ebook img

Evaluation of tSCS treatment for the alleviation of lower limb spasticity PDF

77 Pages·2016·19.51 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Evaluation of tSCS treatment for the alleviation of lower limb spasticity

Evaluation of tSCS treatment for the alleviation of lower limb spasticity Halla Kristín Guðfinnsdóttir Thesis of 60 ECTS credits Master of Science in Biomedical Engineering January 2016 Evaluation of tSCS treatment for the alleviation of lower limb spasticity Halla Kristín Guðfinnsdóttir Thesis of 60 ECTS credits submitted to the School of Science and Engineering at Reykjavík University in partial fulfillment of the requirements for the degree of Master of Science in Biomedical Engineering January 2016 Supervisor(s): Þórður Helgason. Supervisor. Associate Professor, Reykjavík University, Iceland Guðbjörg Kristín Ludvigsdottir. Supervisor. Rehabilitation specialist, Landspitali University Hospital, Iceland. Examiner(s): Stefán B. Sigurðsson, Examiner Professor, University of Akureyri, Iceland. Abstract:     Introduction:  Spinal  cord  injury  is  a  traumatic  injury  of  descending  spinal   cord  tracts  that  alters  the  supraspinal  neural  circuitry.  Spasticity  is  a  common   result  of  spinal  cord  injury  (SCI)  and  can  restrict  daily  living  activities,  cause  pain   and  fatigue  and  therefore  decrease  the  quality  of  life  for  SCI  individuals.  The  aim   of   this   study   was   to   evaluate   the   effects   of   transcutaneous   spinal   cord   stimulation  (tSCS)  on  individuals  with  post-­‐traumatic  SCI  for  the  alleviation  of   lower  limb  spasticity.     Methods:   The   evaluation   of   the   effects   of   tSCS   was   done   by   means   of   electrophysiological   evaluation   and   evaluation   of   residual   motor   control   functions.  The  study  protocol  was  divided  into  four  stages,  one  treatment  stage   and  three  assessments.  The  protocol  starts  with  the  first  assessment  for  control   data,  and  then  treatment  was  applied  for  30  minuets,  second  assessment  was   done  immediately  after  stimulation  and  the  last  assessment  two  hours  after   stimulation.  The  assessments  consist  of  estimation  of  the  Ashworth  scale,  clonus   beet   quantification,   10-­‐m   walking   test   (if   possible)   and   electrophysiological   evaluation   (Brain   Motor   Control   Assessment,   BMCA)   supplemented   by   the   Wartenberg  pendulum  test.         Results:  The  results  of  the  pendulum  test  show  increase  in  muscle  tone  in   four  subjects  while  the  others  presented  average  values  ≥  1,  indicating  non-­‐ spastic   conditions.   Nonetheless   there   was   a   significant   difference   of   the   normalized  EMG  activity  of  all  muscles  before  the  stimulation  and  immediately   after  stimulation  for  all  participants,  indication  reduction  in  intrinsic  phasic  and   extrinsic  spasticity.  Enhancement  of  motor  control  was  also  observed.     Conclusion:   The   similarity   of   the   effects   of   tSCS   with   those   induced   by   epidural  SCS,  strongly  suggests  that  both  techniques  are  able  to  activate  similar   neural   structures.   From   our   results   we   can   see   that   the   application   of   low-­‐ intensity  tSCS  for  30  minuets  lead  to  the  alleviation  of  lower  limb  spasticity   regardless  of  the  clinical  profile  of  the  subjects  and  enhancement  of  voluntary   motor  control  in  the  motor  incomplete  SCI  subjects.     Keywords:   transcutaneous   spinal   cord   stimulation   (tSCS);   spinal   cord   injury   (SCI);  spasticity;  Wartenberg  pendulum  test  (WPT);  Ashworth  scale  (AS).       i Útdráttur  –  Mat  á  áhrifum  mænuraförvunar  á  síspennu   Inngangur:   Áverki   á   mænu   hefur   áhrif   á   og   getur   breytt   taugarásum   og   tauganetum  í  mænunni.  Síspenna  eða  ósjálfráður  vöðvasamdráttur  (spasmi),  er   algengur  fylgikvilli  mænuskaða  sem  getur  dregið  verulega  úr  lífsgæðum  vegna   hamlandi   áhrifa   á   daglegar   athafnir,   sársauka   og   þreytu.   Markmið   rannsóknarinnar   er   að   meta   áhrif   raförvunar   með   yfirborðs-­‐rafskautum   á   taugarætur  í  neðsta  hluta  mænunnar  og  meta  hvort  það  geti  dregið  úr  síspennu  í   fótleggjum   eftir   mænuskaða.   Til   að   meta   áhrifin   voru   mismunandi   matstæki   notuð  sem  meta  ólík  form  síspennu,  þ.e.  taktbundin  síspenna  (intrinsic  phasic)   og  stífleika  (intrinsic  tonic)  og  síspenna  vegna  ytri  áreitis  (extrinsic  spasticity).     Aðferðir:   Mat   á   áhrifum   mænuraförvunarinnar   var   gerð   með   raflífeðlisfræðilegum   og   klínískum   athugunum   sem   og   athugun   á   hreyfigetu.   Rannsókninni  var  skipt  upp  í  fjóra  áfanga,  einn  meðferðar-­‐  og  þrjá  prófunar   áfanga.   Fyrst   var   prófun,   áfangi   1,   til   að   fá   viðmiðunar   gögn,   síðan   var   raförvunarmeðferð  í  30  mínútur,  þá  prófunar  áfangi  2  strax  að  lokinni  meðferð   og   loks   þriðji   prófunar   áfanginn   tveimur   tímum   eftir   meðferðina.   Prófunar   áfangarnir  samanstanda  af  Ashworth  skölun  (klínískt  mat  á  síspennu),  mat  á   skjálfta  eða  krampakippum  í  fótum  (e.  clonus),  10-­‐metra  göngupróf  ef  færni   einstaklingsins   leyfir,   raflífeðlisfræðilegum   athugunum   með   upptöku   vöðvarafrits   og   Wartenberg   sveiflupróf   sem   ákvarðar   tölulega   stærðargráðu   síspennunnar.  Áhrif  meðferðarinnar  á  síspennu  var  svo  metin  með  því  að  bera   saman  niðurstöður  úr  prófunum  1  og  2  og  niðurstöður  úr  prófunum  3  voru   bornar  saman  við  upphafs  niðurstöðurnar  til  að  ákvarða  hvort  áhrifin  vari  í  tvo   tíma  að  lokinni  raförvun.     Niðurstöður:  Niðurstöður  úr  sveifluprófinu  sýndu  minnkun  á  síspennu  hjá   fjórum   einstaklingum   eftir   meðferðina.   Hjá   hinum   einstaklingunum   voru   meðalgildin  úr  sveifluprófinu  í  fyrsta  prófunar  áfanganum  ≥  1  sem  lýsir  ástandi   án  síspennu.  Engu  að  síður  var  marktækur  munur  á  samræmdri  vöðvavirkni   allra  vöðvahópa  á  milli  prófana  fyrir  og  eftir  raförvun  hjá  öllum  þátttakendum   sem  bendir  til  lækkunar  síspennu.  Niðurstöðurnar  sýndu  einnig  bætta  hreyfigetu   og  betri  stjórn.     Ályktun:  Áhrif  yfirborðsraförvunar  á  mænu  (tSCS)  á  síspennu  er  hliðstæð   mænuraförvunar   með   ígræddum   rafskautum   (e.   epidural   SCS).   Bendir   það   sterklega  til  að  báðar  þessar  aðferðir  örvi  áþekkar  taugarásir.  Af  niðurstöðunum   getum  við  dregið  þá  ályktun  að  notkun  þessarar  aðferðar,  mænuraförvun  með   yfirborðsrafskautum  með  lágum  styrk,  50  Hz,  í  30  mínútur  dregur  úr  síspennu   bæði  hjá  einstaklingum  með  alskaða  og  hlutskaða  á  mænu.  Hjá  þátttakendum   með  hlutskaða  sýndum  við  fram  á  færnibætandi  áhrifa  með  betri  viljastýrðri   stjórn  á  hreyfingum  vegna  minni  síspennu.   Lykilorð:  Mænuraförvun;  mænuskaði;  síspenna;  Wartenberg  sveiflupróf;   Ashworth  skölun.       ii Evaluation of tSCS treatment for the alleviation of lower limb spasticity Halla Kristín Guðfinnsdóttir 60 ECTS thesis submitted to the School of Science and Engineering at Reykjavík University in partial fulfillment of the requirements for the degree of Master of Science in Biomedical Engineering January 2016 Student: Halla Kristín Guðfinnsdóttir Supervisor(s): Þórður Helgason Guðbjörg Kristín Ludvigsdóttir Examiner: Stefán B. Sigurðsson   iii Preface   This   thesis   work   is   part   of   a   joint   study   with   Reykjavik   University   and   Landspitali  University  Hospital  prepared  in  collaboration  with  Austrian  partners   at  the  Medical  University  of  Vienna  (contact:  Prof.  Winfried  Mayr).   The  project  team  consists  of:   • Þórður  Helgason,  biomedical  engineer  at  Reykjavik  University  and.   • Guðbjörg  Kristín  Ludvigsdóttir,  rehabilitation  specialist  at  the   rehabilitation  center  at  Landspitali  University  Hospital,  Grensás.   • Gígja  Magnúsdóttir,  physiotherapist  at  the  rehabilitation  center  at   Landspitali  University  Hospital,  Grensás.   • Vilborg  Guðmundsdóttir,  physiotherapist  at  the  rehabilitation  center  at   Landspitali  University  Hospital,  Grensás.   • José  Luis  Vargas  Luna,  post-­‐doc  at  Reykjavik  University  and  Landspitali   University  Hospital.   • Halla  Kristín  Guðfinnsdóttir,  master  student  in  biomedical  engineering  at   Reykjavik  University           iv Table  of  Contents   ABSTRACT:  .........................................................................................................................................  I   ÚTDRÁTTUR  –  MAT  Á  ÁHRIFUM  MÆNURAFÖRVUNAR  Á  SÍSPENNU  .............................  II   SIGNATURE  PAGE  ..........................................................................................................................  III   PREFACE  ...........................................................................................................................................  IV   LIST  OF  TABLES  ............................................................................................................................  VII   LIST  OF  FIGURES  .........................................................................................................................  VIII   INTRODUCTION  ...............................................................................................................................  1   GENERAL  ANATOMICAL  AND  PHYSIOLOGICAL  PRINCIPLES  OF  THE  SPINE  .............................................  1   The  Spinal  Cord  ..............................................................................................................................................  2   Spinal  Nerves  and  Roots      ..........................................................................................................................  4   Spinal  Reflexes  ................................................................................................................................................  5   PATHOPHYSIOLOGY  OF  SPINAL  CORD  INJURY  ..............................................................................................  6   Concepts  of  Primary  Injury  .......................................................................................................................  6   Concepts  of  Secondary  Injury  ..................................................................................................................  7   SPASTICITY  .........................................................................................................................................................  7   Pathophysiology  of  Spasticity  ..................................................................................................................  9   Intrinsic  Tonic  Spasticity  ...........................................................................................................................  9   Intrinsic  Phasic  Spasticity  ......................................................................................................................  10   Extrinsic  Spasticity  ....................................................................................................................................  10   SPASTICITY  ASSESSMENTS  .............................................................................................................................  10   The  Ashworth  and  Modified  Ashworth  Scales  ...............................................................................  11   Biomechanical  Methods  ..........................................................................................................................  12   Wartenberg  Pendulum  Test  ..................................................................................................................  12   Electrophysiological  Methods  -­‐  Brain  Motor  Control  Assessment  (BMCA)  ......................  13   MANAGEMENT  OF  SPASTICITY  -­‐  TREATMENT  ALTERNATIVES  ...............................................................  14   Physical  Interventions  .............................................................................................................................  14   Pharmaceutical  Interventions  .............................................................................................................  14   Intrathecal  Baclofen  .................................................................................................................................  15   Injection  Interventions  ............................................................................................................................  15   Surgical  interventions  ..............................................................................................................................  15   ELECTRICAL  STIMULATION  FOR  THE  REDUCTION  OF  SPASTICITY  .........................................................  16   Electrical  Stimulation  of  Muscles  ........................................................................................................  16     v Electrical  Stimulation  of  Peripheral  Nerves  ..................................................................................  17   Electrical  Spinal  Cord  Stimulation  .....................................................................................................  17   TRANSCUTANEOUS  SPINAL  CORD  STIMULATION  ......................................................................................  19   METHODOLOGY  .............................................................................................................................  21   CLINICAL  DATA  ................................................................................................................................................  21   STUDY  PROTOCOL  ...........................................................................................................................................  22   DATA  COLLECTION  ..........................................................................................................................................  24   DATA  ANALYSIS  ...............................................................................................................................................  25   RESULTS  ...........................................................................................................................................  27   EFFECTS  OF  TSCS  ON  INTRINSIC  TONIC  SPASTICITY  .................................................................................  27   EFFECTS  OF  TSCS  ON  INTRINSIC  PHASIC  SPASTICITY  ...............................................................................  29   EFFECTS  OF  TSCS  ON  EXTRINSIC  SPASTICITY  ............................................................................................  32   EFFECTS  OF  TSCS  ON  MOTOR  CONTROL  .....................................................................................................  35   REPORTED  EFFECTS  OF  TSCS  FROM  SUBJECTS  ..........................................................................................  39   DISCUSSION  .....................................................................................................................................  40   CONCLUSION  ...................................................................................................................................  43   REFERENCES  ...................................................................................................................................  44   APPENDIX  I  –  ASIA  IMPAIRMENT  SCALE  (AIS)  ....................................................................  51   APPENDIX  II  –  WALKING  INDEX  FOR  SPINAL  CORD  INJURY  (WISCI  II)  .......................  53   APPENDIX  III  –  PROTOCOL  ........................................................................................................  54   APPENDIX  IV  –  ASSESSMENT  FORM  ........................................................................................  57   APPENDIX  V  –  WARTENBERG  PENDULUM  RESULTS  .........................................................  60   APPENDIX  VI  –  WALKING  TEST  RESULTS  (10  M)  ...............................................................  64   APPENDIX  VII  –  QUESTIONNAIRE  ............................................................................................  65             vi List  of  Tables   Table  1.  Mechanical  Forces  Related  To  Primary  Injury  [3  p.  11].  ...................................................................  6   Table  2.  The  Ashworth  and  Modified  Ashworth  scales  [7],  [46],  [48].  .......................................................  11   Table  3.  Characteristics  of  subjects  ............................................................................................................................  21   Table  4.  Overall  summary  of  the  spasticity  evaluation.  Shows  what  kind  of  spasticity  is  present   for  each  leg  and  the  effects  of  tSCS  on  the  spasticity  in  assessments  2  and  3  (ê  spasticity   reduces,  é  Spasticity  increases,  ±  means  that  the  effects  vary  between  muscles).  ..................  27   Table  5.  Average  spasticity  index  R  from  the  Wartenberg  pendulum  test  for  all  subjects*  ..........  28   2n, Table  6.  Average  spasticity  index  R  from  the  Wartenberg  pendulum  test  for  subjects  with  R <   2n, 2n 1  in  the  first  assessment*.  ...................................................................................................................................  28   Table  7.  Summary  of  results  related  to  intrinsic  tonic  spasticity.  Spasticity  index  R ,  and  average   2n EMG  activity  detected  during  the  Wartenberg  pendulum  test.  The  first  line  of  each  subject   shows  the  Spasticity  index  R ,  the  mean  (M)  is  the  average  of  index  out  of  3  repetitions.  For   2n the  muscle  activity  the  mean  (M)  is  the  average  Vrms  value  [μV].  The  mean  values  from   assessments  2  and  3  (nM)  are  normalized  to  the  average  in  assessment  1.  ................................  28   Table  8.  Summary  of  results  related  to  intrinsic  phasic  spasticity.  Scores  from  the  Ashworth  scale   (AS),  counts  of  clonus  beats  (CL)  and  average  EMG  activity  of  each  muscle  during  BMCA5.   The  mean  value  (M)  of  the  Ashwrtoh  scale  is  the  average  score  of  each  leg.  Continuous   clonus  is  numerically  represented  by  10  beats.  For  the  muscle  activity  the  mean  (M)  is  the   average  Vrms  value.  The  mean  values  from  assessments  2  and  3  (nM)  are  normalized  to  the   average  in  assessment  1.  .....................................................................................................................................  29   Table  9.  Summary  of  results  related  to  extrinsic  spasticity.  Average  EMG  activity  of  each  muscle   during  BMCA6.  For  the  muscle  activity  the  mean  (M)  is  the  average  Vrms  value  [μV].  The   mean  values  from  assessments  2  and  3  (nM)  are  normalized  to  the  average  in  assessment  1.  ........................................................................................................................................................................................  32   Table  10.  Summary  of  results  related  to  the  effects  on  motor  control.  Times  during  the  walking   tests  and  average  EMG  activity  of  each  muscle  during  BMCA7.  For  the  walking  times,  the   first  mean  is  the  average  time  [s]  for  the  first  assessment  and  the  mean  values  from   assessments  2  and  3  (nM)  are  normalized  to  the  average  in  assessment  1.  For  the  muscle   activity  the  mean  (M)  is  the  average  Vrms  value  [μV]  and  the  mean  values  from   assessments  2  and  3  (nM)  are  also  normalized  to  the  average  in  assessment  1.  .......................  36   Table  11.  Results  from  10-­‐m  walking  test  for  subjects  S4-­‐S6.  ........................................................................  36   Table  12.  Walking  Index  for  Spinal  Cord  Injury  (WISCI  II)  [102]  .................................................................  53   Table  13.  Walking  test  results.  Time  in  seconds  during  10  m  walking  test.    Mean  values  for   assessments  2  and  3  are  normalized  to  the  average  in  assessment  1.  ............................................  64         vii List  of  Figures   Figure  1.  The  vertebral  column  seen  from  three  different  views.  A.  Lateral  view.  B.  Anterior  view.     C.  Posterior  view.  [1,  p.  17-­‐18].  ...........................................................................................................................  1   Figure  2.  The  twelfth  thoracic  vertebrae.  A.  Superior  view.  B.  Inferior  view.  C.  Lateral  view.  [1  p.   228-­‐230].  ......................................................................................................................................................................  2   Figure  3.  Gross  anatomy  of  the  spinal  cord  with  relationships  to  associated  bony  structures  and   other  body  parts.  The  vertebrae  are  color  coded  in  accordance  to  the  various  spinal  levels.   The  axial  spinal  sections  on  the  left  represents  each  spinal  level  and  show  the  distribution   of  the  white  and  gray  matter  [4  p.  5].  ..............................................................................................................  3   Figure  4.  The  anatomy  of  a  single  thoracic  segment  A.  The  general  anatomical  relationships   between  a  spinal  segment,  the  meninges,  the  dorsal  an  ventral  roots  and  associated  bony   structures  of  a  typical  thoracic  vertebrae.  B.  Shows  typical  ascending  and  descending  tracts   where  sensory  pathways  are  blue  and  motor  pathways  in  red.  Only  one  side  of  the  cord  is   represented  but  the  same  fiber  tracts  are  also  on  the  other  side  [4  p.  6].  .......................................  4   Figure  5.  Transcutaneous  spinal  cord  stimulation  with  the  stimulation  and  reference  electrodes   over  the  back  and  abdomen,  respectively,  and  their  positions  with  respect  to  the  spine  and   lumbosacral  spinal  cord  [52  p.  231],  [81],  [90].  ........................................................................................  19   Figure  6.  Neuroanatomy  relevant  for  transcutaneous  spinal  cord  stimulation.  Cross-­‐section  (A,B)   and  side-­‐view  (C,D)  drawings  of  posterior  roots  with  respect  the  lumbosacral  spinal  cord   and  spine.  All  large-­‐  and  medium-­‐diameter  fibers  from  muscles,  joints,  and  skins  of  the   lower  extremities  enter  the  lumbar  and  upper  sacral  spinal  cord  within  an  extent  of  few  a   centimeters  and  can  thus  be  activated  with  a  single  pulse  [52  p.  237].  .........................................  20   Figure  7.  Graphical  representation  of  the  four  stages  of  the  study  protocol  ...........................................  23   Figure  8.  The  set  up  of  the  equipment’s  used  in  this  study.  .............................................................................  25   Figure  9.  EMG  activity  (blue)  of  triceps  surae  and  tibialis  anterior  during  BMCA5  of  the  left  leg  of   S3.    BMCA5:  Manual  elicitation  of  ankle  clonus  by  rapid  stretch  of  the  Achilles  tendon.  The   green  area  marks  the  timespan  of  the  event.  .............................................................................................  31   Figure  10.  EMG  activity  (blue)  of  left  triceps  surae,  tibialis  anterior  and  hamstring  during  BMCA5   of  the  left  leg  of  S8.  BMCA5:  Manual  elicitation  of  ankle  clonus  by  rapid  stretch  of  the   Achilles  tendon.  The  green  area  marks  the  timespan  of  the  event.  ..................................................  31   Figure  11.  EMG  activity  (blue)  of  left  quadriceps,  hamstring,  tibialis  anterior,  triceps  surae  and   adductors  during  BMCA6  of  the  left  leg  of  subject  S3.  BMCA6:  Manual  elicitation  of  foot   withdrawal  by  non-­‐noxious  mechanical  plantar  stimulation  with  a  blunt  rod  (Babinski   reflex).    The  green  area  marks  the  timespan  of  the  event.  ...................................................................  33   Figure  12.  EMG  activity  (blue)  of  right  quadriceps,  tibialis  anterior  and  adductors  during  BMCA6   of  the  right  leg  of  subject  S9.  BMCA6:  Manual  elicitation  of  foot  withdrawal  by  non-­‐noxious   mechanical  plantar  stimulation  with  a  blunt  rod  (Babinski).  The  green  area  marks  the   timespan  of  the  event.  ..........................................................................................................................................  34   Figure  13.  EMG  activity  (blue)  of  left  quadriceps,  hamstring,  tibialis  anterior,  triceps  surae  and   adductors  during  BMCA6  of  the  left  leg  of  subject  S8.  BMCA6:  Manual  elicitation  of  foot   withdrawal  by  non-­‐noxious  mechanical  plantar  stimulation  with  a  blunt  rod  (Babinski   reflex).  The  green  area  marks  the  timespan  of  the  events,  the  figure  shows  two  repetitions.  ........................................................................................................................................................................................  34   Figure  14.  EMG  activity  (blue)  of  right  quadriceps,  hamstring,  tibialis  anterior,  triceps  surae  and   adductors  during  BMCA6  of  the  right  leg  of  subject  S8.  BMCA6:  Manual  elicitation  of  foot     viii

Description:
stimulation (tSCS) on individuals with post-‐traumatic SCI for the alleviation of lower limb spasticity. intensity tSCS for 30 minuets lead to the alleviation of lower limb spasticity regardless of the clinical After SCI the inhibition of these reflexes can be interrupt by supraspinal pathways
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.