ebook img

Evaluation of water quality during successive severe drought years within Microcystis blooms using fish embryo toxicity tests for the San Francisco Estuary, California PDF

2018·0.67 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Evaluation of water quality during successive severe drought years within Microcystis blooms using fish embryo toxicity tests for the San Francisco Estuary, California

ScienceoftheTotalEnvironment610–611(2018)1029–1037 ContentslistsavailableatScienceDirect Science of the Total Environment journal homepage: www.elsevier.com/locate/scitotenv Evaluation of water quality during successive severe drought years within Microcystis blooms using fish embryo toxicity tests for the San Francisco Estuary, California TomofumiKurobea,⁎,PeggyW.Lehmanb,M.E.Haquec,TizianaSeddad,SarahLesmeistere,SweeTeha aDepartmentofAnatomy,PhysiologyandCellBiology,SchoolofVeterinaryMedicine,UniversityofCalifornia,Davis,CA95616,USA bCaliforniaDepartmentofFishandWildlife,2109ArchAirportRoad,Stockton,CA95206,USA cDepartmentofZoology,FacultyofBiologicalSciences,JahangirnagarUniversity,Savar,Dhaka1342,Bangladesh dDepartmentofVeterinaryMedicine,UniversityofSassari,ViaVienna2,07100Sassari,Italy eCaliforniaDepartmentofWaterResources,3500IndustrialWay,WestSacramento,CA95691,USA H I G H L I G H T S G R A P H I C A L A B S T R A C T • Californiaexperiencedaseveremultiple yeardroughtin2014and2015. • Waterqualitywastestedbyfishembryo toxicitytestsusingDeltaSmeltandMe- daka. • HighmortalitywasobservedinMedaka embryoinconjunctionwiththegrowth ofAeromonas. • GrowthofAeromonaswasenhancedby Microcystiscelllysate. • Cyanobacterialbloomsmaybeacause of waterquality deteriorationby en- hancingbacterialgrowthinthewild. a r t i c l e i n f o a b s t r a c t Articlehistory: IntheSanFranciscoEstuary,California,thelargestestuaryonthePacificCoastofNorthAmerica,thefrequency Received7April2017 andintensityofdroughtandassociatedcyanobacteriabloomsarepredictedtoincreasewithclimatechange. Receivedinrevisedform28June2017 Toassesstheimpactofwaterqualityconditionsonestuarinefishhealthduringsuccessiveseveredrought Accepted30July2017 yearswithMicrocystisblooms,weperformedfishembryotoxicitytestingwithDeltaSmeltandMedaka.Fishem- Availableonline30August2017 bryoswereexposedtofilteredambientwatercollectedfromtheSanFranciscoEstuaryduringtheMicrocystis bloomseasonin2014and2015,thethirdandfourthmostsevererecordeddroughtyearsinCalifornia.Medaka Editor:HennerHollert embryosincubatedinfilteredambientwatersexhibitedhighmortalityrates(N77%),whichwasmainlydueto Keywords: bacterialgrowth.Medakamortalitydatawasnegativelycorrelatedwithchloride,andpositivelycorrelated Fishembryotoxicitytesting withwatertemperature,totalanddissolvedorganiccarbon,andambientandnetchlorophyllaconcentration. DeltaSmelt DeltaSmeltembryomortalityrateswerelower(b42%)andnoprominentseasonalorgeographictrendwasob- Medaka served.TherewasnosignificantcorrelationbetweentheDeltaSmeltmortalitydataandwaterqualityparame- Bacterialgrowth ters.AeromonaswasthedominantbacteriathatadverselyaffectedMedaka.ThegrowthofAeromonaswas Developmentaldeformity suppressedwhensalinitywasgreaterthanorequalto1psuandresultedinasignificantreductioninmortality Mortality rate.BacterialgrowthtestdemonstratedthatthelysateofMicrocystiscellsenhancedthegrowthofAeromonas. ToxinproductionbyMicrocystisisamajorenvironmentalconcern,however,weconcludethatdissolvedsub- stancesreleasedfromMicrocystisbloomscouldresultinwaterqualitydeteriorationbypromotinggrowthofbac- teria.Furthermore,adistinctivedevelopmentaldeformitywasobservedinMedakaduringthetoxicitytests; ⁎ Correspondingauthorat:1089VeterinaryMedicineDr.,VM3B,Room3202,SchoolofVeterinaryMedicine,UniversityofCalifornia,Davis,CA95616,USA. E-mailaddress:[email protected](T.Kurobe). http://dx.doi.org/10.1016/j.scitotenv.2017.07.267 0048-9697/©2017ElsevierB.V.Allrightsreserved. 1030 T.Kurobeetal./ScienceoftheTotalEnvironment610–611(2018)1029–1037 somiteformationwasinhibitedatthesametimethatcardiogenesisoccurredandthefunctionalheartwasob- servedtobebeating.Theexactcauseoftheembryonicdevelopmentaldeformityisstillunknown. ©2017ElsevierB.V.Allrightsreserved. 1.Introduction ofaquaticspecies.TheStateofCaliforniaDepartmentofWaterRe- sourcesestablishedaresearchprogramtoinvestigatethemagnitude, FortheSanFranciscoEstuary(SFE)inthestateofCalifornia,the timing,distribution,andfoodwebimpactofMicrocystisintheupper largestestuaryalongthePacificCoastofNorthAmerica,climatechange SFE,knownastheSacramentoandSanJoaquinDeltainthesummer wasassociatedwithaseveremultipleyeardroughtthatbeganin2012 of2014and2015,thethirdandfourthdriestyearsonrecordinthe andpersistedthrough2015(Cayanetal.,2009).The2012to2015 SFE.Asapartofthistwo-yearresearchprogram,thisstudyperformed droughtinCaliforniawascharacterizedbybelowaverageprecipitation fishembryotoxicitytestingtodeterminethepotentialimpactofambi- andaboveaverageatmospherictemperature(USEPA,2015).These entwaterqualityconditionsonthefisheryintheSFE.Weaddressedthe atmosphericconditionsalsoproducedadecreaseinfreshwaterinflow hypothesisthatcontaminantsinthewatercolumnoriginatingfromnat- and increase in water temperature, which favored the growth of uraland/oranthropogenicsourcesduringseveredroughtyearsleadto cyanobacteria harmful algal blooms (CyanoHABs), particularly deteriorationinwaterqualitythatimpactthehealthoffishesintheSFE. Microcystisspp.(Lehmanetal.,2017).Because,thefrequencyandinten- sityofdroughtandassociatedcyanobacteriabloomsareexpectedtoin- 2.Materialsandmethods crease with climate change, understanding their impact on fishery productioninSFEiscriticallyimportant(IPCC,2007). 2.1.Sitedescription Microcystisbloomsareamajorwaterqualityprobleminsurfacewa- ters worldwide. Microcystis can produce cyanotoxins, including TheSFEcontains1100kmofwaterways,whichreceivefreshwater microcystins,whichpromotelivercancerinhumansandwildlifefrom fromtheSacramentoRiveronthenorth,theSanJoaquinRiveronthe freshwatertomarineecosystems(Zeguraetal.,2003;International south, and marine water from the San Francisco Bay on the west Agency for Research on Cancer, 2006; Ibelings and Havens, 2008; (Fig.1).Thewaterintheestuaryisusedforagricultureanddrinking Milleretal.,2010).Microcystisalsocontainslipopolysaccharideendo- waterandprovideshabitatforalargesuiteofaquaticorganismsinclud- toxins,whichinhibitiontransportinfishgills,aswellasfishembryode- ingendangeredfishspecies(Nicholsetal.,1986;Brownetal.,2013). velopment(Codd,2000).Microcystishasbeenassociatedwithnegative MicrocystisbloomsoccurinthesummerandfallintheSFE,butthe impactstothehealthandsurvivaloffishexposedtomicrocystinsinthe length of the bloom season was longer during the drought years dietandzooplanktonexposedtobothdissolvedmicrocystinsinthe (Lehman et al., 2017). Microcystis bloomsbegin in the SanJoaquin waterandmicrocystinsinthediet(Geretal.,2009,2010;Acuñaetal., RiverandextendbothnorthwardandwestwardintotheSacramento 2012).Variouswaterqualityconditionsandenvironmentalfactors, RiverandSuisunBaywithflowandtide(Lehmanetal.,2005).The suchaselevatedwatertemperature,highlightintensity,andincreased mainriverchannelsare12mdeepandarelinkedwithshallowwater nutrients enhanced the growth of Microcystis and production of habitatsinfloodedislandsandfloodplainsthatareonlyafewmeters microcystins(Davisetal.,2009;Pineda-Mendozaetal.,2016). deep. Waterqualitydeteriorationduetoanthropogeniccontaminantscan alsobeenhancedduringdroughtconditionsintheSFE.Forexample,re- 2.2.Fieldsampling ducedfreshwaterinflowcanenhancepesticideconcentrationsinsur- facewatersduetoconcentrationeffects,becausepesticideapplication Sampling was conducted bi-weekly at 10 stations during the inagriculturallandsinCaliforniahasbeenconstantorslightlyincreas- Microcystisbloomseasonin2014(betweenJulyandDecember)and ingsince2010(CADPR,2017).Herbicidesarealsosprayedtocontrolin- 2015(betweenAugustandNovember;Fig.1).Watertemperature,spe- vasiveaquaticplants,suchaswaterhyacinth(Eichhorniacrassipes)and cificelectricalconductance,dissolvedoxygenconcentration,pH,and EgeriadensaintheSFE(Santosetal.,2009).Controllingundesirableor- turbidityweremeasuredat0.3mdepthusinganYSI6600sonde(YSI, ganismsiseconomicallyimportant,however,theincreasingconcentra- https://www.ysi.com/).Specificelectricalconductancedatawerecon- tionsofanthropogenicchemicalsduringseveredroughtyearsraises vertedtosalinity.Waterwascollectedforwaterqualitymeasurements environmentalconcernsonhealthofendemicaquaticorganismsin andfishembryotoxicitytestingwithavanDornsamplerat0.3mdepth theSFE,wherefisheryproductionhasdeclinedsince2000(Sommer (subsurfacewatersamples)andimmediatelystoredonice.Waterfor etal.,2007). chloride,ammonium,nitrateplusnitrite,silicateandsolublereactive Toxicitystudiesusingfishembryosofferauniqueperspectiveon phosphorus measurements was filtered through Nucleopore filters ecologicalhealthevaluation.Organismsattheembryonicstagearevul- (0.45μmporesize)andfrozenuntilanalysis(UnitedStatesEnviron- nerabletocontaminantsbecausetheirtissuesandvitalbiologicalsys- mental Protection Agency, 1983; United States Geological Survey, temsaredifferentiatinganddevelopingrapidly.Thusanydisruption 1985;AmericanPublicHealthAssociationetal.,1998).Waterfordis- or impact at the embryonic stage can exert lifelong consequences, solved organic carbon (DOC) analysis was filtered through pre- suchasdeformities(McKim,1977;Embryetal.,2010).Thecumulative combustedGF/Ffilters(poresize0.7μm)andkeptat−20°Cuntilanal- effect of differentiation and development makes embryos an ideal ysis(AmericanPublicHealthAssociationetal.,1998).Unfilteredwater modelforacuteandchronictoxicitystudiesaswell(Belangeretal., samplesfortotalandvolatilesuspendedsolids,totalorganiccarbon 2013;Wagneretal.,2017).Fishembryonictoxicitytestinghasbeen (TOC),andtotalphosphateanalyseswerekeptat4°Cuntilanalysis widelyutilizedtoassessdevelopmentaltoxicityofvarioustypesof (AmericanPublicHealthAssociationetal.,1998). chemicalcompounds,suchascyanotoxins,pesticides,andnanoparticles WatersamplesfordeterminationofMicrocystisbiovolume(N75μm (Berryetal.,2007;Choetal.,2013;Alharbietal.,2016;Wagneretal., sizefraction)andchlorophyllaconcentrationwerealsocollectedfrom 2017). thesurfaceofthewatercolumnbyagentlehandtowofa0.3mdiam- Despiteconcernsabouttheimpactsofdroughtonwaterqualityin eterplanktonnet(75μmmesh)overadistanceof30.5m.Thenet theSFE,littleisknownabouthowCyanoHABandcontaminantsfrom wasfittedwithfloatsthatkepttheringjustbelowthesurface,making anthropogenicsourcesduringdroughtyearscouldimpactthehealth thenettowanintegratedsampleofthe0.3msurfacelayer.Asurface T.Kurobeetal./ScienceoftheTotalEnvironment610–611(2018)1029–1037 1031 Fig.1.MapoftheSanFranciscoEstuaryshowingthelocationofthesamplingstations. nettowwasusedinordertogetarepresentativesampleofthelarge becauseitisahardyspeciesthatiseasytoculture,andimportantly Microcystiscolonies,whichwerewidelydispersedacrossthesurface Medaka is an asynchronous spawner and lays eggs year-round ofthewatercolumnandcanreach50,000μmindiameter.Microcystis underacontrolledlaboratory setting whileDeltaSmelteggsare biovolume and chlorophyll a concentration in the net tow were available only in spring. Compared to other fish models such as correctedtothetotalvolumeofwatersampledusingaGeneralOceanics Zebrafish, Medaka embryos have an extended post-fertilization 2030Rflowmeter. hatchtime,whichisidealforinvestigatingdevelopmentaleffects, SamplesfordeterminationofMicrocystisbiovolumewerepreserved becausemoretimeisallowedfortoxicactiontooccur(Kinoshita withLugol'ssolution.ThebiovolumeofMicrocystiscolonieswascom- etal.,2009;Wagneretal.,2017). puted as an area based diameter using a FlowCAM digital imaging FertilizedDeltaSmelteggswereprovidedbyDr.Tien-ChiehHung flowcytometer(FluidImagingTechnologies;Sierackietal.,1998).Cell attheFishConservationandCultureLaboratoryatUCDavis.Medaka abundanceestimatesbasedonFlowCAMmeasurementswereclosely eggs were collected from in-house mass cultures at the Aquatic correlatedwiththosedeterminedbymicroscopicanalyses(Lehman HealthProgram,UCDavis.Fishembryotoxicity testing wasper- etal.,2017).Replicatewatersamplesforchlorophyllaandphaeophytin formedfollowingaprotocolproposedbyBraunbeckandLammer pigmentanalysiswerefilteredthroughGF/Ffilters(0.7μmporesize), (2006) with some minor modifications. Briefly, fish eggs (b6 h treatedwith1%magnesiumcarbonatesolutiontopreventacidity,and post-fertilization)werecollectedfromaquariums,cleanedinsaltso- frozenuntilanalysis.Pigmentswereextractedin90%acetoneandquan- lutionfor10min(1%NaCl),incubatedinanembryorearingsolution tifiedusingspectrophotometry(AmericanPublicHealthAssociation for30min(1gL−1NaCl,0.030gL−1KCl,0.040gL−1CaCl ·H O, 2 2 etal.,1998). 80 mg L−1 MgSO , and 1 mg L−1 methylene blue in distilled 4 Water samples for fish toxicity testing were transported to the water),andthensortedforviablefisheggs.Eggswereplacedin AquaticHealthProgramat the UniversityofCalifornia (UC),Davis. 96-wellplatesfilledwithtwicefilteredambientwater(oneembryo Watersampleswerefilteredtwice,firstbyglassmicrofiberfilter(GF/ perwell,200μLofambientwaterperwell).Atotalof32eggswere F,poresize:1.5μm,FisherScientific,Waltham,MA),followedbyanad- usedperwatersampleperfishspecies.Forcontrolgroups,embryos ditionalfiltrationwithapolyethersulfonesyringefilter(PESfilter,pore wereculturedinthefieldblank(DIwater)withadditionofminerals size:0.22μm,GeneseeScientific,SanDiego,CA)tocompletelyremove forstabilizingpHandforfishosmoregulation(USEPA,2002).Fish particulateorganicmatterandbacteria.FortoxicitytestingwiththeMe- embryoswerekeptinanenvironmentalchamber(PercivalScientif- dakaembryos,exposuretotheambientwaterwasinitiatedwithin48h ic,Perry,IA)atoptimalgrowthtemperaturesforDeltaSmelt(16°C) ofsamplecollection.ForDeltaSmeltembryotoxicitytesting,filtered andMedaka(25°C)ona16:8hlight:darkcycleduringtheexposure water was stored in a −20 °C freezer, for up to five months, until period.At3dayspost-exposure,embryosthatfailedtodevelopdue DeltaSmelteggswereavailableinJanuary. topooreggqualitywereremovedfromtheplates.Approximately 90%ofthewaterineachwellwaschangedevery48hfor14days 2.3.Fishembryotoxicitytesting oruntilhatching.Allembryoswereobserveddailyandrecorded forsignsofabnormaldevelopment,mortality,andhatchingsuccess. Two fish species were selected for the tests: Delta Smelt Embryoswithoutvisibleheartbeatswereconsidereddead.OnlyMe- (Hypomesus transpacificus) and Medaka (Oryzias latipes). Delta dakafishembryotoxicitytestswereconductedatthepeakofthe SmeltisapelagicfishspeciesendemictotheSFEandisanendan- Microcystis bloom in August and September of 2014. Both Delta geredspeciesthatisconsideredtobeanindicatorofestuarinehealth Smelt and Medaka fish embryo toxicity tests were conducted (Moyleetal.,2016).Medakawasusedasafishmodelforthisstudy throughoutthebloomseasonin2015. 1032 T.Kurobeetal./ScienceoftheTotalEnvironment610–611(2018)1029–1037 2.4.Taxonomicidentificationofbacteria control.Theexperimentwasperformedintriplicatewithatotalvolume of3mLinasterilizedplastictube.Thebacterialdensitywasmeasured Medaka embryos with active bacterial growth (Survey: August byplatecultureassay.Briefly,subsamplesofculturesolutionscontain- 2015;Samplingstations:FT,MI,andSJ;poolof3individualembryos ingbacteria(50μL)werecollectedatthebeginningandendoftheex- perstation)wereusedforidentificationofbacteria.Medakaembryos periment(0and72hpost-inoculation),seriallydilutedby1:10with withbacterialgrowthwerehomogenizedin1×phosphatebufferedsa- 1×PBS,mixedwith60%glycerol(finalconcentration:25%),andthen line(PBS).Thehomogenateswereseriallydilutedwith1×PBS(1:10di- stored in −80 °C. The day after collecting the subsamples at 72 h lutions)andtheninoculatedontoLuria-Bertani(LB)bacteriaculture post-inoculation,thesubsamplesofbacteriaculturesolutionswere platestoobtainisolatedbacterialcolonies.At2dayspost-incubation slowlydefrostedonice,spreadontoLBcultureplates,andthenthe atroomtemperature,bacterialcoloniesonthecultureplateswerevisu- plateswereincubatedatroomtemperatureuntilbacterialcoloniesbe- allyexaminedandthedominantbacterialspeciesaccountingforover camevisible.Thenumberofbacterialcolonieswerecountedandthere- 90%oftheentirebacterialcolonieswassubjectedtotaxonomicidentifi- sultswerereportedasthenumberofcolonyformingunitspermilliliter cationbydeterminingtheDNAsequenceforthe16SribosomalRNA ofculturesolution(cfumL−1). gene(16SrDNA),amarkergenethatiswidelyusedforbacterialidenti- fication(Santamariaetal.,2012;Salmanetal.,2013;Boydetal.,2015). 2.7.Statisticalanalysis Aportionof16SrDNA,approximately1500basepairs,wasamplifiedby apolymerasechainreactionwithagenericprimerset,EUBAandEUBB Spearman'srankcorrelationcoefficientwasusedtocalculatethe withtheoptimizedamplificationcondition(Guntheretal.,2010).The correlationbetweenfishembryomortalityandwaterqualityparame- amplifiedDNAfragmentwasextractedfromagelandsubmittedto ters(PRIMR-esoftwarever.6;http://www.primer-e.com/).Forthebac- theUCDNASequencingFacilityforDNAsequencingreactions(http:// teriagrowthtestswithdifferentconcentrationsofMicrocystislysate, dnaseq.ucdavis.edu/).TheDNAsequencesweresubjectedtoquality meansandstandarderror(S.E.)werecomputed,andthedifferences trimmingusingGeneioussoftwarever.5.0.4,followedbyBLASTNfora among the treatment means were analyzed by one-way ANOVA, DNAsequencesimilaritysearchandtaxonomicidentification(Kearse followedbypost-hoctestbyDunnett'stestusingapackage“multcomp” etal.,2012;http://www.ncbi.nlm.nih.gov/). ver.1.4-6inRsoftwarever.3.3.0(Hothornetal.,2010;RCoreTeam, 2016). 2.5.Fishtoxicitytestingatdifferentsalinitylevels 3.Results AnadditionalfishembryotoxicitytestwasconductedwithMedaka todeterminehowincreasedsalinityaffectsmortality.Theexperimental 3.1.Waterqualitydata solutionswerepreparedbyaddingInstantOceanSeaSaltsolutions(In- stantOcean,Blacksburg,PA)toambientwatercollectedfromstationSJ Waterqualityparametersmeasuredinthisstudyareavailableinour onAugust15th,2015toproducesalinityof1.0,2.5,and5.0psu.Thedi- previouspublication(Lehmanetal.,2017).In2014and2015,theDOC lutionofambientwaterbysaltsolutionwasaconcern,thereforethe concentrationandwatertemperaturesvariedwithtimeandlocation samevolumeoftheInstantOceanSeaSaltsolutionsatdifferentconcen- intheSFE(Fig.2).Amongthe10samplingstations,theDOCconcentra- trations(2mL)wasspikedintotheambientwatertostandardizethe tionandwatertemperaturewereslightlyhigheratRRthantheotherlo- experiment(38mLoftheambientwater,1:20dilution).Theambient cations (Fig. 2). The salinity at the confluence of the rivers was waterfromSJwaschosenforthesalinitytestasitrepresentswater constantly above 1.5 psu (AT and CV; average: 3.7 psu) while the quality in the South Delta where salinity was constantly low othersamplingstations(LowerSanJoaquinRiverandSouthDelta) (b1.0psu)andMedakaexperiencedhighmortality(N90%).Theambi- hadlowersalinitylevelsthroughoutthesurveys(average:0.6psu,max- entwaterspikedwithDIwaterwasusedasacontroltoensurethat imum:0.8psu). highmortalityratewasreproducibleinthisexperiment. 3.2.Mortalityandadverseeffects 2.6.BacteriagrowthtestwithMicrocystislysate Inboth2014and2015,Medakaembryosincubatedintheambient Microcystiscelllysate,afluidcontainingcontentsoflysedMicrocystis waterfromthestationscontainingMicrocystisbloomsstartedtoexhibit cells,waspreparedasfollows:Microcystis(StrainUTEXLB2386,non- microcystinproducer)obtainedfromtheCultureCollectionofAlgaeat theUniversityofTexas(https://utex.org/pages/about-us)wascultured inCBmedia(500mL)withcontinuousaerationfor10daysinatemper- aturecontrolledenvironmentalchamberat25°C(Shiraietal.,1989). The algal cells were harvested by centrifugation at 2500 rpm for 10minatroomtemperature,followedby3rinseswithautoclavedDI water and then resuspension in 30 mL of DI water. The algal cells werelysedbyafreeze-thawmethod;thealgalcellswereplacedin −80°Cfor20minandthenthawedslowlyatroomtemperature.The freeze-thawcyclewasperformed3timesandthealgalcellswerevisu- allyobservedunderalightmicroscope.Thealgallysateinthedissolved fractionwascollectedbycentrifugation(2500rpmatroomtempera- ture),followedbyfiltrationusingPESfilters(poresize:0.22μm,Gene- seeScientific).TheDOCconcentrationwasmeasuredbysubmittinga portionofthealgalcelllysatetotheStableIsotopeFacilityatUniversity ofCalifornia,Davis(http://stableisotopefacility.ucdavis.edu/).Abacteria growthtestwasperformedbyspikingAeromonasintothreedifferent concentrationsoftheMicrocystislysatewithDOCconcentrationsof 27.7,14.7,and8.5mgL−1.TheAeromonasusedfortheexperiment Fig.2.ScatterplotshowingtheDOCconcentrationandwatertemperaturerecordedfor wasisolatedfromtheMedakatoxicitytesting.DIwaterwasusedasa the2014and2015surveys. T.Kurobeetal./ScienceoftheTotalEnvironment610–611(2018)1029–1037 1033 growthofmotilebacteriaonthechorion(theouterenvelopeofthefish 3.4.BacteriagrowthtestwithMicrocystislysate egg)oflivefishembryoswithin5daysofexposure(Fig.3a).Medaka embryoswithbacteriadiedwithaportionoftheeggyolkortheentire ThebacterialgrowthtestdemonstratedthatMicrocystislysateen- embryonicbodyextrudedfromthechorion(Fig.3bandc).In2014,the hancedthegrowthofAeromonas(Fig.4).ThedensitiesofAeromonasin- Medakamortalityratesrangedbetween77.4and96.9%atthe8sam- creasedfrom6.3×104±1.4×102(Mean±S.E.)cfumL−1at0hpost- plingstationslocatedintheLowerSanJoaquinRiverandSouthDelta inoculation(hpi)to1.46×106±1.25×105,2.87×106±1.07×106, (BI,JP,MI,FT,SJ,OR,VCandRR),andbelow10%attheconfluenceof and7.40×105±5.44×105cfumL−1intheLysate1,2,and3treatment theSacramentoandSanJoaquinrivers(ATandCV)forAugustandSep- attheendoftheexperiment(72hpi),respectively.Fewbacterialcolo- tember(Table1a).Thehighmortalityratesofthefishembryoswereob- nieswereobservedinthecontrolgroupat72hpi.Thebacterialdensities servedinconjunctionwiththegrowthofthebacteria,Aeromonas.In inLysate1and2werestatisticallysignificantfromthecontrolgroup. 2015,themortalityratesexceeded90%forallthesamplingstationsin theLowerSanJoaquinRiverandSouthDeltainAugust,andthende- 4.Discussion creasedinthefollowingmonths(Table1b).Growthofbacteriawas stillobservedinembryosincubatedinOctoberandNovembersamples ThehighmortalityratesofMedakaembryoswereassociatedwith fromthesamesamplingstations,howevernotallfishdied.Incontrast, thegrowthofmotilebacteria,Aeromonas.Aeromonasareubiquitously attheconfluenceoftherivers(ATandCV),theMedakamortalityrates presentinnaturalwaterbodiesaswellasfishculturefacilities,and remained10%orlowerthroughout2015.Bothin2014and2015,there cause disease, particularly when the abundance of the bacteria is waslittlemortalityinthecontrolgroupsandgrowthofbacteriawas enhancedbyabioticfactors(e.g.,organicpollutants,watertemperature) barelyobserved(b4%;Table1a,b;Fig.3e).TheMedakapercentmortal- orthefishimmunesystemiscompromisedbystressors(e.g.,inadequate itywasnegativelycorrelatedwithchloride(Pearson'sr=−0.59,Pb waterquality,lowdissolvedoxygen)(JandaandAbbott,2010;White, 0.001),andwaspositivelycorrelatedwithMicrocystisbiovolume(r= 2013).MassmortalityeventscausedbyAeromonashavebeenwidelyre- 0.36,Pb0.05),ambientwatertemperature(r=0.58,Pb0.001),DOC portedinthewild,aswellasculturedfishpopulations(Harikrishnanand (r=0.31,Pb0.05),TOC(r=0.47,Pb0.001),andsurfacechlorophyll Balasundaram,2005).TheadverseeffectsobservedinMedakaembryos, aconcentration(r=0.34,Pb0.05)(Table2). suchasextrusionoftheeggyolkandfishbodyfromthechorion,were TheDeltaSmeltmortalityratesremainedbelow20%inthemajority likelyduetoAeromonassinceathickbacteriallayerwasobservedon ofthewatersamplestested(23/30or77%;Table1c).SimilartoMedaka, theaffectedfishembryos.AdultfishinfectedwithAeromonasexhibited growthofmotilebacteriawasassociatedwithDeltaSmeltmortality. skinulcers,indicatingthatAeromonaserodesfishtissue(Harikrishnan However,theDeltaSmeltmortalityrateswerelowerthanthatforMe- andBalasundaram,2005).Althoughspeculative,giventheeffectsof daka,andrangedbetween3.1%(multiplestationsinSeptemberandNo- Aeromonasontheepidermaltissueofadultfish,itispossiblethatthead- vember 2015) and 41.9% (JP in November 2015; Table 1c). Unlike verseeffectsobservedinthisstudywereduetoAeromonaserodingthe Medaka,nocorrelationwasobservedbetweenDeltaSmeltmortality chorionlayerofthefishembryos. dataandambientwaterqualityparameters(Table2). ItissuspectedthatAeromonasoriginatedfromthefishculturefacil- Inaddition,adevelopmentaldeformity“heart-onlysyndrome”was ityandwereintroducedintothestudyfromtheembryos,becausethe observedduringthetoxicitytestsforMedaka.Theterm,“heart-only ambientwatersampleswerefilteredtwice(1.7and0.22μm)priorto syndrome”,wasusedtodescribethedistinctivesymptomthatoccurred theexposureteststocompletelyremoveanybacteria.AlthoughMeda- wheninhibitionofsomiteformationco-occurredwithcardiogenesis kaeggsweretreatedwithsaltsolutiontolowerbacterialloadspriorto andbeatingofafunctionalheart(Fig.3d).Thefrequencyofthedevelop- thefishembryotoxicitytesting,thecleaningprocessmaybeinsufficient mentaldeformitywaslowatb0.5%ofthefishembryostests.Therewas incompletelyremovingbacteriaonfisheggs.However,becauseMeda- noclearseasonalandgeographictrendintheoccurrenceofthedevel- kaembryosincontrolgroupsshowedlittletonomortality,weconclud- opmentaldeformity,however,oneofthesamplinglocationsinwhich edthatthegrowthofAeromonaswasenhancedbydissolvedsubstances thedevelopmentaldeformityobservedwaslocatedinthemiddleof intheambientwater. largeagriculturalfields(VC).Thedeformitywasnotfoundineither AplausibleexplanationforthegrowthofAeromonasinMedakatests thecontrolgroupsorthefishculturefacilities. isthepresenceofdissolvedsubstances,particularlytheorganiccarbon releasedfromMicrocystiscells(e.g.cellorganelle,lipopolysaccharide, 3.3.SalinitytestwithMedakaembryos orcyanotoxins).TheMedakamortalitydatashowedapositivecorrela- tionwithMicrocystisbiovolume,TOCorDOCconcentration,andother ThereweresignificantreductionsintheMedakamortalityrates(≤ variablesthatarerelatedtoMicrocystisblooms,suchasambientand 13.3%)atsalinity≥1.0psu,comparedwiththesameambientwater net chlorophyll a concentration, and water temperature. We also samplewithoutsaltaddition(96.7%;Table3).Growthofthemotilebac- foundthatthegrowthofAeromonaswassignificantlyenhancedbydis- terialwasnotobservedatsalinity≥2.5psu.Nomortalitywasobserved solvedorganicsubstancesextractedfromMicrocystiscells.Dissolvedor- inthecontrolgroup. ganic carbon is oftentheprimary substrate forbacterial growth in Fig.3.ImagesofMedakaembryoincubatedintheambientwatersamplesshowinggrowthofbacteriaonthechorionasindicatedbytheredarrowhead(a),extrudedeggyolk(b)and wholeembryonicbodyfromthechorion(c),inhibitionofsomiteformationwhileafunctionalheartwasobservedasindicatedbytheyellowarrowhead(d),andnormalMedakaembryo incontrolgroupat8dayspost-fertilization(e).Scalebar:3mm. 1034 T.Kurobeetal./ScienceoftheTotalEnvironment610–611(2018)1029–1037 Table1 SummaryofthefishtoxicitytestingresultsforMedaka2014(a)and2015(b)andDeltaSmelt2015(c). (a) TreatmentNo. Station August September Morta Totalb Mort(%)c Mort Total Mort(%) 1 AT 3 31 9.7 2 32 6.3 2 CV 1 32 3.1 1 31 3.2 3 BI 28 32 87.5 30 31 96.8 4 FT 27 32 84.4 28 32 87.5 5 JP 31 32 96.9 24 31 77.4 6 OR 30 32 93.8 30 31 96.8 7 MI 27 31 87.1 30 31 96.8 8 SJ 30 32 93.8 27 32 84.4 9 RR 28 31 90.3 25 32 78.1 10 VC 29 32 90.6 28 32 87.5 Control Fieldcontrol 0 32 0 1 32 3.1 (b) TreatmentNo. Station August September October November Mort Total Mort(%) Mort Total Mort(%) Mort Total Mort(%) Mort Total Mort(%) 1 AT 3 30 10.0 2 31 6.5 1 32 3.1 1 32 3.1 2 CV 2 32 6.3 1 31 3.2 1 32 3.1 0 32 0 3 BI 31 31 100 2 32 6.3 3 32 9.4 5 31 16.1 4 FT 32 32 100 7 32 21.9 9 32 28.1 5 31 16.1 5 JP 32 32 100 4 31 12.9 3 32 9.4 6 29 20.7 6 OR 32 32 100 3 31 9.7 14 32 43.8 1 27 3.7 7 MI 29 30 96.7 9 31 29.0 10 32 31.3 9 30 30.0 8 SJ 28 28 100 5 31 16.1 14 32 43.8 5 32 15.6 9 RR 27 29 93.1 2 32 6.3 19 32 59.4 9 32 28.1 10 VC 31 31 100 6 32 18.8 11 32 34.4 3 29 10.3 Replicate AT 2 32 6.3 1 31 3.2 3 32 9.4 0 30 0 Control Fieldcontrol 1 31 3.2 0 30 0 1 32 3.1 1 30 3.3 (c) TreatmentNo. Station September October November Morta Totalb Mort(%) Mort Total Mort(%) Mort Total Mort(%) 1 AT 4 32 12.5 4 32 12.5 3 32 9.4 2 CV 3 32 9.4 6 31 19.4 2 32 6.3 3 BI 3 32 9.4 8 32 25.0 1 32 3.1 4 FT 7 31 22.6 12 32 37.5 9 32 28.1 5 JP 4 32 12.5 2 32 6.3 13 31 41.9 6 OR 1 32 3.1 5 32 15.6 1 32 3.1 7 MI 6 32 18.8 6 32 18.8 5 32 15.6 8 SJ 6 32 18.8 7 32 21.9 5 32 15.6 9 RR 11 32 34.4 6 32 18.8 6 32 18.8 10 VC 1 32 3.1 6 32 18.8 4 32 12.5 Replicate AT 3 32 9.4 4 32 12.5 5 32 15.6 Control Fieldcontrol 3 32 9.4 6 32 18.8 5 32 15.6 a Numberofmortalities. b Totalnumberofembryos. c Percentageofmortality. aquaticecosystems(Williamsonetal.,1999).Furthermore,DOCre- dissolvedorganiccarbonconcentrationwassignificantlycorrelated leasedfromphytoplanktonandcyanobacteriaisconsideredtobehigh with the abundance of the cyanobacterium, Aphanizomenon quality carbon for bacterial growth (Eiler et al., 2003; Bade et al., (Spearman'sr=0.33;Pb0.01,Lehmanetal.,2017).Alltheseresults 2007).Guillemetteetal.(2016)alsoreportedthatbacterialcommuni- suggestthatbloomsofMicrocystisandothercyanobacteriaspeciescan tiesprefertoutilizealgalcarboneveninlakesthataredominatedbyter- contributetotheconcentrationoforganiccarboninambientwaters, restrialcarbon. and therefore, will increase the potential growth of bacterial as Bothallochthonousinputsofterrestrialmaterialsandautochtho- CyanoHABsbecomemoreintense. nousinputsbyphytoplankton,benthicalgae,andaquaticmacrophytes Differenceinwatertemperaturemaypotentiallyexplainthehigh allcontributetotheTOCandDOCinaquaticecosystems(Volketal., mortalityratesforMedakacomparedwiththelowmortalityratesfor 2002;Aitkenhead-Petersonetal.,2003;BertilssonandJones,2003; DeltaSmelt.IntheSFE,spawningofwildDeltaSmeltoccursinspring Bade et al., 2007). However, the DOC in the SFE mainly originated whenthewatertemperatureisbetween7and15°C(Bennett,2005). fromphytoplanktonorcyanobacteriaandnotterrestrialorganicmatter Duringtheexposuretests,DeltaSmeltembryosweremaintainedat asdemonstratedbystableisotopicanalysis(Lehmanetal.,2015).In theoptimumtemperatureof16°Cfortheirnormaldevelopment.This 2014,thelargestbiomassofMicrocystiswasobservedsincetheblooms watertemperaturewassignificantlylowerthantheoptimumforthe beganin1999,withmedianchlorophyllaconcentrationreachinglevels growthofAeromonasat28°C(Statneretal.,1988).RoufandRigney thatwere13and9timesgreaterthaninpreviouswetanddryyears,re- (1971)reportedthatthegrowthofAeromonassignificantlydecreased spectively(Lehmanetal.,2017).Inaddition,dissolvedorganicsub- at15°C.Incontrast,Medakatestswereperformedat25°C,whichis stancescouldhavebeenreleasedfromothercyanobacteria.In2014, close to the optimum for Aeromonas growth. Although Aeromonas T.Kurobeetal./ScienceoftheTotalEnvironment610–611(2018)1029–1037 1035 2 MK 0.33 TMaobrlteal3ityofMedakaembryosculturedinambientwateratdifferentsalinitylevels. 3 WT 0.11⁎⁎0.58 1TreatmentNo. SSJtdation bSa0l.i1nity(psu) 2M9orta T3o0talb 9M6o.7rt(%)c 4 DO 0.16⁎−0.27⁎⁎−0.57 234 SSSJJJ 125...050 400 333012 1003.3 Control Fieldcontrol b0.1 0 31 0 5 CL −0.26⁎⁎−0.59⁎−0.270.03 ab NToutmalbneurmofbmeroorftaelmitibesry.os. c Percentageofmortality. 6 Turb −0.04⁎−0.35−0.14−0.07⁎⁎0.66 d AmbientwatercollectedatSJinAugust2015. 7 pH 0.01⁎0.390.12⁎⁎0.39⁎−0.36⁎⁎−0.45 geendroctwehitenhmtahtoedrtwiafflaeittreyernrtetestmuelmptsep.reartautrueruessewdafsonrothtetetswteodfiisnhtshpisesctieusdlyik,tehlyeadfiffefecrt-- ⁎9⁎7 9 WeconsiderthehighMedakamortalityduetobacterialgrowthto 8 NH4 0.25−0.2−0.2⁎0.300.170.13−0.1 bcoenadpitoiotennstaianldlyaismsopcoirattaendtMfaicctroorcyasftfiescbtilnogomthseoinmfipsahctsopfefcuietusriendthroeuSgFhEt, 9 NO3 0.30−0.090.030.060.01−0.02−0.19⁎⁎0.77 p(Aalrotsicauslaaprildyisisnimtha)eafnredsThhwreaatedrfinreSghioadns(.DSopraowsonminagpeotfenAemnseer)icoacncuSrhbaed- 10 SRP 0.310.16⁎0.29−0.12−0.11−0.10−0.10⁎⁎0.60⁎⁎0.93 tnwumeebnelrasteofAyporuilnagndfisAhutghuasttrienmthaeinSianntJhoeaqfrueisnhRwivaeterrarnedg,ipornosdoufctehlearegse- tuary until November (Walburg and Nichols, 1967; Feyrer et al., 11 TP 0.320.09⁎0.26−0.09−0.07−0.08−0.13⁎⁎0.67⁎⁎0.94⁎⁎0.97 2im00p9a)c.tDedurbinygptahtehsoegmenoincthbas,cetemribarysouschanadseAaerrlyomlifoensatsa.gAemfisohngcotuhled1b0e 12 TOC 0.21⁎⁎0.47⁎⁎0.45⁎−0.24⁎⁎−0.56⁎⁎−0.450.050.22⁎⁎0.52⁎⁎0.68⁎⁎0.67 saoanthmdepwrlsianttaegtrisottenamsti(opFneirsga.tm2u)ro.enTsihtaoetrRweRdarwimneertehriwrsealsattteuirvdetyel,ymthhpieegrhDaetOruCtrhecason(nNtch2eo5nst°erCai)ntiaotnhndes 13 DOC 0.23⁎0.31⁎⁎0.35−0.15⁎⁎−0.48⁎⁎−0.410.08⁎0.26⁎⁎0.540.67⁎⁎0.67⁎⁎0.83 oythefeaAreDsr.OoCmCuorcrnoeannsctaleynntdthraaentrieyoinosstnh(oeNro4fb.fi5accimtaelgrdiaLal−tas1pr)eemcpioeigrsthdintughribanvigoedtehivneehsraseinvtyeceraednddgrraoobuwugnthh-t 14 DON 0.20−0.120.05−0.070.08−0.03−0.03⁎0.25⁎0.36⁎⁎0.33⁎0.36⁎0.27⁎0.27 dthaencdeoomfibnaacntetrsipaeicniesusrifnacfieshweatmerbirnyothteoxSiFcEit.yAetreosmtinogn,ahsowwaesvfoeru,ntdhitsorbee- sultmaynotrepresentbacterialassemblagesinthefields.Furtherre- 15 TSS −0.16⁎⁎−0.55⁎−0.290.01⁎⁎0.79⁎⁎0.70⁎−0.30⁎0.240.04−0.12−0.08⁎⁎−0.59⁎⁎−0.510.12 sDeOaCrcohriigsinsatrtionnggflryomwaCryraannoteHdABtosoinnvtehsetiggraotwetthheofcpoantthroibgeuntiiocnbaocftetrhiea inthefield. meters. 16 TDS −0.25⁎⁎−0.58⁎−0.260.04⁎⁎0.99⁎⁎0.66⁎−0.360.170.02−0.10−0.06⁎⁎−0.56⁎⁎−0.480.08⁎⁎0.79 bryoTsh,e“hfienadritn-gonolfyasydnevderolompem”,eanltsaoldsuepfopromrtistythoebsimerpveodrtainncMeeodfaiknaveesmti-- a qualitypar 17 Chl-a,sub 0.170.21−0.050.11⁎⁎−0.51⁎−0.400.09−0.100.080.110.11⁎⁎0.50⁎0.32⁎0.28⁎⁎−0.48⁎⁎−0.51 gDPlaeetvcitneolgonpnemmataue,nrCataalllaotntohdxriiaxcn,itatihnersdoaFpsiosscoghceeinarietcelldcaoiwnntictalhumdcieynatanhneottsaorixnreintshsteofrfaoemmmbObiersyncoitlnlwaitcaotdreiear-., er velopmentatmid-blastulastage,developmentofpericardialperitoneal andwat 18 Chl-a 0.04⁎0.34−0.020.07⁎−0.35−0.21⁎0.28−0.18−0.110.00−0.05⁎0.230.180.09⁎−0.28⁎−0.35⁎⁎0.68 a at b d u ortality 19 Phae,s −0.020.060.21−0.220.030.17−0.19⁎0.39⁎⁎0.48⁎⁎0.59⁎⁎0.62⁎⁎0.44⁎0.32⁎0.360.240.040.200.05 m fiensh 20 MIC 0.10⁎0.36⁎0.28⁎−0.36−0.10−0.020.13−0.21−0.18−0.05−0.070.210.19⁎0.290.02−0.110.22⁎⁎0.420.09 e w mputedbet (DS)(MK)(WT)(DO)(CL)(Turb)(pH)(NH4)(NO3)(SRP)(TP)(TOC)(DOC)(DON)(TSS)(TDS)(Chl-a,sub)(Chl-a)(Phae,sub)(MIC) 5. 2fimancorrelationcoefcientsco DeltaSmeltmortalityMedakamortalityWatertemperatureDissolvedoxygenChlorideTurbiditypHAmmoniumNitrateSolublereactivephosphorusTotalphosphorusTotalorganiccarbonDissolvedorganiccarbonDissolvedorganicnitrogenTotalsuspendedsolidsTotaldissolvedsolidsSub-surfacechlorophyllaSurfacechlorophyllaSub-surfacephaeophytinMicrocystisbiovolume bumbersinboldindicateP0.0b0.05.b0.001. sFoiglu.4ti.oBna)rpculolttusrheodwwinigthabduifnfdearenncetocofAnecreonmtroantaiosnssp.o(fcoMloicnryocfoyrsmtisinlgysuanteit:mLyL−sa1teof1cu(lDtuOrCe TableSpear 1234567891011121314151617181920 Then⁎P⁎⁎P caobnuncednatnrcaetiwona:sm27e.a7sumregdLa−t17)2,h2p(o1s4t.-7inmocgulaLt−io1n),.(a*nPdb30.0(85.,5**mPbg0L.−0011).).Thebacterial 1036 T.Kurobeetal./ScienceoftheTotalEnvironment610–611(2018)1029–1037 edemas,andinhibitionoforganogenesis(Berryetal.,2007).Similarly, Belanger,S.E.,Rawlings,J.M.,Carr,G.J.,2013.Useoffishembryotoxicitytestsforthepre- dictionofacutefishtoxicitytochemicals.Environ.Toxicol.Chem.32:1768–1783. anthropogeniccontaminantsalsocausedmorphologicalabnormalities http://dx.doi.org/10.1002/etc.2244. infishembryos.Pamanjietal.(2015)reportedthatZebrafishexposed Bennett,W.A.,2005.CriticalAssessmentoftheDeltaSmeltPopulationintheSan toprofenofos,anorganophosphateinsecticide,exhibitedvariousmor- FranciscoEstuary,California. 3.SanFranciscoEstuaryandWatershed, p.2. Berry,J.P.,Gantar,M.,Gibbs,P.D.,Schmale,M.C.,2007.Thezebrafish(Daniorerio)embryo phologicaldeformitiesincludingyolksacedemaandmalformationsin asamodelsystemforidentificationandcharacterizationofdevelopmentaltoxins thetailandhead.Thecauseofthedevelopmentaldeformity,“heart- frommarineandfreshwatermicroalgae.Comp.Biochem.Physiol.,PartC:Toxicol. onlysyndrome”isstillunknown,however,associationofnaturaloran- Pharmacol.145,61–72. thropogeniccontaminantsissuspected.Furtherinvestigationiswar- Bertilsson,S.,Jones,J.B.,2003.Supplyofdissolvedorganicmattertoaquaticecosys- tems:autochthonoussources.In:Findlay,S.E.G.,Sinsabaugh,R.L.(Eds.),Aquatic ranted to identify the cause of the deformity and assess risk of Ecosystems:InteractivityofDissolvedOrganicMatter.AcademicPress,San contaminantsintheaquaticenvironment. Diego,pp.3–24. Boyd,E.F.,Carpenter,M.R.,Chowdhury,N.,Cohen,A.L.,Haines-Menges,B.L.,Kalburge,S.S., Kingston,J.J.,Lubin,J.B.,Ongagna-Yhombi,S.Y.,Whitaker,W.B.,2015.Post-genomic analysis of members of the family Vibrionaceae. Microbiol. Spectr. 3. http:// 5.Conclusion dx.doi.org/10.1128/microbiolspec.VE-0009-2014. Braunbeck,T.,Lammer,E.,2006.BackgroundPaperonFishEmbryoToxicityAssays(UBA In this study we found that dissolved substances released from ContractNo.20385122). Brown,L.R.,Bennett,W.A.,Wagner,R.W.,Morgan-King,T.,Knowles,N.,Feyrer,F., MicrocystispromotedthegrowthofAeromonas,whichresultedinhigh Schoellhamer,D.H.,Stacey,M.T.,Dettinger,M.,2013.Implicationsforfuturesurvival mortality rates in Medaka embryos. The increased frequency of ofDeltaSmeltfromfourclimatechangescenariosfortheSacramento–SanJoaquin MicrocystisandotherCyanoHABspeciesareaglobalconcerndueto Delta,California.Estuar.Coast.http://dx.doi.org/10.1007/s12237-013-9585-4. theimpactofcyanotoxins,however,ourfindingssuggestthatintense California Department of Pesticide Regulation, 2017. http://www.cdpr.ca.gov/ dprdatabase.htm,Accesseddate:5April2017. algalbloomsmayalsobeanothercauseofwaterqualitydeterioration Cayan,D.,Tyree,M.,Dettinger,M.,Hidalgo,M.,Das,H.T.,Maurer,P.E.,Bromirski,P., byenhancingbacterialgrowthinaquaticenvironments.Elevationof Graham,N.,Flick,R.,2009.ClimateChangeScenariosandSeaLevelRiseEstimates fortheCalifornia2008ClimateChangeScenariosAssessment.CEC-500-2009-014- water temperature and dissolved organic matter from intense DCaliforniaClimateChangeCenter. CyanoHABsduringdroughtcanprovidefavorableconditionforbacteria, Cho,J.G.,Kim,K.T.,Ryu,T.K.,Lee,J.W.,Kim,J.E.,Kim,J.,Lee,B.C.,Jo,E.H.,Yoon,J.,Eom,I.C., whichcannegativelyaffectindigenousfishspeciesintheaquaticeco- Choi,K.,Kim,P.,2013.StepwiseembryonictoxicityofsilvernanoparticlesonOryzias system.Alltheexperimentswerecarriedoutunderacontrolledlabora- latipes.Biomed.Res.Int.http://dx.doi.org/10.1155/2013/494671. Codd,G.A.,2000.Cyanobacterialtoxins,theperceptionofwaterquality,andtheprioriti- torysetting,thereforeourknowledgeonimpactsofdroughtonthe zationofeutrophicationcontrol.Ecol.Eng.16,51–60. aquaticenvironmentisstilllimited.Particularly,dissolvedsubstances Davis,T.W.,Berry,D.L.,Boyer,G.L.,Gobler,C.J.,2009.Theeffectsoftemperatureandnutri- releasedfromMicrocystismaypromoteotherbacterialspeciesinthe entsonthegrowthanddynamicsoftoxicandnon-toxicstrainsofMicrocystisduring cyanobacteriablooms.HarmfulAlgae8,715–725. field.Furtherinvestigationiswarrantedtoinvestigateabundanceand Eiler,A.,Langenheder,S.,Bertilsson,S.,Tranvik,L.J.,2003.Heterotrophicbacterialgrowth biodiversityofbacteriaintheSFE,andtoassesseffectsofbacteriaon efficiencyandcommunitystructureatdifferentnaturalorganiccarbonconcentra- DeltaSmeltorothernativefishspeciesunderenvironmentallyrelevant tions.Appl.Environ.Microbiol.69,3701–3709. Embry,M.R.,Belanger,S.E.,Braunbeck,T.A.,Galay-Burgos,M.,Halder,M.,Hinton,D.E., condition.Furthermore,contaminantsthatareresponsibleforthead- Léonard,M.A.,Lillicrap,A.,Norberg-King,T.,Whale,G.,2010.Thefishembryotoxicity verseeffects,“heart-onlysyndrome”observedinthisstudyneedtobe testasananimalalternativemethodinhazardandriskassessmentandscientificre- identifiedforprotectionofecologicalandenvironmentalhealth. search.Aquat.Toxicol.97:79–87.http://dx.doi.org/10.1016/j.aquatox.2009.12.008. Feyrer,F.,Sommer,T.,Slater,S.B.,2009.Oldschoolvs.newschool:statusofthreadfin shad(Dorosomapetenense)fivedecadesafteritsintroductiontotheSacramento– SanJoaquinDelta.SanFranc.Estuar.Water.Sci.7(1). Acknowledgments Ger,K.A.,Teh,S.J.,Goldman,C.R.,2009.Microcystin-LRtoxicityondominantcopepods EurytemoraaffinisandPseudodiaptomusforbesioftheupperSanFranciscoEstuary. Sci.TotalEnviron.407,4852–4857. FundingforthestudywasprovidedbytheCaliforniaDepartmentof Ger,K.A.,Teh,S.J.,Baxa,D.V.,Lesmeister,S.,Goldman,C.R.,2010.Theeffectsofdietary WaterResourcesandStateOps–Program10–GeneralFundSpecial MicrocystisaeruginosaandmicrocystinonthecopepodsoftheupperSanFranciscoEs- LegislationAB91/92(Fundnumber0001S72015),UCDaviscontract# tuary.Freshw.Biol.55:1548–1559.http://dx.doi.org/10.1111/j.1365-2427.2009.02367.x. Guillemette,F.,Leigh,M.S.,DelGiorgio,P.A.,2016.Selectiveconsumptionandmetabolic 46000011155and4600011638(programmanager:KarenGehrts)and allocationofterrestrialandalgalcarbondetermineallochthonyinlakebacteria. by California Department of Fish and Wildlife Drought Response ISMEJ.10:1373–1382.http://dx.doi.org/10.1038/ismej.2015.215. Program, UC Davis contract# E1183004 (Program manager: Chad Gunther,N.W.,Almond,J.,Yan,X.,Needleman,D.S.,2010.GyrBversus16srRNAsequenc- Dibble).WearegratefultoDr.Tien-ChiehHungatUCDavisforprovid- ingfortheidentificationofCampylobacterjejuni,Campylobactercoli,andCampylobac- terlari.J.Nucl.AcidInvest.2,e7. ingfertilizedDeltaSmelteggs.TheauthorsalsothankK.Gehrts,M. Harikrishnan,R.,Balasundaram,C.,2005.ModerntrendsinAeromonashydrophiladisease Dempsey,E.Santos,N.vanArk,S.Waller,T.Hollingshead,R.Elkins,H. management with fish. Rev. Fish. Sci. 13:281–320. http://dx.doi.org/10.1080/ Fuller,M.Legro,A.Lopez,M.Martinez,A.Munguia,M.Ogaz,E.Jeu,L. 10641260500320845. Smith,andR.MulliganattheCADWRforfield,laboratory,andadmin- Hothorn,T.,Bretz,F.,Westfall,P.,Heiberger,R.M.,Schuetzenmeister,A.,Scheibe,S.,2010. MultipleComparisonsUsingR.CRCPress. istrativeassistance,andA.Mulcahy,C.Lam,C.Chan,andE.BerryatUC Ibelings,B.W.,Havens,K.E.,2008.Cyanobacterialtoxins,aqualitativemeta-analysisof Davisforsupportingfishtoxicitytesting. concentrations, dosage and effects in freshwater estuarine and marine biota. Cyanobacterialharmfulalgalblooms,stateofthescienceandresearchneeds.Adv. Exp.Med.Biol.619,675–732. References InternationalAgencyforResearchonCancer,2006.Carcinogenicityofnitrate,nitriteand cyanobacterialpeptidetoxins.LancetOncol.7,628–629. Acuña,S.,Baxa,D.V.,Teh,S.J.,2012.Sublethaldietaryeffectsofmicrocystinproducing InternationalPanelonClimateChange(IPCC),2007.ClimateChange2007,TheScientific Microcystisonthreadfinshad,Dorosomapetenense.Toxicon60,1191–1202. Basis.ContributionofWorkingGroupItotheFourthAssessmentReportoftheInter- Aitkenhead-Peterson,J.A.,McDowell,W.H.,Neff,J.C.,2003.Sources,production,andreg- governmentalPanelonClimateChange.CambridgeUniversityPress,NewYork,NY, ulationofallo-chthonousdissolvedorganicmatterinputstosurfacewaters.In: USA. Findlay,S.E.G.,Sinsabaugh,R.L.(Eds.),AquaticEcosystems:InteractivityofDissolved Janda,J.M.,Abbott,S.L.,2010.ThegenusAeromonas:taxonomy,pathogenicity,andinfec- OrganicMatter.AcademicPress,SanDiego,pp.25–70. tion.Clin.Microbiol.Rev.23:35–73.http://dx.doi.org/10.1128/CMR.00039-09. Alharbi,H.A.,Alcorn,J.,Al-Mousa,A.,Giesy,J.P.,Wiseman,S.B.,2016.Toxicokineticsand Kearse,M.,Moir,R.,Wilson,A.,Stones-Havas,S.,Cheung,M.,Sturrock,S.,Buxton,S., toxicodynamicsofchlorpyrifosisalteredinembryosofJapanesemedakaexposed Cooper,A.,Markowitz,S.,Duran,C.,Thierer,T.,Ashton,B.,Mentjies,P.,Drummond, tooilsandsprocess-affectedwater:evidenceforinhibitionofP-glycoprotein. A., 2012. Geneious basic: an integrated and extendable desktop software J.Appl.Toxicol.http://dx.doi.org/10.1002/jat.3397. platformfortheorganizationandanalysisofsequencedata.Bioinformatics28, AmericanPublicHealthAssociation,AmericanWaterWorksAssociation,WaterEnviron- 1647–1649. mentAssociation,1998.StandardMethodsfortheExaminationofWaterandWaste- Kinoshita,M.,Murata,K.,Naruse,K.,Tanaka,M.,2009.Medaka:Biology,Management, water.20thedition.AmericanPublicHealthAssociation,Washington,D.C.,USA. andExperimentalProtocols.FirstEdition.Wiley-Blackwell.Ames,Iowa. Bade,D.L.,Carpenter,S.R.,Cole,J.J.,Pace,M.L.,Kritzberg,E.,VandeBogert,M.C.,Cory,R.M., Lehman,P.W.,Boyer,G.,Hall,C.,Waller,S.,Gehrts,K.,2005.Distributionandtoxicityofa McKnight,D.M.,2007.Sourcesandfatesofdissolvedorganiccarboninlakesasdeter- newcolonialMicrocystisaeruginosabloomintheSanFranciscoBayEstuary,Califor- minedbywhole-lakecarbonisotopeadditions.Biogeochemistry84,115–129. nia.Hydrobiologia541,87–90. T.Kurobeetal./ScienceoftheTotalEnvironment610–611(2018)1029–1037 1037 Lehman,P.W.,Kendall,C.,Guerin,M.A.,Young,M.B.,Silva,S.R.,Boyer,G.L.,Teh,S.J.,2015. Shirai,M.,Matumaru,K.,Ohotake,A.,Takamura,Y.,Aida,T.,Nakano,M.,1989.Develop- CharacterizationoftheMicrocystisbloomanditsnitrogensupplyinSanFranciscoEs- mentofasolidmediumforgrowthandisolationofaxenicMicrocystisstrains tuaryusingstableisotopes.Estuar.Coasts38,165–178. (Cyanobacteria).Appl.Environ.Microbiol.55,2569–2571. Lehman,P.W.,Kurobe,T.,Lesmeister,S.,Mizel,M.,Baxa,D.V.,Tung,A.,Teh,S.J.,2017.Im- Sieracki,C.K.,Sieracki,M.E.,Yentsch,C.S.,1998.Animaging-in-flowsystemforautomated pactofthe2014severedroughtontheMicrocystisbloominSanFranciscoEstuary. analysisofmarinemicroplankton.Mar.Ecol.Prog.Ser.168,285–296. HarmfulAlgae63,94–108. Sommer,T.,Armor,C.,Baxter,R.,Breuer,R.,Brown,L.,Chotkowski,M.,Culberson,S., McKim,J.,1977.Evaluationoftestswithearlylifestagesoffishforpredictinglong-term Feyrer,F.,Gingras,M.,Herbold,B.,Kimmerer,W.,Mueller-Solger,A.,Nobriga,M., toxicity.J.Fish.Res.BoardCan.34,1148–1154. Souza,K.,2007.TheCollapseofPelagicFishesintheUpperSanFranciscoEstuary Miller,M.A.,Kudela,R.M.,Mekebri,A.,Crane,D.,Oates,S.C.,Tinker,M.T.,Staedler,M., Fish. 32pp.270–277. Miller,W.A.,Toy-Choutka,S.,Dominik,C.,Hardin,D.,Langlois,G.,Murray,M., Statner,B.,Jones,M.J.,George,W.L.,1988.Effectofincubationtemperatureongrowthand Ward,K.,Jessup,D.A.,2010.Evidenceforanovelmarineharmfulalgalbloom, solubleproteinprofilesofmotileAeromonasstrains.J.Clin.Microbiol.26,392–393. cyanotoxin(microcystin)transferfromlandtoseaotters.PLoSOne5,e12576. UnitedStatesEnvironmentalProtectionAgency(USEPA),1983.MethodsforChemical Moyle,P.B.,Brown,L.R.,Durand,J.R.,Hobbs,J.A.,2016.DeltaSmelt:lifehistoryanddecline AnalysisofWaterandWastes.TechnicalReportEPA-600/4-79-020.UnitedStatesEn- ofaonce-abundantspeciesintheSanFranciscoEstuary.SanFranc.Estuar.Water.Sci. vironmentalProtectionAgency,Washington,DC,USA. 14(2). UnitedStatesEnvironmentalProtectionAgency(USEPA),2002.MethodforMeasuring Nichols,F.H.,Cloern,J.E.,Luoma,S.N.,Peterson,D.H.,1986.Themodificationofanestuary. theAcuteToxicityofEffluentsandReceivingWaterstoFreshwaterandMarineOr- Science231,567–573. ganisms.Fifthedition.EPA-821-R-02-012. Pamanji,R.,Yashwanth,B.,Bethu,M.S.,Leelavathi,S.,Ravinder,K.,Rao,J.V.,2015.Toxicity United Stages Environmental Protection Agency (USEPA), 2015. Saving water in effectsofprofenofosonembryonicandlarvaldevelopmentofZebrafish(Daniorerio). CaliforniaEPA-832-F-15-006. Environ.Toxicol.Pharmacol.39:887–897.http://dx.doi.org/10.1016/j.etap.2015.02.020. UnitedStatesGeologicalSurvey,1985.MethodsforDeterminationofInorganicSub- Pineda-Mendoza,R.M.,Zúñiga,G.,Martínez-Jerónimo,F.,2016.Microcystinproductionin stancesinWaterandFluvialSediments.OpenFileReportpp.85–495. MicrocystisAeruginosa:effectoftypeofstrain,environmentalfactors,nutrientcon- Volk,C.,Wood,L.,Johnson,B.,Robinson,J.,Zhu,H.W.,Kaplan,L.,2002.Monitoringdis- centrations,andN:PratioonmcyAgeneexpression.Aquat.Ecol.50:103.http:// solvedorganiccarboninsurfaceanddrinkingwaters.J.Environ.Monit.4,43–47. dx.doi.org/10.1007/s10452-015-9559-7. Wagner,S.D.,Kurobe,T.,Hammock,B.G.,Lam,C.H.,Wu,G.,Vasylieva,N.,Gee,S.J., RCoreTeam,2016.R:Alanguageandenvironmentforstatisticalcomputing.RFounda- Hammock,B.D.,Teh,S.J.,2017.DevelopmentaleffectsoffipronilonJapaneseMedaka tionforStatisticalComputing.Vienna,Austria.https://www.R-project.org,Accessed (Oryziaslatipes)embryos.Chemosphere166:511–520.http://dx.doi.org/10.1016/ date:5April2017. j.chemosphere.2016.09.069. Rouf,M.A.,Rigney,M.M.,1971.Growthtemperaturesandtemperaturecharacteristicsof Walburg,C.,Nichols,P.R.,1967.BiologyandManagementoftheAmericanShadandSta- Aeromonas.Appl.Microbiol.22,503–506. tusoftheFisheries.AtlanticCoastoftheUnitedStates.U.S.FishWildl.Serv.,Spec.Sci. Salman,V.,Bailey,J.V.,Teske,A.,2013.Phylogeneticandmorphologiccomplexityofgiant Rept.Fish.Washington,D.C. sulphur bacteria. Antonie Van Leeuwenhoek 104:169–186. http://dx.doi.org/ White,P.,2013.Environmentalconsequencesofpoorfeedqualityandfeedmanagement. 10.1007/s10482-013-9952-y. In:Hasan,M.R.,New,M.B.(Eds.),On-farmFeedingandFeedManagementinAqua- Santamaria,M.,Fosso,B.,Consiglio,A.,DeCaro,G.,Grillo,G.,Licciulli,F.,Liuni,S.,Marzano, culture. FAO Fisheries and Aquaculture Technical Paper No. 583. FAO, Rome, M.,Alonso-Alemany,D.,Valiente,G.,Pesole,G.,2012.Referencedatabasesfortaxo- pp.553–564. nomic assignment in metagenomics. Brief. Bioinform. 13:682–695. http:// Williamson,C.E.,Morris,D.P.,Pace,M.L.,Olson,O.G.,1999.Dissolvedorganiccarbonand dx.doi.org/10.1093/bib/bbs036. nutrientsasregulatorsoflakeecosystems:resurrectionofamoreintegratedpara- Santos,M.J.,Khanna,S.,Hestir,E.L.,Ustin,S.L.,2009.UseofHyperspectralremotesensing digm.Limnol.Oceanogr.44,795–803. toevaluateefficacyofaquaticplantmanagementintheSacramento-SanJoaquin Zegura,B.,Sedmak,B.,Filipi,M.,2003.Microcystin-LRinducesoxidativeDNAdamagein RiverDelta,California.InvasivePlantSci.Manag.2,216–229. humanhepatomacelllineHepG2.Toxicon41,41–48.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.