh,R.L.(Eds.),Aquatic ranted to identify the cause of the deformity and assess risk of Ecosystems:InteractivityofDissolvedOrganicMatter.AcademicPress,San contaminantsintheaquaticenvironment. Diego,pp.3–24. Boyd,E.F.,Carpenter,M.R.,Chowdhury,N.,Cohen,A.L.,Haines-Menges,B.L.,Kalburge,S.S., Kingston,J.J.,Lubin,J.B.,Ongagna-Yhombi,S.Y.,Whitaker,W.B.,2015.Post-genomic analysis of members of the family Vibrionaceae. Microbiol. Spectr. 3. http:// 5.Conclusion dx.doi.org/10.1128/microbiolspec.VE-0009-2014. Braunbeck,T.,Lammer,E.,2006.BackgroundPaperonFishEmbryoToxicityAssays(UBA In this study we found that dissolved substances released from ContractNo.20385122). Brown,L.R.,Bennett,W.A.,Wagner,R.W.,Morgan-King,T.,Knowles,N.,Feyrer,F., MicrocystispromotedthegrowthofAeromonas,whichresultedinhigh Schoellhamer,D.H.,Stacey,M.T.,Dettinger,M.,2013.Implicationsforfuturesurvival mortality rates in Medaka embryos. The increased frequency of ofDeltaSmeltfromfourclimatechangescenariosfortheSacramento–SanJoaquin MicrocystisandotherCyanoHABspeciesareaglobalconcerndueto Delta,California.Estuar.Coast.http://dx.doi.org/10.1007/s12237-013-9585-4. theimpactofcyanotoxins,however,ourfindingssuggestthatintense California Department of Pesticide Regulation, 2017. http://www.cdpr.ca.gov/ dprdatabase.htm,Accesseddate:5April2017. algalbloomsmayalsobeanothercauseofwaterqualitydeterioration Cayan,D.,Tyree,M.,Dettinger,M.,Hidalgo,M.,Das,H.T.,Maurer,P.E.,Bromirski,P., byenhancingbacterialgrowthinaquaticenvironments.Elevationof Graham,N.,Flick,R.,2009.ClimateChangeScenariosandSeaLevelRiseEstimates fortheCalifornia2008ClimateChangeScenariosAssessment.CEC-500-2009-014- water temperature and dissolved organic matter from intense DCaliforniaClimateChangeCenter. CyanoHABsduringdroughtcanprovidefavorableconditionforbacteria, Cho,J.G.,Kim,K.T.,Ryu,T.K.,Lee,J.W.,Kim,J.E.,Kim,J.,Lee,B.C.,Jo,E.H.,Yoon,J.,Eom,I.C., whichcannegativelyaffectindigenousfishspeciesintheaquaticeco- Choi,K.,Kim,P.,2013.StepwiseembryonictoxicityofsilvernanoparticlesonOryzias system.Alltheexperimentswerecarriedoutunderacontrolledlabora- latipes.Biomed.Res.Int.http://dx.doi.org/10.1155/2013/494671. Codd,G.A.,2000.Cyanobacterialtoxins,theperceptionofwaterquality,andtheprioriti- torysetting,thereforeourknowledgeonimpactsofdroughtonthe zationofeutrophicationcontrol.Ecol.Eng.16,51–60. aquaticenvironmentisstilllimited.Particularly,dissolvedsubstances Davis,T.W.,Berry,D.L.,Boyer,G.L.,Gobler,C.J.,2009.Theeffectsoftemperatureandnutri- releasedfromMicrocystismaypromoteotherbacterialspeciesinthe entsonthegrowthanddynamicsoftoxicandnon-toxicstrainsofMicrocystisduring cyanobacteriablooms.HarmfulAlgae8,715–725. field.Furtherinvestigationiswarrantedtoinvestigateabundanceand Eiler,A.,Langenheder,S.,Bertilsson,S.,Tranvik,L.J.,2003.Heterotrophicbacterialgrowth biodiversityofbacteriaintheSFE,andtoassesseffectsofbacteriaon efficiencyandcommunitystructureatdifferentnaturalorganiccarbonconcentra- DeltaSmeltorothernativefishspeciesunderenvironmentallyrelevant tions.Appl.Environ.Microbiol.69,3701–3709. Embry,M.R.,Belanger,S.E.,Braunbeck,T.A.,Galay-Burgos,M.,Halder,M.,Hinton,D.E., condition.Furthermore,contaminantsthatareresponsibleforthead- Léonard,M.A.,Lillicrap,A.,Norberg-King,T.,Whale,G.,2010.Thefishembryotoxicity verseeffects,“heart-onlysyndrome”observedinthisstudyneedtobe testasananimalalternativemethodinhazardandriskassessmentandscientificre- identifiedforprotectionofecologicalandenvironmentalhealth. search.Aquat.Toxicol.97:79–87.http://dx.doi.org/10.1016/j.aquatox.2009.12.008. Feyrer,F.,Sommer,T.,Slater,S.B.,2009.Oldschoolvs.newschool:statusofthreadfin shad(Dorosomapetenense)fivedecadesafteritsintroductiontotheSacramento– SanJoaquinDelta.SanFranc.Estuar.Water.Sci.7(1). Acknowledgments Ger,K.A.,Teh,S.J.,Goldman,C.R.,2009.Microcystin-LRtoxicityondominantcopepods EurytemoraaffinisandPseudodiaptomusforbesioftheupperSanFranciscoEstuary. Sci.TotalEnviron.407,4852–4857. FundingforthestudywasprovidedbytheCaliforniaDepartmentof Ger,K.A.,Teh,S.J.,Baxa,D.V.,Lesmeister,S.,Goldman,C.R.,2010.Theeffectsofdietary WaterResourcesandStateOps–Program10–GeneralFundSpecial MicrocystisaeruginosaandmicrocystinonthecopepodsoftheupperSanFranciscoEs- LegislationAB91/92(Fundnumber0001S72015),UCDaviscontract# tuary.Freshw.Biol.55:1548–1559.http://dx.doi.org/10.1111/j.1365-2427.2009.02367.x. Guillemette,F.,Leigh,M.S.,DelGiorgio,P.A.,2016.Selectiveconsumptionandmetabolic 46000011155and4600011638(programmanager:KarenGehrts)and allocationofterrestrialandalgalcarbondetermineallochthonyinlakebacteria. by California Department of Fish and Wildlife Drought Response ISMEJ.10:1373–1382.http://dx.doi.org/10.1038/ismej.2015.215. Program, UC Davis contract# E1183004 (Program manager: Chad Gunther,N.W.,Almond,J.,Yan,X.,Needleman,D.S.,2010.GyrBversus16srRNAsequenc- Dibble).WearegratefultoDr.Tien-ChiehHungatUCDavisforprovid- ingfortheidentificationofCampylobacterjejuni,Campylobactercoli,andCampylobac- terlari.J.Nucl.AcidInvest.2,e7. ingfertilizedDeltaSmelteggs.TheauthorsalsothankK.Gehrts,M. Harikrishnan,R.,Balasundaram,C.,2005.ModerntrendsinAeromonashydrophiladisease Dempsey,E.Santos,N.vanArk,S.Waller,T.Hollingshead,R.Elkins,H. management with fish. Rev. Fish. Sci. 13:281–320. http://dx.doi.org/10.1080/ Fuller,M.Legro,A.Lopez,M.Martinez,A.Munguia,M.Ogaz,E.Jeu,L. 10641260500320845. Smith,andR.MulliganattheCADWRforfield,laboratory,andadmin- Hothorn,T.,Bretz,F.,Westfall,P.,Heiberger,R.M.,Schuetzenmeister,A.,Scheibe,S.,2010. MultipleComparisonsUsingR.CRCPress. istrativeassistance,andA.Mulcahy,C.Lam,C.Chan,andE.BerryatUC Ibelings,B.W.,Havens,K.E.,2008.Cyanobacterialtoxins,aqualitativemeta-analysisof Davisforsupportingfishtoxicitytesting. concentrations, dosage and effects in freshwater estuarine and marine biota. Cyanobacterialharmfulalgalblooms,stateofthescienceandresearchneeds.Adv. Exp.Med.Biol.619,675–732. References InternationalAgencyforResearchonCancer,2006.Carcinogenicityofnitrate,nitriteand cyanobacterialpeptidetoxins.LancetOncol.7,628–629. Acuña,S.,Baxa,D.V.,Teh,S.J.,2012.Sublethaldietaryeffectsofmicrocystinproducing InternationalPanelonClimateChange(IPCC),2007.ClimateChange2007,TheScientific Microcystisonthreadfinshad,Dorosomapetenense.Toxicon60,1191–1202. Basis.ContributionofWorkingGroupItotheFourthAssessmentReportoftheInter- Aitkenhead-Peterson,J.A.,McDowell,W.H.,Neff,J.C.,2003.Sources,production,andreg- governmentalPanelonClimateChange.CambridgeUniversityPress,NewYork,NY, ulationofallo-chthonousdissolvedorganicmatterinputstosurfacewaters.In: USA. Findlay,S.E.G.,Sinsabaugh,R.L.(Eds.),AquaticEcosystems:InteractivityofDissolved Janda,J.M.,Abbott,S.L.,2010.ThegenusAeromonas:taxonomy,pathogenicity,andinfec- OrganicMatter.AcademicPress,SanDiego,pp.25–70. tion.Clin.Microbiol.Rev.23:35–73.http://dx.doi.org/10.1128/CMR.00039-09. Alharbi,H.A.,Alcorn,J.,Al-Mousa,A.,Giesy,J.P.,Wiseman,S.B.,2016.Toxicokineticsand Kearse,M.,Moir,R.,Wilson,A.,Stones-Havas,S.,Cheung,M.,Sturrock,S.,Buxton,S., toxicodynamicsofchlorpyrifosisalteredinembryosofJapanesemedakaexposed Cooper,A.,Markowitz,S.,Duran,C.,Thierer,T.,Ashton,B.,Mentjies,P.,Drummond, tooilsandsprocess-affectedwater:evidenceforinhibitionofP-glycoprotein. A., 2012. Geneious basic: an integrated and extendable desktop software J.Appl.Toxicol.http://dx.doi.org/10.1002/jat.3397. platformfortheorganizationandanalysisofsequencedata.Bioinformatics28, AmericanPublicHealthAssociation,AmericanWaterWorksAssociation,WaterEnviron- 1647–1649. mentAssociation,1998.StandardMethodsfortheExaminationofWaterandWaste- Kinoshita,M.,Murata,K.,Naruse,K.,Tanaka,M.,2009.Medaka:Biology,Management, water.20thedition.AmericanPublicHealthAssociation,Washington,D.C.,USA. andExperimentalProtocols.FirstEdition.Wiley-Blackwell.Ames,Iowa. Bade,D.L.,Carpenter,S.R.,Cole,J.J.,Pace,M.L.,Kritzberg,E.,VandeBogert,M.C.,Cory,R.M., Lehman,P.W.,Boyer,G.,Hall,C.,Waller,S.,Gehrts,K.,2005.Distributionandtoxicityofa McKnight,D.M.,2007.Sourcesandfatesofdissolvedorganiccarboninlakesasdeter- newcolonialMicrocystisaeruginosabloomintheSanFranciscoBayEstuary,Califor- minedbywhole-lakecarbonisotopeadditions.Biogeochemistry84,115–129. nia.Hydrobiologia541,87–90. T.Kurobeetal./ScienceoftheTotalEnvironment610–611(2018)1029–1037 1037 Lehman,P.W.,Kendall,C.,Guerin,M.A.,Young,M.B.,Silva,S.R.,Boyer,G.L.,Teh,S.J.,2015. Shirai,M.,Matumaru,K.,Ohotake,A.,Takamura,Y.,Aida,T.,Nakano,M.,1989.Develop- CharacterizationoftheMicrocystisbloomanditsnitrogensupplyinSanFranciscoEs- mentofasolidmediumforgrowthandisolationofaxenicMicrocystisstrains tuaryusingstableisotopes.Estuar.Coasts38,165–178. (Cyanobacteria).Appl.Environ.Microbiol.55,2569–2571. Lehman,P.W.,Kurobe,T.,Lesmeister,S.,Mizel,M.,Baxa,D.V.,Tung,A.,Teh,S.J.,2017.Im- Sieracki,C.K.,Sieracki,M.E.,Yentsch,C.S.,1998.Animaging-in-flowsystemforautomated pactofthe2014severedroughtontheMicrocystisbloominSanFranciscoEstuary. analysisofmarinemicroplankton.Mar.Ecol.Prog.Ser.168,285–296. HarmfulAlgae63,94–108. Sommer,T.,Armor,C.,Baxter,R.,Breuer,R.,Brown,L.,Chotkowski,M.,Culberson,S., McKim,J.,1977.Evaluationoftestswithearlylifestagesoffishforpredictinglong-term Feyrer,F.,Gingras,M.,Herbold,B.,Kimmerer,W.,Mueller-Solger,A.,Nobriga,M., toxicity.J.Fish.Res.BoardCan.34,1148–1154. Souza,K.,2007.TheCollapseofPelagicFishesintheUpperSanFranciscoEstuary Miller,M.A.,Kudela,R.M.,Mekebri,A.,Crane,D.,Oates,S.C.,Tinker,M.T.,Staedler,M., Fish. 32pp.270–277. Miller,W.A.,Toy-Choutka,S.,Dominik,C.,Hardin,D.,Langlois,G.,Murray,M., Statner,B.,Jones,M.J.,George,W.L.,1988.Effectofincubationtemperatureongrowthand Ward,K.,Jessup,D.A.,2010.Evidenceforanovelmarineharmfulalgalbloom, solubleproteinprofilesofmotileAeromonasstrains.J.Clin.Microbiol.26,392–393. cyanotoxin(microcystin)transferfromlandtoseaotters.PLoSOne5,e12576. UnitedStatesEnvironmentalProtectionAgency(USEPA),1983.MethodsforChemical Moyle,P.B.,Brown,L.R.,Durand,J.R.,Hobbs,J.A.,2016.DeltaSmelt:lifehistoryanddecline AnalysisofWaterandWastes.TechnicalReportEPA-600/4-79-020.UnitedStatesEn- ofaonce-abundantspeciesintheSanFranciscoEstuary.SanFranc.Estuar.Water.Sci. vironmentalProtectionAgency,Washington,DC,USA. 14(2). UnitedStatesEnvironmentalProtectionAgency(USEPA),2002.MethodforMeasuring Nichols,F.H.,Cloern,J.E.,Luoma,S.N.,Peterson,D.H.,1986.Themodificationofanestuary. theAcuteToxicityofEffluentsandReceivingWaterstoFreshwaterandMarineOr- Science231,567–573. ganisms.Fifthedition.EPA-821-R-02-012. Pamanji,R.,Yashwanth,B.,Bethu,M.S.,Leelavathi,S.,Ravinder,K.,Rao,J.V.,2015.Toxicity United Stages Environmental Protection Agency (USEPA), 2015. Saving water in effectsofprofenofosonembryonicandlarvaldevelopmentofZebrafish(Daniorerio). CaliforniaEPA-832-F-15-006. Environ.Toxicol.Pharmacol.39:887–897.http://dx.doi.org/10.1016/j.etap.2015.02.020. UnitedStatesGeologicalSurvey,1985.MethodsforDeterminationofInorganicSub- Pineda-Mendoza,R.M.,Zúñiga,G.,Martínez-Jerónimo,F.,2016.Microcystinproductionin stancesinWaterandFluvialSediments.OpenFileReportpp.85–495. MicrocystisAeruginosa:effectoftypeofstrain,environmentalfactors,nutrientcon- Volk,C.,Wood,L.,Johnson,B.,Robinson,J.,Zhu,H.W.,Kaplan,L.,2002.Monitoringdis- centrations,andN:PratioonmcyAgeneexpression.Aquat.Ecol.50:103.http:// solvedorganiccarboninsurfaceanddrinkingwaters.J.Environ.Monit.4,43–47. dx.doi.org/10.1007/s10452-015-9559-7. Wagner,S.D.,Kurobe,T.,Hammock,B.G.,Lam,C.H.,Wu,G.,Vasylieva,N.,Gee,S.J., RCoreTeam,2016.R:Alanguageandenvironmentforstatisticalcomputing.RFounda- Hammock,B.D.,Teh,S.J.,2017.DevelopmentaleffectsoffipronilonJapaneseMedaka tionforStatisticalComputing.Vienna,Austria.https://www.R-project.org,Accessed (Oryziaslatipes)embryos.Chemosphere166:511–520.http://dx.doi.org/10.1016/ date:5April2017. j.chemosphere.2016.09.069. Rouf,M.A.,Rigney,M.M.,1971.Growthtemperaturesandtemperaturecharacteristicsof Walburg,C.,Nichols,P.R.,1967.BiologyandManagementoftheAmericanShadandSta- Aeromonas.Appl.Microbiol.22,503–506. tusoftheFisheries.AtlanticCoastoftheUnitedStates.U.S.FishWildl.Serv.,Spec.Sci. Salman,V.,Bailey,J.V.,Teske,A.,2013.Phylogeneticandmorphologiccomplexityofgiant Rept.Fish.Washington,D.C. sulphur bacteria. Antonie Van Leeuwenhoek 104:169–186. http://dx.doi.org/ White,P.,2013.Environmentalconsequencesofpoorfeedqualityandfeedmanagement. 10.1007/s10482-013-9952-y. In:Hasan,M.R.,New,M.B.(Eds.),On-farmFeedingandFeedManagementinAqua- Santamaria,M.,Fosso,B.,Consiglio,A.,DeCaro,G.,Grillo,G.,Licciulli,F.,Liuni,S.,Marzano, culture. FAO Fisheries and Aquaculture Technical Paper No. 583. FAO, Rome, M.,Alonso-Alemany,D.,Valiente,G.,Pesole,G.,2012.Referencedatabasesfortaxo- pp.553–564. nomic assignment in metagenomics. Brief. Bioinform. 13:682–695. http:// Williamson,C.E.,Morris,D.P.,Pace,M.L.,Olson,O.G.,1999.Dissolvedorganiccarbonand dx.doi.org/10.1093/bib/bbs036. nutrientsasregulatorsoflakeecosystems:resurrectionofamoreintegratedpara- Santos,M.J.,Khanna,S.,Hestir,E.L.,Ustin,S.L.,2009.UseofHyperspectralremotesensing digm.Limnol.Oceanogr.44,795–803. toevaluateefficacyofaquaticplantmanagementintheSacramento-SanJoaquin Zegura,B.,Sedmak,B.,Filipi,M.,2003.Microcystin-LRinducesoxidativeDNAdamagein RiverDelta,California.InvasivePlantSci.Manag.2,216–229. humanhepatomacelllineHepG2.Toxicon41,41–48.