Evaluation of tSCS treatment for the alleviation of lower limb spasticity Halla Kristín Guðfinnsdóttir Thesis of 60 ECTS credits Master of Science in Biomedical Engineering January 2016 Evaluation of tSCS treatment for the alleviation of lower limb spasticity Halla Kristín Guðfinnsdóttir Thesis of 60 ECTS credits submitted to the School of Science and Engineering at Reykjavík University in partial fulfillment of the requirements for the degree of Master of Science in Biomedical Engineering January 2016 Supervisor(s): Þórður Helgason. Supervisor. Associate Professor, Reykjavík University, Iceland Guðbjörg Kristín Ludvigsdottir. Supervisor. Rehabilitation specialist, Landspitali University Hospital, Iceland. Examiner(s): Stefán B. Sigurðsson, Examiner Professor, University of Akureyri, Iceland. Abstract: Introduction: Spinal cord injury is a traumatic injury of descending spinal cord tracts that alters the supraspinal neural circuitry. Spasticity is a common result of spinal cord injury (SCI) and can restrict daily living activities, cause pain and fatigue and therefore decrease the quality of life for SCI individuals. The aim of this study was to evaluate the effects of transcutaneous spinal cord stimulation (tSCS) on individuals with post-‐traumatic SCI for the alleviation of lower limb spasticity. Methods: The evaluation of the effects of tSCS was done by means of electrophysiological evaluation and evaluation of residual motor control functions. The study protocol was divided into four stages, one treatment stage and three assessments. The protocol starts with the first assessment for control data, and then treatment was applied for 30 minuets, second assessment was done immediately after stimulation and the last assessment two hours after stimulation. The assessments consist of estimation of the Ashworth scale, clonus beet quantification, 10-‐m walking test (if possible) and electrophysiological evaluation (Brain Motor Control Assessment, BMCA) supplemented by the Wartenberg pendulum test. Results: The results of the pendulum test show increase in muscle tone in four subjects while the others presented average values ≥ 1, indicating non-‐ spastic conditions. Nonetheless there was a significant difference of the normalized EMG activity of all muscles before the stimulation and immediately after stimulation for all participants, indication reduction in intrinsic phasic and extrinsic spasticity. Enhancement of motor control was also observed. Conclusion: The similarity of the effects of tSCS with those induced by epidural SCS, strongly suggests that both techniques are able to activate similar neural structures. From our results we can see that the application of low-‐ intensity tSCS for 30 minuets lead to the alleviation of lower limb spasticity regardless of the clinical profile of the subjects and enhancement of voluntary motor control in the motor incomplete SCI subjects. Keywords: transcutaneous spinal cord stimulation (tSCS); spinal cord injury (SCI); spasticity; Wartenberg pendulum test (WPT); Ashworth scale (AS). i Útdráttur – Mat á áhrifum mænuraförvunar á síspennu Inngangur: Áverki á mænu hefur áhrif á og getur breytt taugarásum og tauganetum í mænunni. Síspenna eða ósjálfráður vöðvasamdráttur (spasmi), er algengur fylgikvilli mænuskaða sem getur dregið verulega úr lífsgæðum vegna hamlandi áhrifa á daglegar athafnir, sársauka og þreytu. Markmið rannsóknarinnar er að meta áhrif raförvunar með yfirborðs-‐rafskautum á taugarætur í neðsta hluta mænunnar og meta hvort það geti dregið úr síspennu í fótleggjum eftir mænuskaða. Til að meta áhrifin voru mismunandi matstæki notuð sem meta ólík form síspennu, þ.e. taktbundin síspenna (intrinsic phasic) og stífleika (intrinsic tonic) og síspenna vegna ytri áreitis (extrinsic spasticity). Aðferðir: Mat á áhrifum mænuraförvunarinnar var gerð með raflífeðlisfræðilegum og klínískum athugunum sem og athugun á hreyfigetu. Rannsókninni var skipt upp í fjóra áfanga, einn meðferðar-‐ og þrjá prófunar áfanga. Fyrst var prófun, áfangi 1, til að fá viðmiðunar gögn, síðan var raförvunarmeðferð í 30 mínútur, þá prófunar áfangi 2 strax að lokinni meðferð og loks þriðji prófunar áfanginn tveimur tímum eftir meðferðina. Prófunar áfangarnir samanstanda af Ashworth skölun (klínískt mat á síspennu), mat á skjálfta eða krampakippum í fótum (e. clonus), 10-‐metra göngupróf ef færni einstaklingsins leyfir, raflífeðlisfræðilegum athugunum með upptöku vöðvarafrits og Wartenberg sveiflupróf sem ákvarðar tölulega stærðargráðu síspennunnar. Áhrif meðferðarinnar á síspennu var svo metin með því að bera saman niðurstöður úr prófunum 1 og 2 og niðurstöður úr prófunum 3 voru bornar saman við upphafs niðurstöðurnar til að ákvarða hvort áhrifin vari í tvo tíma að lokinni raförvun. Niðurstöður: Niðurstöður úr sveifluprófinu sýndu minnkun á síspennu hjá fjórum einstaklingum eftir meðferðina. Hjá hinum einstaklingunum voru meðalgildin úr sveifluprófinu í fyrsta prófunar áfanganum ≥ 1 sem lýsir ástandi án síspennu. Engu að síður var marktækur munur á samræmdri vöðvavirkni allra vöðvahópa á milli prófana fyrir og eftir raförvun hjá öllum þátttakendum sem bendir til lækkunar síspennu. Niðurstöðurnar sýndu einnig bætta hreyfigetu og betri stjórn. Ályktun: Áhrif yfirborðsraförvunar á mænu (tSCS) á síspennu er hliðstæð mænuraförvunar með ígræddum rafskautum (e. epidural SCS). Bendir það sterklega til að báðar þessar aðferðir örvi áþekkar taugarásir. Af niðurstöðunum getum við dregið þá ályktun að notkun þessarar aðferðar, mænuraförvun með yfirborðsrafskautum með lágum styrk, 50 Hz, í 30 mínútur dregur úr síspennu bæði hjá einstaklingum með alskaða og hlutskaða á mænu. Hjá þátttakendum með hlutskaða sýndum við fram á færnibætandi áhrifa með betri viljastýrðri stjórn á hreyfingum vegna minni síspennu. Lykilorð: Mænuraförvun; mænuskaði; síspenna; Wartenberg sveiflupróf; Ashworth skölun. ii Evaluation of tSCS treatment for the alleviation of lower limb spasticity Halla Kristín Guðfinnsdóttir 60 ECTS thesis submitted to the School of Science and Engineering at Reykjavík University in partial fulfillment of the requirements for the degree of Master of Science in Biomedical Engineering January 2016 Student: Halla Kristín Guðfinnsdóttir Supervisor(s): Þórður Helgason Guðbjörg Kristín Ludvigsdóttir Examiner: Stefán B. Sigurðsson iii Preface This thesis work is part of a joint study with Reykjavik University and Landspitali University Hospital prepared in collaboration with Austrian partners at the Medical University of Vienna (contact: Prof. Winfried Mayr). The project team consists of: • Þórður Helgason, biomedical engineer at Reykjavik University and. • Guðbjörg Kristín Ludvigsdóttir, rehabilitation specialist at the rehabilitation center at Landspitali University Hospital, Grensás. • Gígja Magnúsdóttir, physiotherapist at the rehabilitation center at Landspitali University Hospital, Grensás. • Vilborg Guðmundsdóttir, physiotherapist at the rehabilitation center at Landspitali University Hospital, Grensás. • José Luis Vargas Luna, post-‐doc at Reykjavik University and Landspitali University Hospital. • Halla Kristín Guðfinnsdóttir, master student in biomedical engineering at Reykjavik University iv Table of Contents ABSTRACT: ......................................................................................................................................... I ÚTDRÁTTUR – MAT Á ÁHRIFUM MÆNURAFÖRVUNAR Á SÍSPENNU ............................. II SIGNATURE PAGE .......................................................................................................................... III PREFACE ........................................................................................................................................... IV LIST OF TABLES ............................................................................................................................ VII LIST OF FIGURES ......................................................................................................................... VIII INTRODUCTION ............................................................................................................................... 1 GENERAL ANATOMICAL AND PHYSIOLOGICAL PRINCIPLES OF THE SPINE ............................................. 1 The Spinal Cord .............................................................................................................................................. 2 Spinal Nerves and Roots .......................................................................................................................... 4 Spinal Reflexes ................................................................................................................................................ 5 PATHOPHYSIOLOGY OF SPINAL CORD INJURY .............................................................................................. 6 Concepts of Primary Injury ....................................................................................................................... 6 Concepts of Secondary Injury .................................................................................................................. 7 SPASTICITY ......................................................................................................................................................... 7 Pathophysiology of Spasticity .................................................................................................................. 9 Intrinsic Tonic Spasticity ........................................................................................................................... 9 Intrinsic Phasic Spasticity ...................................................................................................................... 10 Extrinsic Spasticity .................................................................................................................................... 10 SPASTICITY ASSESSMENTS ............................................................................................................................. 10 The Ashworth and Modified Ashworth Scales ............................................................................... 11 Biomechanical Methods .......................................................................................................................... 12 Wartenberg Pendulum Test .................................................................................................................. 12 Electrophysiological Methods -‐ Brain Motor Control Assessment (BMCA) ...................... 13 MANAGEMENT OF SPASTICITY -‐ TREATMENT ALTERNATIVES ............................................................... 14 Physical Interventions ............................................................................................................................. 14 Pharmaceutical Interventions ............................................................................................................. 14 Intrathecal Baclofen ................................................................................................................................. 15 Injection Interventions ............................................................................................................................ 15 Surgical interventions .............................................................................................................................. 15 ELECTRICAL STIMULATION FOR THE REDUCTION OF SPASTICITY ......................................................... 16 Electrical Stimulation of Muscles ........................................................................................................ 16 v Electrical Stimulation of Peripheral Nerves .................................................................................. 17 Electrical Spinal Cord Stimulation ..................................................................................................... 17 TRANSCUTANEOUS SPINAL CORD STIMULATION ...................................................................................... 19 METHODOLOGY ............................................................................................................................. 21 CLINICAL DATA ................................................................................................................................................ 21 STUDY PROTOCOL ........................................................................................................................................... 22 DATA COLLECTION .......................................................................................................................................... 24 DATA ANALYSIS ............................................................................................................................................... 25 RESULTS ........................................................................................................................................... 27 EFFECTS OF TSCS ON INTRINSIC TONIC SPASTICITY ................................................................................. 27 EFFECTS OF TSCS ON INTRINSIC PHASIC SPASTICITY ............................................................................... 29 EFFECTS OF TSCS ON EXTRINSIC SPASTICITY ............................................................................................ 32 EFFECTS OF TSCS ON MOTOR CONTROL ..................................................................................................... 35 REPORTED EFFECTS OF TSCS FROM SUBJECTS .......................................................................................... 39 DISCUSSION ..................................................................................................................................... 40 CONCLUSION ................................................................................................................................... 43 REFERENCES ................................................................................................................................... 44 APPENDIX I – ASIA IMPAIRMENT SCALE (AIS) .................................................................... 51 APPENDIX II – WALKING INDEX FOR SPINAL CORD INJURY (WISCI II) ....................... 53 APPENDIX III – PROTOCOL ........................................................................................................ 54 APPENDIX IV – ASSESSMENT FORM ........................................................................................ 57 APPENDIX V – WARTENBERG PENDULUM RESULTS ......................................................... 60 APPENDIX VI – WALKING TEST RESULTS (10 M) ............................................................... 64 APPENDIX VII – QUESTIONNAIRE ............................................................................................ 65 vi List of Tables Table 1. Mechanical Forces Related To Primary Injury [3 p. 11]. ................................................................... 6 Table 2. The Ashworth and Modified Ashworth scales [7], [46], [48]. ....................................................... 11 Table 3. Characteristics of subjects ............................................................................................................................ 21 Table 4. Overall summary of the spasticity evaluation. Shows what kind of spasticity is present for each leg and the effects of tSCS on the spasticity in assessments 2 and 3 (ê spasticity reduces, é Spasticity increases, ± means that the effects vary between muscles). .................. 27 Table 5. Average spasticity index R from the Wartenberg pendulum test for all subjects* .......... 28 2n, Table 6. Average spasticity index R from the Wartenberg pendulum test for subjects with R < 2n, 2n 1 in the first assessment*. ................................................................................................................................... 28 Table 7. Summary of results related to intrinsic tonic spasticity. Spasticity index R , and average 2n EMG activity detected during the Wartenberg pendulum test. The first line of each subject shows the Spasticity index R , the mean (M) is the average of index out of 3 repetitions. For 2n the muscle activity the mean (M) is the average Vrms value [μV]. The mean values from assessments 2 and 3 (nM) are normalized to the average in assessment 1. ................................ 28 Table 8. Summary of results related to intrinsic phasic spasticity. Scores from the Ashworth scale (AS), counts of clonus beats (CL) and average EMG activity of each muscle during BMCA5. The mean value (M) of the Ashwrtoh scale is the average score of each leg. Continuous clonus is numerically represented by 10 beats. For the muscle activity the mean (M) is the average Vrms value. The mean values from assessments 2 and 3 (nM) are normalized to the average in assessment 1. ..................................................................................................................................... 29 Table 9. Summary of results related to extrinsic spasticity. Average EMG activity of each muscle during BMCA6. For the muscle activity the mean (M) is the average Vrms value [μV]. The mean values from assessments 2 and 3 (nM) are normalized to the average in assessment 1. ........................................................................................................................................................................................ 32 Table 10. Summary of results related to the effects on motor control. Times during the walking tests and average EMG activity of each muscle during BMCA7. For the walking times, the first mean is the average time [s] for the first assessment and the mean values from assessments 2 and 3 (nM) are normalized to the average in assessment 1. For the muscle activity the mean (M) is the average Vrms value [μV] and the mean values from assessments 2 and 3 (nM) are also normalized to the average in assessment 1. ....................... 36 Table 11. Results from 10-‐m walking test for subjects S4-‐S6. ........................................................................ 36 Table 12. Walking Index for Spinal Cord Injury (WISCI II) [102] ................................................................. 53 Table 13. Walking test results. Time in seconds during 10 m walking test. Mean values for assessments 2 and 3 are normalized to the average in assessment 1. ............................................ 64 vii List of Figures Figure 1. The vertebral column seen from three different views. A. Lateral view. B. Anterior view. C. Posterior view. [1, p. 17-‐18]. ........................................................................................................................... 1 Figure 2. The twelfth thoracic vertebrae. A. Superior view. B. Inferior view. C. Lateral view. [1 p. 228-‐230]. ...................................................................................................................................................................... 2 Figure 3. Gross anatomy of the spinal cord with relationships to associated bony structures and other body parts. The vertebrae are color coded in accordance to the various spinal levels. The axial spinal sections on the left represents each spinal level and show the distribution of the white and gray matter [4 p. 5]. .............................................................................................................. 3 Figure 4. The anatomy of a single thoracic segment A. The general anatomical relationships between a spinal segment, the meninges, the dorsal an ventral roots and associated bony structures of a typical thoracic vertebrae. B. Shows typical ascending and descending tracts where sensory pathways are blue and motor pathways in red. Only one side of the cord is represented but the same fiber tracts are also on the other side [4 p. 6]. ....................................... 4 Figure 5. Transcutaneous spinal cord stimulation with the stimulation and reference electrodes over the back and abdomen, respectively, and their positions with respect to the spine and lumbosacral spinal cord [52 p. 231], [81], [90]. ........................................................................................ 19 Figure 6. Neuroanatomy relevant for transcutaneous spinal cord stimulation. Cross-‐section (A,B) and side-‐view (C,D) drawings of posterior roots with respect the lumbosacral spinal cord and spine. All large-‐ and medium-‐diameter fibers from muscles, joints, and skins of the lower extremities enter the lumbar and upper sacral spinal cord within an extent of few a centimeters and can thus be activated with a single pulse [52 p. 237]. ......................................... 20 Figure 7. Graphical representation of the four stages of the study protocol ........................................... 23 Figure 8. The set up of the equipment’s used in this study. ............................................................................. 25 Figure 9. EMG activity (blue) of triceps surae and tibialis anterior during BMCA5 of the left leg of S3. BMCA5: Manual elicitation of ankle clonus by rapid stretch of the Achilles tendon. The green area marks the timespan of the event. ............................................................................................. 31 Figure 10. EMG activity (blue) of left triceps surae, tibialis anterior and hamstring during BMCA5 of the left leg of S8. BMCA5: Manual elicitation of ankle clonus by rapid stretch of the Achilles tendon. The green area marks the timespan of the event. .................................................. 31 Figure 11. EMG activity (blue) of left quadriceps, hamstring, tibialis anterior, triceps surae and adductors during BMCA6 of the left leg of subject S3. BMCA6: Manual elicitation of foot withdrawal by non-‐noxious mechanical plantar stimulation with a blunt rod (Babinski reflex). The green area marks the timespan of the event. ................................................................... 33 Figure 12. EMG activity (blue) of right quadriceps, tibialis anterior and adductors during BMCA6 of the right leg of subject S9. BMCA6: Manual elicitation of foot withdrawal by non-‐noxious mechanical plantar stimulation with a blunt rod (Babinski). The green area marks the timespan of the event. .......................................................................................................................................... 34 Figure 13. EMG activity (blue) of left quadriceps, hamstring, tibialis anterior, triceps surae and adductors during BMCA6 of the left leg of subject S8. BMCA6: Manual elicitation of foot withdrawal by non-‐noxious mechanical plantar stimulation with a blunt rod (Babinski reflex). The green area marks the timespan of the events, the figure shows two repetitions. ........................................................................................................................................................................................ 34 Figure 14. EMG activity (blue) of right quadriceps, hamstring, tibialis anterior, triceps surae and adductors during BMCA6 of the right leg of subject S8. BMCA6: Manual elicitation of foot viii
Description: